
A FRAMEWORK FOR CONSTRAINT-BASED MODELING

Gregory Provan
Computer Science Department, University College Cork, Cork, Ireland

{g.provan@cs.ucc.ie}

Abstract

We propose a framework that provides a clear process and
well-developed semantics for modeling complex systems
using a constraint-based language. We describe the aspects
of a model that are captured by a constraint-based rep-
resentation, in terms of function-based and process-based
modeling approaches. We propose a formal framework for
building constraint-based models, and apply graph gram-
mars to provide verification and analysis tools during the
model construction process.
KEYWORDS: constraint satisfaction, graph grammars.

1 Introduction

Modeling using a Constraint-Based (CB) framework is a
task of increasing importance. Applications include job-
shop scheduling [6], configuring computers [10], and mod-
eling human organs [1]. However, there is no formal frame-
work that describes an appropriate process for modeling
complex systems using CB languages.

This article presents a formal framework for CB mod-
eling and CB model verification/analysis. One main focus
of this article is to explicitly examine the aspects of a model
captured by a CB representation. There are many papers
that define efficiently-computable models for specific ex-
amples, but little has been written about the underlying se-
mantics of a CB model or the CB model development pro-
cess. In contrast, in the area of design and simulation, there
is a wealth of information about what aspects of a complex
system can be captured by a specific representation. For
example, you can capture the system’s functionality [15],
its structure [16], or modeling process [14].

To address the aspects of a model captured by a CB
representation, we adopt a functional semantics, and as-
sume that we can use of state-of-the-art GUI tools for de-
scribing the relationships of model components. Our main
interest is how to model these functional relationships us-
ing a CB language, and how to generate a CB model from
a set of inter-related sub-system (or component) functional
relationships. We also show how we can augment our mod-
eling framework with a formal-methods approach that can
be used to guarantee correctness of the models that are
generated, throughout the entire modeling process. Note
that we show how to represent a complex system using a
genericCB language, in contrast to domain-specific lan-

guages like Bond Graphs [12].
We also focus on theprocessof developing a CB

model using a GUI. In contrast to papers such as [3], which
examines compositional model refinement, we focus on
generating a model using an abstract CB language. In ad-
dition, we do not address the process of obtaining efficient
model representations, or of issues like model symmetry.

We assume that we will use a (hierarchical) GUI to
build a CB model of a physical system, in which we are in-
terested in defining the functional properties of the system.
A functional model [17] specifies how a system performs
a task in terms of flows (or energy, power, or data), with
clearly-defined sources and sinks for the flows. We assume
functional models are causal, and capture the flow direction
(causality) using directed graphs.1

Applying CB formalisms to systems modeling and in-
ference has strengths and weaknesses. The main strengths
are its expressive power and large body of inference algo-
rithms. Its main weakness is its lack of appropriate model-
ing semantics, as compared to languages like Bond Graphs
[12] or Petri Nets [19], which are designed specifically for
systems modeling. A CB language is general, and can
model any type of system. In contrast, model-specific lan-
guages have domain-specific primitives for encoding sys-
tem properties; for example, bond graphs can model the
energy and signal flows among system components using
a small set of primitives [12]. A second weakness is the
difficulty of verifying that the model created using a GUI
is identical to the CB model output at the end of model-
ing: the semantics for the GUI model must be compatible
with the semantics of the CB language. We overcome these
weaknesses by showing how we can define the entire pro-
cess of model construction in a formal framework.

The article is organised as follows. Section 2 presents
a new formal framework for constraint-based modeling.
Section 3 applies graph grammars to verify the CB mod-
eling process. Sections 4 and 5 summarise related work
and conclusions, respectively.

2 Functional CB Modeling

Researchers have developed many approaches for systems
modeling, ranging from bond graph methods [12], which
focus on dynamical systems models for coupled systems,

1This assumption translates into having a directed constraint graph for
the CB language.

