Guidelines for Preparing a Paper for the
European Conference on Atrtificial Intelligence

Namel Surnamel and Name2 Surname2 and Name3 Surname3

Abstract. The purpose of this paper is to show a contributor the3,2 Author
required style for a paper for ECAI-2006 and PAIS-2006. Tihecs

ifications for layout are described so that néfgK users can create
their own style sheet to achieve the same layout. The sooraéé
sample file is available forTeX users. The PostScript and the PDF
file is available for all.

The author’'s name is set in 11 point (3.85 mm) bold with legdif
12 point (4.2 mm), centered over full text measure, with Iicap
(6 mm) of space below. A footnote indicator is set in 11 po885
mm) medium and positioned as a superscript character.

The layout is identical to ECAI'02 and ECAI'04 papers. Thépu

lisher (10S Press) will insert a footer for each page. 3.3 Affiliation

The affiliation is set as a footnote to the first column. Thisasin 8

1 PAGE LIMIT point (2.8 mm) medium with leading of 8.6 point (3.1 mm), wath.

point (0.35 mm) footnote rule to column width.

The page limit for ECAI-2006 and PAIS-2006 full papers is §gs
in the required format. The page limit for poster submissian?2 .
pages. This is a strict limit. Overlength papers will not beiewed. 3.4 Copyright

The copyright details will be inserted by the publisher.

2 GENERAL SPECIFICATIONS

3.5 Running feet

The following details should allow contributors to set up general The running feet are inserted by the publisher. For suborisgou
page description for their paper: may insert page numbers in the middle of the running feet. &p n

1.

2.
3.

. There are no running feet for the final camera-ready versfo

however, insert page numbers for the camera-ready vergitineo
The paper is set in two columns each 20.5 picas (86 mm) widgaper.
with a column separator of 1.5 picas (6 mm).
The typeface is Times Modern Roman.
The body text size is 9 point (3.15 mm) on a body of 11 point4 ABSTRACT

(3.85 mm) (i.e. 61 lines of text). The abstract for the paper is set in 9 point (3.15 mm) mediumg o

- The effective text height for each page is 56 picas (237.61m3 o4y of 10 point (3.5 mm). The word Abstract is set in boldidaied

first page has less text height. It requires an additiondefapace py g full point and a 0.5 pica space.

of 3.5 picas (14.8 mm) for the copyright inserted by the miisr

and 1.5 picas (6 mm) of space before the title. The effecaxe t

height of the first page is 51 picas (216 mm). 5 HEADINGS

Three heading levels have been specified:
the paper. The submission paper should have page numbéss in t g P

running feet. 1. Alevel headings

e The first level of heading is set is 11 point (3.85 mm) bold, on

3 TITLE, AUTHOR, AFFILIATION, a body of 12 point (4.2 mm), 1.5 lines of space above and 0.5

3.1 Title

COPYRIGHT AND RUNNING FEET lines of space below.

e The heading is numbered to one digit with a 1 pica space sepa-
rating it from the text.

The title is set in 20 point (7 mm) bold with leading of 22 po{iit7 e The textis keyed in capitals and is unjustified.

mm), centered over the full text measure, with 1.5 picas (6) wim 2

. Blevel headings

space before and after.

e The second level of heading is set is 11 point (3.85 mm) bold,

1

University of Leipzig, Germany, email: somename@infoitnahi- on a body of 12 point (4.2 mm), 1.5 lines of space above and
leipzig.de 0.5 lines of space below.

e The heading is numbered to two digits separated with a full9 FIGURES

point, with a 1 pica space separating it from the text.
A figure caption is set centered in 8 point (2.8 mm) medium on a
leading of 10 point (3.5 mm). Itis set under the figure, with word
Figure and the number in bold and with a 1 pica (4.2 mm) space
3. Clevel headings separating the caption text from the figure number.

The third level of heading i is 10 point (3 itali One line of space separates the figure from the caption. Ainee |
o The third level of heading is set is 10 point (3.5 mm) italin, 0 space separates the figure from surrounding text.

a body of 11 point (3.85 mm), 1.5 lines of space above and 0.5
lines of space below. Grid of Transputers

e The text is keyed in upper and lower case with an initial pit
for first word only, and is unjustified.

e The heading is numbered to three digits separated with a full
point, with a 1 pica space separating it from the text.

e The text is keyed in upper and lower case with an initial pit
for first word only, and is unjustified.

