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Abstract

We describe a framework for modeling and performing
inference on complex systems, based on an Attributed Pro-
grammed Graph Grammar (APGG) meta-model. We out-
line this APGG framework, and how it can be used. In par-
ticular, show how we can use the underlying system struc-
ture as an organising principle for model specification and
analysis. In addition, we examine the attribution we assign
to the higher-level systems models, namely a constraint-
based language, and how a distributed agent-based ap-
proach can regulate inference performed asynchronously on
several multi-level models.

1 Introduction

A complex system consists of a collection of interact-
ing, autonomous and/or semi-autonomous sub-systems that
must interact to accomplish a task. A complex system must
be treated holistically, as reducing it to simple sub-systems
or components loses a great deal of its identity. Systems of
this type are difficult to characterise and model mathemati-
cally. Moreover, it is quite difficult to develop a model that
achieves a reasonable degree of mathematical precision and
computational tractability, but is still faithful enough to the
system being modeled.

We address the modeling of complex physical systems
in which the structure can be clearly defined. Examples of
such systems include the WWW, mechanical and electri-
cal systems, and biological systems. For such systems, we
specify the functionality using a variety of modeling for-
malisms at multiple levels of specification detail; however,
we will show how we can use the underlying system struc-
ture as an organising principle for model specification and
analysis.
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It is very important to address the two critical aspects
of a complex system, the system’s structure (or topology)
and the system’s functional interactions. For example, in
assessing the criticality of a puncture wound in a mammal,
it is important to know both the severity of the wound and its
location (e.g., proximity to major blood vessels or organs).
Many researchers have described how the multiple levels
of description of a complex system can be specified, e.g.
[6, 23]; however, the literature stresses system functionality
and multi-level functional specification and transformation,
and does not focus enough on the role that structure and
structural invariance across multiple levels can play in such
multi-level functional specification and transformation.

The study of complex systems now indicates that all
complex systems have structures that can be defined in
terms of power-law graphs [17]. Moreover, certain struc-
tural properties appear to be invariant across multiple scales
[5, 11, 12]. In this article we will show how a simple
structural invariant can be used for modeling and inference
across multiple scales.

This article adopts the Attributed Programmed Graph
Grammar (APGG) framework [3]. The APGG framework
can represent both structure and function within a single
framework: the hierarchical graphical structure can capture
the system topology, and attributes assigned to the graph’s
nodes and edges can capture arbitrary functional interac-
tions. In addition, the APGG framework can also be used
computationally for a variety of purposes, such as a basis
for verification and validation of system properties, or as
a method for defining transformations that occur within a
system.

We summarise the attributes that can be applied to a
complex system by the level of the system. The high level
description of a complex system describes the system in
an abstract sense, where we outline properties such as the
global objectives of the system, and can perform constraint
optimisation. We use a constraint language [22] for this



level. At the other extreme, the low (or detailed) level, we
specify the complex system dynamics of the system at a
fine level of granularity, and can simulate the continuously-
varying behaviours of the systems. We use dynamical sys-
tems, stochastic dynamical systems or hybrid systems mod-
els for describing such attributes.

Given the system structure, we focus on the meta-level
model representation and the higher-level inference mod-
els. Our use of graph grammars for meta-modeling is simi-
lar to that in [9, 21, 24]; our contributions reside not in the
notion or use of meta-modeling, but in our model transfor-
mations and agent-based framework for multi-level model
inference. Our novel contributions include (1) the use of a
fixed-topology meta-model to generate a topologically- and
functionally-consistent set of inference models at multiple
levels, and (2) a distributed, agent-based method for inte-
grating the results of the simultaneous, asynchronous com-
putation of the various multi-level models.

In the following we will describe a meta-model that con-
sists of two main parts: (1) a structural component describ-
ing the system topology, and (2) a semantic component de-
scribing the attributes, such as functional transformations.
We first describe a motivating example, and then outline
the APGG representation that provides a framework for the
entire model. We then we outline high-level models that
represent particular attributes for a complex system, and a
method for performing inference on these models in a dis-
tributed fashion.