1



to discrete systems models [7]. We can characterise these
modeling approaches as being eitherfunction-basedor
process-based. A function-based modeling approachfo-
cuses on the functional aspects of a system, and models the
system as a set of functional transformations. Examples in-
clude bond graphs [12] and function-converter approaches
[15]. A process-based modeling approachfocuses on the
process aspects of a system, defining the system in terms
of a set of processes that can be used for model validation,
model inference, or limiting the design space that must be
searched [17]. Process knowledge may include design rules
and/or procedures, process capabilities, or scientific princi-
ples. Examples include graph grammars [2, 9] and exem-
plar methods [16].2

Because the CB representation is generic (it can be
applied to any domain due to its generality), it rules out
a direct integration with domain-specific approaches, such
as the bond graph framework, which has a clear domain-
specific interpretation and is based on differential equa-
tions. Hence, we will adopt a function-based approach and
use graph grammars for design-process verification.

In the following, we make the following assumptions:
(a) we have a system for which the topology of the system
is known, and can be arranged in a hierarchical fashion;
(b) we can model our domain using discrete constraints;
in particular, we adopt a propositional logic representation
for the abstract model representation; (c) we can define the
functionality of the components of the system; and (d) we
assume a static system, although time can easily be mod-
eled.

We can split the modeling process up into three steps:

1. GUI model development, producing modelMGUI ;
2. abstract modeling, producing modelMA, and
3. flat CSP modeling, producing modelMCSP .

Note that different model information is stored at each
modeling step:

GUI model The GUI model captures the hierarchical in-
formation in a graphical framework. In particular, it
stores block inter-relationships and block GUI-related
data, e.g., positioning.

abstract model The abstract model captures both the hi-
erarchical information and the functional descriptions
(possibly in a more abstract, and less application-
dependent manner).

flat CSP model The CSP model specifies the constraint
equations defining the model’s functionality, and data
for performing CB-inference.

The abstract model can be used to translate to a va-
riety of application-dependent languages, such as a causal
network language for diagnostics [7]; it can also be used to
identify inference-specific information, such as symmetries
in a model’s representation, which can speed up constraint-
based inference. This model can be defined as a meta-
model, due to the role that it plays [18].

2See [17] for for a full review of these approaches.

We further assume that we have to (1) transform the
GUI model to the abstract model, using transformationτ1 :
MGUI → MA, and (2) transform the abstract model to
the CB-model, using transformationτ2 : MA →MCSP .

We now describe each model, followed by the model
transformations.

2.1 GUI Model

During GUI model development (e.g., using component-
based library modeling tools like2nd-CAD, MATLAB
Simulink, or Bayesian network tools like Hugin, Netica or
Genie), we assume that a modeler will use a GUI tool to
represent a system in terms of a set of connected system
components. Hence we need to represent both the system
components (as represented by the GUI), their connectivity,
and the physical layout of the GUI components.

More formally, the GUI model consists of the tuple
〈B, E(B), ℘〉, whereB is the block model data together
with block interconnectionsE(B), and℘ is the GUI pre-
sentation data.

Block Model Data: B consists of the a set of tuples
for blocks, each of which is given by(I, O, f, µ, E), repre-
senting inputsI, outputsO, functionf , modeµ, and con-
nectionsE . We denote a functionf by O = f(I, µ). f may
be represented as a (flat) set of constraints, or it may be rep-
resented as a nested set of sub-blocks and interconnections
among them (as we will describe below).

GUI Data: ℘ consists of the various types of data
needed to display each block, such as shape and colour in-
formation, block position, and the wiring information for
interconnecting the blocks, e.g., wire type (dashed, solid),
colour, routing type (shortest-path, no-overlap, etc.).

The input and output portsI,O will be defined as
typed GUI entities.µB is the mode of the blockB, and
represents the set of operating modes thatB can be in. We
assume thatµB is a property ofB.

We define block interconnectionsE(B) in terms of
pairs of ports of consistent type. In other words, eache ∈
E(B) consists of a paire = (o, i | o ∈ O ∧ i ∈ I ∧ i ∼= o),
wherei ∼= o means that the type of input porti is consistent
with the type of output porto. The types of two ports are
deemed to be consistent based on the constraint language
being used. The simplest form of consistency is equality,
i.e., if the two ports have the same type.