4. Acknowledgements
This heading is the same style as an A level heading but is not
numbered.

6 TEXT

The first paragraph of text following any heading is set todbm-
plete measure (i.e. do not indent the first line).

Processes:

Routin;
Subsequent paragraphs are set with the first line indentégploa § B“ﬁ::
(385 mm) . Computation

There isn’t any inter-paragraph spacing.

7 LISTS

The list identifier may be an arabic number, a bullet, an em oula
roman numeral.

The items in a list are set in text size and indented by 1 pica (4 Figure 1. Network of transputers and the structure of individual psses
mm) from the left margin. Half a line of space is set above agld
the list to separate it from surrounding text.

See layout of Section 5 on headings to see the results ofghe li

macros. 10 EQUATIONS

Structure of processes running on each transputer

A display equation is numbered, using arabic numbers inrplaee
ses. It is centered and set with one line of space above and bel

))) separate it from surrounding text. The following exampla 8mple
Tables are set in 8 point (2.8 mm) on a body of 10 point (3.5 mm)-single line equation:

The table caption is set centered at the start of the tabkb, the
word Table and the number in bold. The caption is set in medium

8 TABLES

) . L Ax =10 1
with a 1 pica (4.2 mm) space separating it from the table numbe @
A one line space separates the table from surrounding text. The next example is a multi-line equation:
Table 1. The table caption is centered on the table measure. If indstéeo 2 2
two lines each is centered. (z+y)z—y) = z°—aytay—y 2
2 2 2
Processors (@+y)” = 2" +2y+y ®)
1 2 4
] The equal signs are aligned in a multi-line equation.
Window < <o o A o O JAN
1 1273 110 21.79 89% 6717 2242 61%
2 2145 116 10.99 50% 5386 10.77 19% 11 PROGRAM LISTINGS
3 3014 117 4177 89% 7783 4231 58%
4 4753 151 71.55 77% 7477 61.97 49% program listings are setin 9 point (3.15 mm) Courier on aitepdf
5 5576 148 6160 80% 7551 91.80 45%
11 point (3.85 mm). That is to say, a hon-proportional fontded to
<& execution time in ticksO speed-up valueg\ efficiency values

ensure the correct alignment.
A one line space separates the program listing from suriagnd
text.

voi d inc(x)
int*x Xx;

{
}

* X++;

int y =1;
inc(&y);
printf("%\n",y);

12 THEOREMS

The text of a theorem is set in 9 point (3.15 mm) italic on a iegd
of 11 point (3.85 mm). The word Theorem and its number arerset i
9 point (3.15 mm) bold.

A one line space separates the theorem from surrounding text

Theorem 1 Let us assume this is a valid theorem. In reality it is a
piece of text set in the theorem environment.

13 FOOTNOTES

Footnotes are set in 8 point (2.8 mm) medium with leading 6f 8.
point (3.1 mm), with a 1 point (0.35 mm) footnote rule to colum
width? .

14 REFERENCES

The reference identifier in the text is set as a sequentiabeunm
square brackets. The reference entry itself is set in 8 §aiBtmm)
with a leading of 10 point (3.5 mm), and appears in the secuanc
which it is cited in the paper.

15 SAMPLE CODING

The remainder of this paper contains examples of the spatidits
detailed above and can be used for reference if required.

16 PROGRAMMING MODEL

Our algorithms were implemented using thiagle program, multi-
ple datamodel (SPMD). SPMD involves writing a single code that
will run on all the processors co-operating on a task. Tha da¢
partitioned among the processors which know what portidrie
data they will work on [7].

16.1 Structure of processes and processors

The grid hasP = P, x P. processors, wherg; is the number of
rows of processors ani; is the number of columns of processors.

16.1.1 Routing information on the grid

A message may be eithkroadcastr specific A broadcast message
originates on a processor and is relayed through the netwmikit
reaches all other processors. A specific message is ons thegéted
to a particular target processor.

2 This is an example of a footnote that occurs in the text. Iftéh runs to
two lines the second line aligns with the start of text in thstfine.

Broadcast messages originate from a processor cakediral
which is situated in the ‘middle’ of the grid. This proces$as co-
ordinates(| P:/2], | P./2]). Messages are broadcast usingrthe—
column broadcasalgorithm (RCB), which uses the following strat-
egy. The number of steps required to complete the RCB algorit
(i.e. until all processors have received the broadcasgyatugiven
by [P/2] + [Pe/2].