2 Approach

Our proposed methodology (CN+) develops models for
complex systems using three main steps: (1) we use a GUI
to develop a graphical representation of the system, MGUI ;
(2) we transform MGUI into an APGG meta-model repre-
sentation for the complex systemMA, using transformation
τ1; and (3) we generate a set of multi-level inference models
via appropriate model transformations, τ2. Figure 1 depicts
the steps of model generation and analysis using CN+.

The meta-model captures the topology that is consistent
across several levels of the model. It also captures the over-
all functional transformations, which may be described us-
ing different languages at the different levels, but in an ab-
stract sense are equivalent specifications. For example, a set
of differential equations and their associated qualitative dif-
ferential equations [14] are equivalent in an abstract sense.

The meta-model is used to generate three hierarchically-
ordered classes of model, which we call mission-, process-
and machine-level models (in order of decreasing model ab-
straction). Given this hierarchy of models, we group the
models based on function and topology, and use an agent-
based framework to accomplish mission-level optimisation
tasks in a distributed and autonomous fashion.
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Figure 1. Steps of model generation and
analysis using CN+. Top-level hypergraph
decomposition of ship, showing the hyper-
edges between the the Chilled Water sub-
system and other sub-systems.

The meta-model serves as a generator for all models
that perform inference (using the notion of generator from
[21, 24]), and as a representation that will re-generate new
models given changes to the system. This capability is very
useful during the model design phase, during which sys-
tem each re-design must be mapped to all sub-systems. In
addition, this can be useful when performing inference on
the models. For example, if significant damage is done
to a part of the system, this damage will be recorded in
the meta-model, and new inference models that reflect the
changes necessitated by the damage will be re-generated.
This ensures that inference using consistent models is en-
forced across all levels.1

The meta-model’s structure is based on the systems’s un-
derlying invariant structure. We will define this invariant
structure in Section 4.2, and provide examples in Section 3.
Intuitively, the invariant structure is the structure of a sys-
tem that is invariant across multiple levels of abstraction.
For example, the road network between San Francisco and
Denver has many side-roads at the state and local level, but
the invariant is the interstate link between San Francisco
and Denver, which is preserved at interstate, state and local
levels.

1Less substantial changes may entail just a modification of in-
ference, and this is facilitated by the meta-model, or may be cov-
ered just be the distributed agent framework.



3 A Simple Shipboard System

This section provides an example of a shipboard system,
which we use to explain our notions of complex hierarchical
systems, and of multi-level inference upon such systems.

3.1 Overall Ship System
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Figure 2. Location and functional classifica-
tion of several major subsystems of a ship.

Figure 2 presents a functional view of a simple ship-
board engineering system. The primary ship functions in-
clude propulsion, power generation, heating/ ventilation/
air-conditioning (HVAC), combat (radar and sonar sys-
tems), etc.

The functional representation of a shipboard engineering
system can be decomposed into three primary abstraction
levels: mission control, process and machine.

Mission control: The highest level in the control architec-
ture is represented by a mission control block, which
sets priorities and performance objectives for all ship-
board engineering systems based on the overall mis-
sion goals. For example, in a damage control situation,
resources would be shifted from less critical services,
such as drinking water production, to fire-fighting sys-
tems. In functional terms, this level serves as a global
inter-process coordinator and user level interface.

At this high level of abstraction, the typical computa-
tional tasks, which can be generalised as optimisation
tasks, would include resource allocation and schedul-
ing. High-level system models would be defined to
solve this class of task; we use constraint-based mod-
els for this purpose.

Process: Each process-level function block provides a
general ship service (e.g., power generation, propul-
sion, damage control, chilled water, material handling,
HVAC, etc.), and will reconfigure its system operation
based on the performance objectives set by the higher
level mission control. The process blocks also cooper-
ate with other process blocks to satisfy global goals.

Machine: At the lowest level, the operation of a machine is
represented by a machine block/model (e.g., Generator
1 block in the power generator process). Controllers at
this level monitor and control individual machine units
(e.g., a propulsion unit) to maintain machine availabil-
ity and achieve the machine setpoints requested by the
process-level.

At this low level of system description, tasks would
include system estimation and low-level control. Dy-
namical systems models are typically used to describe
systems at this level. For example, we could specify
a dynamical model of fluid flow in the chilled water
sub-system.
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Figure 3. Meta- and constraint-graph mod-
els of chilled water sub-system. We show
the meta-model at the top, with three main
components, supply, transport and demand.
The main part of the figure shows an ab-
stract view of the constraint-graph process-
model, which can be grouped into three sub-
graphs representing demand, transport (pip-
ing/valve) and supply sub-systems.