From the GUI’s perspective, we can treat the func-
tion f in terms of a functional language that is effectively
a black box. The GUI is solely responsible for model cre-
ation, i.e., facilitating the creation of a model consisting
of interconnected blocks, with appropriate functional data
present as block attributes.

Example: Throughout this article, we will use dis-
crete electrical circuits for illustrative purposes; the pro-
cess we describe can be applied to arbitrary constraint lan-
guages and domains. Consider a NAND composite block
derived from AND and NOT gates, as shown in Figure 1.



We denote our GUI model data,〈B, E(B), ℘〉, as shown in
Table 1.

Model I O f µ

NAND {I1, I2} O fNAND µAND

AND {AND.I1, AND.I2} AND.O fAND µAND

NOT NOT.I NOT.O fNOT µNOT

Table 1. GUI data for NAND model.

The inter-connectivity data,EB, are given by
{(I1,AND.I1), (I2,AND.I2), (AND.O, NOT.I), (NOT.O,
O)}. For clarity of exposition, we omit the block graph-
ics details℘.

2.2 Abstract Model

The abstract model represents the system components, their
connectivity, and the functional transformations performed
by each component.3 We represent this information using
the tuple〈B, E(B),F〉, whereB is the system components,
E(B) is the set of interconnections, andF is the set of com-
ponent functional transformations.4

This model may also incorporate the hierarchical in-
formation present in the model. We do not assume that this
model is in a form for directly performing inference on it,
but that it contains the information necessary to transform
it into a version on which inference can be performed. In
this sense, this model serves as a meta-model for generat-
ing models for constraint-based inference.

The abstract model consists of the block tuples〈B〉,
whereB is the block model data together with block inter-
connectionsE(B), such that the functional transformations
are explicitly defined in a formal language.

The primary thing that we need to specify for a block
(and its transformationf ) is whether it contains any sub-
blocks as part of its representation. We define a block
(functionf ) asprimitive if it contains no sub-blocks (sub-
functions).

A blockB is given by(I,O, f, µ, E). For a composite
block, the inputsI and outputsO remain the same, but we
have to specify the functionf and modesµ differently, as
described below.

Primitive function: We define a composite func-
tion for block B in terms of the sub-functions defined in
B for each output port. If we assume thatB hask out-
put ports, then for output porti, we have a set of inputs
Ii, interconnectionsEi, and functionfi, such that, for
i = 1, ..., k, outputs are denotedOi = fi(Ii, µ), and con-
nectionsEi = {(ι, Oi) | ι ∈ Ii}.

Composite function: A composite function has an
internal set of sub-blocks, so we have to define the func-
tion definitions for output ports in a different manner. We

3Note that we do not have to represent the physical layout of the GUI
components in this model.

4We assume that the GUI block and the abstract model components are
identical; we can generalise this notion such that they are not identical.

define a composite function for blockBi in terms of the
sub-functions and their order of composition. This in turn
is computed fromBi’s sub-blocks,Bi, and their inter-
connectivityEBi .

Example: Consider the example of the NAND com-
posite block. At the composite level, we can define the
model as follows. We have a single composite model,
NAND, with inputs (I1,I2), output O, composite function
fNAND, modeµNAND, and inter-connectivity given by
EB= {(I1,O), (I2,O)}.

We can then specify the hierarchical detail in terms
of the sub-blocks. The sub-blocks of the NAND block
are given byB= {AND, NOT}, and the inter-connectivity
by EB= {(I1,AND.I1), (I2,AND.I2), (AND.O, NOT.I),
(NOT.O, O)}.

A composite functionf can be represented as a
composition of its respective functions. For example,
in the case of the NAND model, where the AND and
NOT gates have functionsfAND and fNOT respec-
tively, the NAND composite function is simply given
by fNAND = fNOT ◦ fAND, where ◦ represents
function composition. For more complex models, e.g.,
models in which the sub-models of a block are or-
ganised in series-parallel order, the function composi-
tion can be defined appropriately.For this example, we
have: AND.O = fAND({AND.I1, AND.I2}, µAND),
NOT.O = fNOT (AND.O, µNOT ), which can be rewrit-
ten asNOT.O =fNOT (fAND({AND.I1,AND.I2},µAND), µNOT ).