A specific message is routed through the processors usifigthe
row—find-columnalgorithm (FRFC) detailed in [5]. The message is
sent from theoriginator processor vertically until it reaches a proces-
sor sitting in the same row as tharget processor. The message is
then moved horizontally across the processors in that raiv itin
reaches the target processor. An accumulation based oadhesive
doubling technique [9, pp. 56—61], would require the sanmalrer
of steps as the RCB requires. If either the row or column obtig-
nator and target processors are the same then the messkigaveil
only in a horizontal or vertical direction, respectivelgéq12]).

17 DATA PARTITIONING

We usedata partitioning by contiguitydefined in the following way.
To partition the data (i.e. vectors and matrices) among thegssors,
we divide the set of variablds = {1 },*, into P subsetd W, }/_,
of s = N/P elements each. We assume without loss of generality
that NV is an integer multiple of”. We define each subset H§, =
{(p—1)s + j};=1 (see[11], [4] and [2] for details).

Each processas is responsible for performing the computations
over the variables contained . In the case of vector operations,
each processor will hold segmentssofariables. The data partition-

ing for operations involving matrices is discussed in $ecfi8.3.

18 LINEAR ALGEBRA OPERATIONS
18.1 Saxpy

The saxpyw = wu + av operation, where:, v andw are vectors
anda is a scalar value, has the characteristic that its comjputadi
disjoint elementwiswvith respect ta:, v andw. This means that we
can compute a saxpy without any communication between gproce
sors; the resulting vectar does not need to be distributed among
the processors. Parallelism is exploited in the saxpy byabethat
P processors will compute the same operation with a subatbnti
smaller amount of data. The saxpy is computed as
w; = u; +av;, Vi€ {Wp}f;l

4)

18.2 Inner-product and vector 2-norm

The inner-producty = uTv = Zf\;l u;v; IS an operation that in-
volves accumulation of data, implying a high level of comication
between all processors. The mesh topology and the procasdes
tecture used allowed a more efficient use of the processars tbr
instance, a ring topology, reducing the time that procesace idle
waiting for the computed inner-product value to arrive, it prob-
lem still remains. The use of the SPMD paradigm also imples t
global broadcast of the final computed value to all processor

The inner-product is computed in three distinct phasess®has
the computation of partial sums of the form

ap = Z wixvi, p=1,...,P (5)

vie{Wp}

The accumulation phase of the inner-product using the R@éral
rithm is completed in the same number of steps as the RCBitdgor
(Section 16.1.1). This is because of the need to relay paeiaes
between processors without any accumulation taking ptaggg to
the connectivity of the grid topology.

The vector 2-normx = ||ullz = VuTu is computed using
the inner-product algorithm described above. Once the+ipreduct
value is received by a processor during the final broadcasteptit
computes the square root of that value giving the requiredra
value.

18.3 Matrix—vector product

For the matrix—vector produet= Aw, we use a&olumn partitioning
of A. Each processor holds a 9&%, (see Section 17) of columns
each of N elements ofd ands elements ofz. The s elements ofs
stored locally have a one-to-one correspondence te twdumns of
A (e.g. a processor holding elementalso holds thg-th column of
A). Note that whereas we havepartitioned by columns among the
processors, the matrix—vector product is to be computed\wg

The algorithm for computing the matrix—vector product gsiol-
umn partitioning is a generalization of the inner-produgoathm
described in Section 18.2 (without the need for a final braatlc
phase). At a given time during the execution of the algorjteach
one of P — 1 processors is computing a vectar of s elements
containing partial sums required for the segment of theorecin
the remaining ‘target’ processor. After this computatiscomplete,
each of theP processors stores a vector The resulting segment
of the matrix—vector product vector which is to be storedchia tar-
get processor is obtained by summing togetherheectorsw, as
described below.

Each processor other than the target processor sendsvisstor
to one of its neighboring processors. A processor decidestheh
to send the vector in either the row or column direction tachethe
target processor based on the FRFC algorithm (see Sectidrl}6
If a vector passes through further processors in its routieetdarget

processor thev vectors are accumulated. Thus the target processo

computed and sent &, vector destined to a processor ‘A, it can
compute and (possibly) sendug vector to processor ‘B’, at which
time its neighboring processors may also have started ctimgpand
sending their ownw vectors to processor ‘B’.

At a given point in the matrix—vector product computatione t
processors are computing vectors destined to processor A. When
these vectors have been accumulated in the row of that maces
(step 1), the processors in the top and bottom rows computeerd
the w vectors for processor B, while the processors on the left and
right columns of the row of processor A send the accumulatest-
tors to processor A (step 2). Processor A now stores its saeak-
sultingwv vector (which is the accumulation of thevectors). In step
3, the processors in the bottom row compute and send thectors
for processor C while the processor at the left-hand endeofdtv of
processor B sends the accumulatedectors of that column towards
processor B. The next steps are similar to the above.