3.2 Chilled Water Sub-System

We now focus on the Chilled Water sub-system (ChW),
in order to be able to describe the models that can be gen-



erated for various tasks that must be performed with this
sub-system.

Figure 4 shows a simplified diagram of a ship’s Chilled
Water sub-system, and how it is connected via piping
systems to several of the ship’s other sub-systems, such
as power generation, combat (radar and sonar systems),
HVAC, etc.

The ChW system can be decomposed into three main
classes: the supply components (chillers), the fluid trans-
port components (pipes and valves), and the demand com-
ponents (loads on the system, such as combat sub-system,
propulsion sub-system, etc.). The structural invariant for the
ChW system consists of a simple graph shown at the top of
Figure 3. The graph consists of nodes for supply, transport,
and demand, since the ChW system provides chilled wa-
ter (the supply) to a set of ship sub-systems (the demand),
through a complex set of pipes distributed throughout the
ship (the transport mechanism).

The ChW supply components consist of two chillers
(Ch1 and Ch2), shown at the right of Figure 4. The two
chillers are the two sources of chilled water, and typically
serve as redundant units; they can work together to satisfy
high loads. Figure 4 depicts the piping elements, showing
the supply pipes as dotted blue lines, and the return pipes as
solid red lines. We have decomposed the piping system into
a collection of contiguous piping sections, noted P1 through
P8 in the figure. In addition, we have assigned the valves
into five valve groups, noted V1 through V5. The grouping
is done for computational purposes, i.e., to guarantee fast
inference on each individual group, and to enable an agent
to be assigned to each group. We denote the demand com-
ponents (loads on the system, such as combat sub-system,
propulsion sub-system, etc.), using L1 through L9.

3.3 Shipboard System Model

We build a formal model of the shipboard system by fo-
cusing on two aspects of the system: the system topology,
and the system functionality.

In terms of the topology, we can build a hypergraph
model G of the interconnections of the components of the
shipboard system. The set of inference models in Figure 1
depict a top-level view of such a hypergraph, which is de-
fined around a functional decomposition of the system. In
the figure we focus on the hyper-edges between the the
Chilled Water sub-system and other sub-systems, and omit
the other hyper-edges for the purposes of exposition.

This structure captured by the hypergraph model G pro-
vides the basis for building various models of aspects of the
ship. For example, at the top-level this model focuses on
resource allocation and scheduling, and G captures the rela-
tions between supply and demand entities. At the bottom-
level, where we focus on building a dynamical systems
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Figure 4. Engineering schematic of the
Chilled Water sub-system. The lines in the
figure represent pipes, whose flow (from the
chillers to the loads) is mediated by valves.
The various classes of sub-system are tabu-
lated underneath the schematic.

model to simulate fluid flow within the chilled water sys-
tem, the identical hypergraph model G provides the basis
for building a dynamical systems model, in that it specifies
the fluid flow relations, e.g., which pumps in the chillers
force chilled water through pipes to various loads.

4 Attributed Programmed Graph Gram-
mars

Graph grammars are used for systems modeling because
of their ability to naturally depict complex situations in
an intuitive, perceptually-clear manner. Graph grammars
originally were derived to generalise formal language the-
ory, as based on strings and the theory of term rewrit-
ing [19]. Graph grammars introduce a precise mathemat-
ical methodology for locally transforming structures repre-
sented as graphs.

An attributed graph consists of two components, (1) a
structural component and (2) a semantic component de-
scribing the attributes. We adopt the notation of Bunke [3]
for describing attributed graph grammars, and extend it by
defining a hierarchical graph structure.

Definition 1 Let Z and W be two alphabets for labeling
the nodes and the edges. An unattributed structure graph
(s-graph) is a 3-tuple G = (V, E, λ) where:



• V is the finite set of vertices;
• E = {Ew}w∈W is a tuple of relations such that E ⊆

V × V for each w ∈ W ;
• λ : V → Z is the node labeling function

A pair (V, V ′) ⊆ Ew , is interpreted as a directed edge
from node V to node V ′ having label w.