By abstracting the mode specification and assuming
that we have inputsI1, I2 and outputO, we can then
represent function composition for the NAND example as
O = fNOT ◦ fAND({I1, I2}).

2.3 Flat CSP Model

The flat CSP model is a non-hierarchical version of the ab-
stract model in which the constraints are represented ex-
plicitly in a standard constraint language, such that a CSP
engine can be employed for performing inference on the
model. We represent a flat CSP using〈X ,D, C〉, denoting
variables, domains and constraints respectively.

Example: Consider the NAND created from
AND and OR gates. We will define a flat CSP
with variables X , variable domainsD, and con-
straints C. This model has variables given by
{I1, I2, AND.O,AND, NOT.O,NOT}, where mode
variablesAND, NOT have domains{OK, BAD} and the
other variables have domains of{t, f}. We can define the
constraints in a number of ways, such as using allowable
tuples or equations like:[I1 = t] ∧ [I2 = t] ∧ [MAND =
OK] ∧ [MNOT = OK] ⇒ [O = f ]; 6 {[I1 = t] ∧ [I2 =
t]} ∧ [MAND = OK] ∧ [MNOT = OK] ⇒ [O = t].

2.4 Model Transformations

This section describes the types of transformations neces-
sary to map the models as follows:



• transform the GUI model to the abstract model, using
transformationτ1 : MGUI →MA, and

• transform the abstract model to the CB-model, using
transformationτ2 : MA →MCSP .

GUI to Abstract-Model Mapping
τ1 takes the hierarchical model structure (as defined in

B, E(B)) and function composition data, and discards the
GUI-specific data℘. We can then use information regard-
ing hierarchical model structure to compute the function
composition data. Figure 1 summarises the two transfor-
mations, using the NAND example.

We can use the NAND example to see how such a
transformation takes place. The GUI model〈B, E(B), ℘〉
consists of the block tuples for the AND and the NOT gates.
We can assume that we retain the data forB, E(B) for both
gates, discard the GUI-specific data℘, and useB, E(B) to
compute all composite function transformations.

Abstract-Model to CSP Mapping
τ2 takes the hierarchical model structure and function

composition data and rewrites it as a flat CSP. To generate
a flat model, we must discard all hierarchical information,
i.e., rewrite the model solely in terms of primitive abstract
model entities.

If we specify primitive block ports (inputs and out-
puts) usingπ = I ∪ O, then the abstract model contains a
set of primitive entities given by the union of the ports and
the modes,π ∪ µ, together with the functionsF ′. It is the
primitive entities that become the variables in a flat CSP. In
other words, the CSP variables are given byX = τ2(π∪µ).
Similarly, if Dα refers to the domain forα, the CSP do-
mains are given byD = τ2(Dπ ∪ Dµ). We derive the
constraints from the primitive, composite functionsF ′ as
defined in the abstract model:C = τ2(F ′).

Example: One of the best ways to see the relations
between the abstract model and the flat CSP is to repre-
sent the CSP in terms of a constraint graph. We can use
the NAND example to see how such a transformation takes
place. The CSP model of Figure 1 shows the constraint
graph, together with some variable domain specifications
and constraints, for the NAND example.

• To generate the variables for the CSP, we ignore all
ports/modes other than the ports/modes for the primi-
tive blocks. In the NAND example, we ignore the ab-
stract NAND model, and use the ports/modes from the
AND and NOT blocks, namely{AND.I1, AND.I2,
AND.O, AND} and{NOT.I, NOT.O, NOT}.5

• To generate the domains for the CSP, we simply in-
clude the domains for the variables just identified.