In our implementation, we exploit the geometry associatéti w
the regular grid of points used to approximate the PDE. A ggtdm
partitioning is used to match the topology and connectipitysent
in the grid of transputers (Section 16.1).

The discretization of the PDE is obtained by specifying al gri
size! defining an associated grid & = [? interior points (note
that this is the order of the linear system to be solved). Wahh
interior point, we associate a set of values, namely theficaits
C,N,S, E andWV.

19 CONCLUSION

We have shown that an iterative method such as the precomeliti
conjugate-gradients method may be successfully pamdiglby us-
ing highly efficient parallel implementations of the linea@gebra
operations involved. We have used the same approach tdgbaeal
other iterative methods with similar degrees of efficiersge([4] and

(3

ACKNOWLEDGEMENTS

will receive at most fourw vectors which, when summed to its own e would like to thank the referees for their comments whielpéd

w vector, yield the desired set sfelements ob.

18.4 Matrix—vector product—finite-difference
approximation

We now consider a preconditioned version of the conjugeaelignts
method [7]. Note that we do not need to fornexplicitly. This im-
plies a very low degree of information exchange between tbegs-
sors which can be effectively exploited with transputemsces the

required values of, can be exchanged independently through each

link.

The preconditioning used in our implementations is the poly
mial preconditioning (see [10], [6], [1] and [8]), which cha imple-
mented very efficiently in a parallel architecture since igxpressed
as a sequence of saxpys and matrix—vector products.

We havel rows and columns in the discretization grid, which we (5]
want to partition among &, x P. mesh of processors. Each proces- [6]

sor will then carry out the computations associated with aclbl
of [I/P:] + sign(l mod P;) rows and|l/P.] + sign(l mod P.)
columns of the interior points of the grid.

The matrix—vector product using the column partitioningighly
parallel. Since there is no broadcast operation involvedoan as a
processor on the boundary of the grid (either rows or colgrhas

improve this paper.

REFERENCES
[1] L. Adams, ‘m-Step preconditioned Gradient method®&’AM Journal
of Scientific and Statistical Computing 452—-463, (1985).

P. Atkin. Performance maximisation. INMOS TechnicaltBld7.

R.D. da Cunha and T.R. Hopkinghe Parallel Solution of Partial Dif-
ferential Equations on Transputer Networl6—-109, Transputing for
Numerical and Neural Network Applications, 10S Press, Aerddam,
1992. Also as Report No. 17/92, Computing Laboratory, Unsieg of
Kent at Canterbury, U.K.

R.D. da Cunha and T.R. Hopkinhe Parallel Solution of Systems of
Linear Equations using Iterative Methods on Transputenieks 1—
13, Transputing for Numerical and Neural Network Applioas, |0S
Press, Amsterdam, 1992. Also as Report No. 16/92, Compltbg-
ratory, University of Kent at Canterbury, U.K.

U. de Carlini and U. Villano,Transputers and parallel architectures —
message-passing distributed systefiks Horwood, Chichester, 1991.
S.C. Eisenstat, ‘Efficient implementation of a class cégonditioned
Conjugate Gradient method$JAM Journal of Scientific and Statisti-
cal Computing2, 1-4, (1981).

G.H. Golub and C.F. Van LoaMatrix ComputationsJohns Hopkins
University Press, Baltimore, 2nd edn., 1989.

0.G. Johnson, C.A. Micchelli, and G. Paul, ‘Polynomiabpondition-
ers for Conjugate Gradient calculationSIAM Journal of Numerical
Analysis 20, 362-376, (1983).

——
LN

(4]

(7]
(8]

[9] J.J. Modi,Parallel Algorithms and Matrix ComputatiorOxford Uni-
versity Press, Oxford, 1988.

[10] Y. Saad, ‘Practical use of polynomial preconditiorsnigr the Conju-
gate Gradient methodS3IAM Journal of Scientific and Statistical Com-
puting 6, 865-881, (1985).

[11] C.F. SchofieldOptimising FORTRAN programgllis Horwood Pub-
lishing, Chichester, 1989.

[12] G.D. Smith,Numerical Solution of Partial Differential Equations: Fi-
nite Difference MethodsOxford University Press, Oxford, 3rd edn.,
1985.