4.1 Hierarchical Structure

We adopt the hierarchical hypergraph representation of
[8]. This representation defines hyperedges, called frames,
which contain hypergraphs that can themselves be hierar-
chical, with an arbitrary depth of nesting.

A hierarchical graph consists of a graph, the root of the
hierarchy (which we call the primal graph), a designated
subset of its edges, called the frames, and a mapping as-
signing to each frame its contents, which are either a hier-
archical graph or a variable. We formalize this as follows:

Definition 2 Let V be a set of variables represented by
nodes in a graph. The class G(V ) of hierarchical graphs
with variables in V consists of triples G = (G, Γ, χ), where
G is a graph, Γ is the set of frames, and χ : Γ → G(X)∪V
assigns to each frame γ ∈ Γ its contents χ(γ) ∈ G(V )∪V .
Each hierarchical graph Gi(V ) ∈ G(V ) is defined induc-
tively as follows:

• A triple G = (G, Γ, χ) as above is in G0(V ) if Γ = 0.
• For i > 0, G ∈ Gi(V ) if χ(γ) ∈ Gi−1(V ) for every

frame γ ∈ Γ.

4.2 Structural Invariance

The graph grammar specification of Section 4.1 provides
only the syntax for a system whose hierarchical structure is
known. In this section we summarise our method for defin-
ing the semantics of the hierarchical structure and the struc-
tural invariants that can generate the hierarchy.

Little work exists in the literature on the semantics of hi-
erarchical system structures. One area in which the seman-
tics of system structure and its impact on functionality has
been addressed is in reverse engineering. For example, Cre-
mer [4] has developed a set of tools for reverse engineering
systems by using the system structure to extract functional-
ity. This methodology has been applied to telecommunca-
tions systems in [15]. This work takes a similar approach to
ours, in that it addresses systems with structural invariants,
and makes use of those invariants. However, rather than
discovering the system’s structure and functionality, we as-
sume that we know these, and use them for multi-level sys-
tem specification and analysis.

A second area has been the theoretical analysis of graph
invariants across multiple scales, e.g., [10]. We adopt

the notion of structure-preserving graphical hierarchical de-
compositions of [10]. These notions of structure-preserving
decompositions provide a clear semantics for the transfor-
mations across different representational levels, and of the
properties that are preserved by the transformations.

We denote a collection Vξ of nodes of G(V ) as a cluster
ξ. The nodes in a cluster ξ are said to be covered by ξ;
we denote v ∈ V being covered by ξ using v ≺ ξ. This
notion of covering provides a semantic counterpart for the
syntactic notion of a frame γ and its contents χ(γ).

If we restrict the base hierarchical graph G0 to be a tree,
then we can define a set of structure-preserving hierarchical
decompositions [10] with respect to a property P . More-
over, these decompositions can map precisely onto the set
Γ of frames of G(V ).

For example, consider the meta- and constraint-graph
models of Figure 3. The meta-graph is said to be a contrac-
tion of the constraint-graph in which the demand node con-
sists of the cluster {radar, HVAC1, HVAC2, sonar, combat-
equipment}. Similarly, the meta-graph nodes for transport
and supply consist of clusters of corresponding constraint-
graph nodes. In performing this clustering process, the
property P that we preserve is the type attribute of a node,
i.e., whether the type is demand, supply or transport. Note
that this contraction process preserves several properties,
for example graph connectivity, across the levels: if nodes
vi and vj are connected (by a path) in the constraint-graph,
and vi ≺ ξi and vj ≺ ξj , then ξi and ξj will be connected
(by a path) in the meta-graph. This is true for the nodes of
Figure 3.

We can formalise this as follows. Ξ is a covering of
graph G iff for each v ∈ V ∃ unique ξ ∈ Ξ such that v ≺ ξ.
We can use this notion of covering to define semantic con-
ditions under which Gj(V ) is a contraction graph of Gi(V ).
Hence a graph Gj(V ) is a contraction of Gi(V ) if i < j and
the nodes of Gi(V ) are covered by those of Gj(V ), i < j.
In this shipboard application, by using coverings based on
the type attributes, we can preserve the supply-transport-
demand properties of the hypergraph model for all levels
Gi(V ), for igeq0.