• Computing the constraints is the most difficult part of
the mapping, and depends on the constraint solver that
we are targeting. To give an idea of constraint compu-
tation, we convert the logic equations of the abstract
model into a set of allowable tupes for subsets of vari-
ables. We can do this by using a theorem-prover to

5We need to merge AND.O and NOT.I into a single variable, since
they are actually the same entity.

generate the truth tables for the CSP. Alternatively, if
we were targeting a more powerful constraint solver,
we could just use the logic equations directly.

NAND.ANDNAND.AND.I2

NAND.AND.O

Flat CSP Model

NAND.NOT

NAND.NOT.O

GUI Block Diagram

NAND.AND.I1

�

NAND

{t,f} {t,f}

{t,f}

{t,f}

{OK,BAD}

{OK,BAD}

NAND.AND.i1 NAND.AND.i2 NAND.AND NAND.AND.O 

t t OK t

t t BAD f

t f OK f

f t OK f

f f OK f

NAND.AND.O NAND.AND NAND.NOT.O 

t OK f

t BAD f

f OK t

f BAD f

ττττ1

ττττ2

Abstract Model

AND.I1

AND.I2
AND NOT

NAND

NAND O
I1

I2

O
I1

I2

�

NAND

�

AND

�

NOT

If NAND.AND = OK and
NAND.AND.I1 = True and NAND.AND.I2 = True
Then NAND.AND.O = True

If NAND.AND = OK and
(NAND.AND.I1 = False or NAND.AND.I2 = False)
Then NAND.AND.O = False

NOT.O
AND.O

NOT.I

AND.O

NOT.I

AND.I1

AND.I2
NOT.O

AND NOT

NAND

NAND O
I1

I2

O
I1

I2

�

AND

�

NOT

If NAND.NOT = OK and
NAND.AND.O = True
Then NAND.NOT.O = False

If NAND.NOT = OK and
NAND.AND.O = False
Then NAND.NOT.O = True

Figure 1. Transformations from GUI to abstract model
to flat CSP, using a NAND electrical circuit example.
PNAND andFNAND denote GUI and functional data for
theNAND-gate, respectively.

3 Graph Grammar Framework

One desideratum for our modeling framework is the abil-
ity to apply verification and validation (V&V) to the en-
tire modeling process, from GUI-based model construc-
tion through to CB-model generation and inference. We
use the graph grammars framework [2, 9] for this purpose.
This can overcome one large deficiency of model building,
namely the inability to relate the process of using a GUI for
model construction to the model generated at the end.

We can use graph grammars for each stage of model-
ing as follows:



GUI-modeling Graph grammar formalisations of visual
transformation processes as encountered during GUI-
based modeling have been developed by several au-
thors, including [11, 4].

Abstract Model Generation Transforming a graph gram-
mar GUI formalisation into an abstract model can it-
self be modeled by a graph grammar.

CB-model generation and inferenceTransforming a
graph grammar abstract model formalisation into a
CB-model can itself be modeled by a graph grammar,
as can the CB-inference on the CB-model.

In the following, we assume that we have a graph
grammar that formalises the GUI-based modeling process,
e.g., [11, 4]. Hence, we must then formalise that the model
transformationsτ1, τ2 to abstract model and CSP, respec-
tively. We also assume that the graph grammar model we
adopt is a hierarchical, attributed model [13], since such a
framework is necessary to capture the hierarchical aspects
of our models, and the model attributes, such as GUI data,
block functions, and CSP constraints.

Transformation τ1: Given τ1 : 〈B, E(B), ℘〉 →
〈B, E(B),F〉, the transformation rules that we have to
specify are trivial. The first set of rules basically map the
GUI model structure directly onto the abstract model struc-
ture. The second set of rules map the GUI attributes (℘)
onto abstract model attributes (F).

Transformation τ2: Given τ1 : 〈B, E(B),F〉 →
〈X ,D, C〉, we have to specify three main types of trans-
formation rules. The first set of rules (R21) basically map
the GUI model structure directly onto the abstract model
structure. The second set of rules map the GUI attributes
(℘) onto abstract model attributes (F). RulesR22 map the
variable domains, and rulesR23 map the constraints.