4.3 Attributed Graphs

This section describes how we assigned attributes to the
hierarchical structure of G. Let A and B be two sets of at-
tributes, where an attribute is a function associating attribute
values with nodes or edges.

Definition 3 An attributed graph (a-graph) is a tuple G =
(V, E, λ, Γ, χ, α, β) where:

• V, E, λ, Γ, χ are the same as in Definitions 1 and 2;
• α : N → 2A is a function that assigns to each node a

set of node attributes;



• β = {βw}w∈W is a tuple of functions βw : Ew → 2B

associating a set of edge attributes with each w-edge.

According to Definitions 2 and 3, an attributed graph
consists of two components:

• a syntactic or structural part described by
(V, E, λ, Γ, χ), denoting the underlying hierarchical
graph (s-graph), and

• a semantic part given by the node and edge attributes
(α, β).

A graph (s-graph/a-graph) G ′ is a subgraph of G, i.e.,
G′ ⊆ G, if all nodes and edges belonging to G ′ also belong
to G. Additionally, corresponding nodes and edges must
have identical labels and attributes. If G ′ ⊆ G let G \ G′

denote the graph that remains after removing G ′ from G.

Definition 4 The edges between G ′ and G \ G ′ are denoted
as the embedding of G ′ in G′, EMB(G′,G).

Definition 5 A production is a 5-tuple p =
(Gl,Gr, T, π, F ) where.:

• Gl and Gr are s-graphs (left - and right-hand side of
the production)

• T = {Lw, Rw|w ∈ W} is the embedding transforma-
tion with Lw, Rw ⊆ Nl × Vr;

• π : T → [ TRUE,FALSE) is the applicability predicate
• F is a finite set of partial functions fa : Vr → Da and

fb : Er ∪ EMB(Gr, g) → Db with a ∈ A and b ∈ B.

fa denote the node attribute and fb the edge attribute
transfer functions.

Function F describes the embedding of Gr into G\Gl The
attribute transfer functions fa and fb change the attributes
of Gr. π summarises the conditions that have to be fulfilled
by the left-hand side in order to apply the production p.

Definition 6 The direct derivation of a graph G ′ from a
graph G by means of a production p, denoted G p→ G′, is
defined as follows:

1. Check a possible occurrence of Gl as a subgraph of G
and the applicability predicate π; if both TRUE goto
2.

2. Replace Gl by Gr in g.
3. Embed Gr in G \ Gl, using T.
4. Change the attributes of Gr, according to fa and fb.

Example 1 Figure 5 depicts the results of applying a pro-
duction p to a sub-graph of the shipboard domain. This pro-
duction entails adding a mode for a failure mode of the pip-
ing system to a graph. In this resultant graph, the constraint
over the variable for the load now includes the load, the pip-
ing variable and the failure-mode variable.
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Figure 5. (a) shows a production p, and (b)
shows the application of p to an initial graph,
together with the resulting graph.

Definitions 1 to 6 describe an attributed graph grammar
(AGG). Nothing has been said about the order in which the
productions should be applied. We can extend this represen-
tation to include an ordering for applying productions, using
a control diagram [20]. This control knowledge is used to
expand an AGG to a programmed graph grammar, thereby
improving the efficiency of the model transformation [13].

5 GUI- and Meta-Model Specification

This section describes the representations and transfor-
mations that we adopt for the GUI- and Meta-Model. We
summarise the model representations in Table 1. The GUI-
and meta-model are quite similar: the GUI model has a sim-

Model Representation

MGUI 〈B, E(B), ℘〉
MA 〈B, E(B),F〉

MCSP 〈X ,D, C〉

Table 1. Different model representations.

ilar hierarchical framework as that of the meta-model; how-
ever, the GUI model attributes are GUI-specific, and consist
of GUI data ℘, that describe the size, colour, position, etc.
of GUI objects.

Model construction and analysis consists of two main
stages, as shown in Figure 1: (1) model construction, us-
ing the GUI; and (2) model inference, using the multi-level
models. This process involves two main classes of model
transformation:

• transform the GUI model to the meta-model, using
transformation τ1 : MGUI → MA, and



• transform the meta-model to the multi-level model(s),
using transformation τ2 : MA → MCSP .