R21 To generate the variables for the CSP, we ignore all
ports/modes other than the ports/modes for the primi-
tive blocks. In the NAND example, we ignore the ab-
stract NAND model, and use the ports/modes from the
AND and NOT blocks, namely{AND.I1, AND.I2,
AND.O, AND} and{NOT.I, NOT.O, NOT}.6

R22 To generate the domains for the CSP, we simply in-
clude the domains for the variables just identified.

R23 Computing the constraints is the most difficult part of
the mapping, and depends on the constraint solver that
we are targeting. To give an idea of constraint compu-
tation, we convert the logic equations of the abstract
model into a set of allowable types for subsets of vari-
ables. We can do this by using a theorem-prover to
generate the truth tables for the CSP. Alternatively, if
we were targeting a more powerful constraint solver,
we could just use the logic equations directly.

We can perform this transformation on a block-by-
block basis, using the transformation schema given below.

6We need to merge AND.O and NOT.I into a single variable, since
they are actually the same entity.

�

I1

Im

O1

Or

…
.

…
.…

.

�
1I2

�
r

…
.

I1

I2

Im

…
.

O1

O2

Or

…
.�

r

�
1

�
2

Primitive Block � Constraint Graph �
Figure 2. Visual representation of production rule for map-
ping from block in abstract model representation to con-
straint graph model.

Figure 2 gives a visual idea of the production rules en-
tailed in generating a constraint graph model from a primi-
tive blockB in an abstract model representation.

1. For every port and for the modeµ we generate a con-
straint graph node.

2. For every variable constructed, we assign a do-
main generated from the values of the corresponding
port/mode.

3. We generate edges in the constraint graphG as fol-
lows. In block B (withm input ports andr outputs),
with edgesE(B), call Ej the edges incident on out-
put Oj . We add edges toG from the input-port nodes
to output-port nodej, for , j = 1, ..., r, as given by
Ej . We then add an edge from the mode node to every
output-port node.

4. We add constraints as follows. Given transformation
functionf for B, we have the following set of output-
port transformations:Oj = f(Ij), for j = 1, ..., r. If
we define a constraint over variablesX asC(X), then
we add constraints corresponding to the output-port
transformations:C(Ij , Oj), for j = 1, ..., r, based on
functionf .

This graph grammars approach has many advantages.

V&V Given a formally-verified set of rules, we can vali-
date the CB model generated from a GUI representa-
tion using the entailed grammars.

Incremental model generation This approach is fully
compatible with incremental model generation.

Code embeddability We can extend this procedure to
generate embeddable code using another set of rules,
thus providing quick and simple V&V of the embed-
dable code.

In practice, a user will develop a component library
for a particular domain, verifying the correctness of each
component. Next, the user will create a complex system
by interconnecting components. The graph grammar pro-
cess that we describe provides a means for justifying the



correctness of the model of the complex system, when only
the correctness of the system components, and of the model
development process are known. This provides a signifi-
cant advantage over existing approaches, in which the com-
plex system model has to be formally verified, a task which
is arduous and expensive. Further, if the complex system
model needs to be altered or the target platform changed
(i.e., the embedded language needs to be changed), our ap-
proach provides a clear, cost-effective solution; today, the
modified system model often needs to be re-verified from
scratch.

4 Related Work

The literature contains a large number of papers describ-
ing the use of CB languages for model creation, but to
our knowledge this is the first paper that provides a formal
framework for the entire modeling process. From the con-
straints perspective, most papers focus on representational
efficiency, e.g., [3], or on describing the domain applica-
tion, e.g., [10].

The graph grammar literature contains several papers
describing a graph grammars formalisation of CSPs and
CSP inference, but none describing a CSP-based modeling
process. For example, [8] describe how a graph grammar
can capture a CSP model, and [5] focuses on using graph
grammars to formalise CSP inference.

5 Conclusions

This article described a formal framework that provides a
clear process and well-developed semantics for modeling
complex systems by using a GUI and then generating mod-
els using a constraint-based language. To address the as-
pects of a model that are captured by a CB representation,
we showed that two well-known approaches, function-
based and process-based approaches, are suited to using a
CB representation. We proposed a formal framework for
building function-based models, and applied graph gram-
mars to provide verification and analysis tools during all
stages of the model construction process.

References

[1] R.B. Altman and J.F. Brinkley. Probabilistic con-
straint satisfaction with structural models: Applica-
tion to organ modeling. InProc. Annual Symposium
on Computer Applications. 1993.

[2] M. Andries, G. Engels, A. Habel, B. Hoffmann,
H. Kreowski, S. Kuske, D. Plump, A. Schorr, and
G. Taentzer. Graph transformation for specification
and programming.Sci. Comput. Program., 34(1):1–
54, 1999.

[3] A. Bakewell, A. M. Frisch, and I. Miguel. Towards
automatic modelling of constraint satisfaction prob-
lems: A system based on compositional refinement.

In Proc. 2nd Intl. Workshop on Modelling and Refor-
mulating CSPs, Kinsale, Ireland, pages 2–17, 2003.

[4] L. Baresi and M. Pezzo. Formal interpreters for dia-
gram notations.ACM Trans. Softw. Eng. Methodol.,
14(1):42–84, 2005.

[5] C. Castro. Building Constraint Satisfaction Problem
Solvers Using Rewrite Rules and Strategies.Funda-
menta Informaticae, 34(3):263–293, 1998.

[6] C.-C. Cheng and S. F. Smith. Applying constraint
satisfaction techniques to job shop scheduling.Ann.
of Operations Research, 70:327–357, 1997.

[7] A. Darwiche. Model-based diagnosis using structured
system descriptions.Journal of Artificial Intelligence
Research, 8:165–222, 1998.

[8] I. Dotu and J. de Lara. Rapid Prototyping by Means of
Meta-Modelling and Graph Grammars. An Example
with Constraint Satisfaction. InJISBD03, pages 401–
410, Alicante, Spain, Nov. 2003.

[9] F. Drewes, B. Hoffmann, and D. Plump. Hierar-
chical graph transformation.J. Comput. Syst. Sci.,
64(2):249–283, 2002.

[10] S. M. Fohn, J. S. Liau, A. R. Greef, R. E. Young, and
P. J. O’Grady. Configuring computer systems through
constraint-based modeling and interactive constraint
satisfaction.Comput. Ind., 27(1):3–21, 1995.

[11] M. Goedicke, P. Tropfner, and B.E. Enders-Sucrow.
Hierarchical specification of graphical user interfaces
using a graph grammar approach.Trans. of the SDPS,
5(1), 2001.

[12] D.C. Karnopp, D.L. Margolis, and R.C. Rosenberg.
Systems Dynamics: A Unified Approach. John Wiley
and Sons, 1990.

[13] G. Rozenberg.Handbook of Graph Grammars and
Computing by Graph Transformation. Vol. I: Founda-
tions. World Scientific, 1997.

[14] L. C. Schmidt, H. Shetty, and S. C. Chase. A graph
grammar approach for structure synthesis of mecha-
nisms.J. Mechanical Design, 122(4):371–376, 2000.

[15] R. B. Stone and K. L. Wood. Development of a
functional basis for design.J. Mechanical Design,
122(4):359–370, 2000.

[16] J. Summers, B. Bettig, and J. Shah. The design exem-
plar: A new data structure for design automation.J.
Mechanical Design, 126(4):775–787, 2004.

[17] J. D. Summers, N. Vargas-Hernandez, Z. Zhao,
J. Shah, and Z. Lacroix. Comparative study of repre-
sentation structures for modeling function and behav-
ior of mechanical devices. InDETC2000: Computers
in Engineering, Pittsburgh, PA, Sept. 2001.

[18] H. Vangheluwe and J. de Lara. Foundations of Multi-
paradigm Modeling and Simulation. InWSC ’03,
pages 595–603, 2003.

[19] Mengchu Zhou and Frank DiCesare.Petri Net Syn-
thesis for Discrete Event Control of Manufacturing
Systems. Kluwer Academic Publishers, 1993.