The meta-model represents the system components, their
connectivity, and the functional transformations performed
by each component. We are interested in systems in which
the hierarchical and topological structure plays an impor-
tant role, and the meta-model must capture that. Our meta-
model differs from other meta-models, such as that of [24],
which uses an entity-relation model for the meta-model rep-
resentation. In addition, we assume that the primary model
structure remains fixed, in contrast to the dynamic model
structure addressed in [1].

For ease of exposition, we present our representation
as an abstracted version of the DEVS framework of [26]. 2

We represent this information using the tuple 〈B, E(B),F〉,
where B represents the system components, E(B) is the set
of interconnections, and F is the set of component func-
tional transformations, which are explicitly defined in a for-
mal language. We assume that each system entity trans-
forms a set of inputs into a set of outputs using a functional
transformation.

This model also incorporates the hierarchical informa-
tion present in the model. We do not assume that this model
is in a form for directly performing inference on it, but that
it contains the information necessary to transform it into a
version on which inference can be performed.

The entities of our meta-model, or blocks B, are denoted
using the tuple (I, O, f, µ, E), representing inputs I , out-
puts O, function f , mode µ, and connections E . We denote
a function f by O = f(I, µ). f may be represented as a
(flat) set of constraints, or it may be represented as a nested
set of sub-blocks and interconnections among them

The primary thing that we need to specify for a block
(and its transformation f ) is whether it contains any sub-
blocks as part of its representation. We define a block
(function f ) as primitive if it contains no sub-blocks (sub-
functions).

A block B is given by (I, O, f, µ, E). For a composite
block, the inputs I and outputs O remain the same, but we
have to specify the function f and modes µ differently, as
described below.

Primitive function: We define a composite function for
block B in terms of the sub-functions defined in B for each
output port. If we assume that B has k output ports, then
for output port i, we have a set of inputs I i, interconnections
Ei, and function fi, such that, for i = 1, ..., k:

Oi = fi(Ii, µ),

Ei = {(ι, Oi) | ι ∈ Ii}.
2Our framework is fully compatible with the DEVS representation.

Composite function: A composite function has an in-
ternal set of sub-blocks, so we have to define the func-
tion definitions for output ports in a different manner. We
define a composite function for block B i in terms of the
sub-functions and their order of composition. This in turn
is computed from Bi’s sub-blocks, Bi, and their inter-
connectivity EBi .

6 Multi-Level Inference Models

6.1 Chilled Water System Mission-Model

This section summarises the attributes we adopt for the
higher levels of a complex system model, constraints. We
embed a constraint attribute model within the graph gram-
mar framework. To do this, we use the constraint graph
representation [7], since this specifies constraints within a
graphical framework.

6.1.1 Constraint Problem Formulation

We first define a constraint problem [22], and then show the
constraint-graph formulation of this representation.

Definition 7 A Constraint Satisfaction Problem (CSP) Π =
〈V ,D, C〉 consists of:

• a set of variables V = {v1, ..., vn};
• for each variable vi, a finite set Di of possible values

(its domain);
• and a set C of constraints restricting the values that the

variables can simultaneously take. A constraint ci is a
relation defined on a subset V ′ of the variables, that is,
ci ⊇ ×j{vj : vj ∈ V ′}.

A solution to a constraint problem is an assignment that
satisfies all the constraints. An assignment is a mapping
θ from the set of domain variables V ′ ∈ V to their corre-
sponding domains, i.e, θ(vi) ∈ Di for vi ∈ V ′. The set of
all assignments on V ′ is denoted by ΘV′ . In the following
we need the notion of parents of a node in a graph. Given a
directed graph G(V, E), we define the parents ν(v) of ver-
tex v ∈ V as those v′ ∈ V \ v such that (v′, v) ∈ E.

We now define a constraint system over a directed graph
G [7]. Note that that this is a non-hierarchical model,
since no hierarchical constraint representation, nor algo-
rithms that could make use of hierarchies, exist.

Definition 8 An attributed constraint graph G(V, E) is a
graph over vertices V and edges E in which the attributes
are assigned to V such that:

• if v ∈ V has no parents in G, then the constraint is
unary;



• if v ∈ V has parents in G given by σ(v), then the
constraints over v, cv , will involve variables v ∪ σ(v)
and no others.

6.1.2 Valuation and Optimisation

In order to rank the solutions, and thus perform constraint
optimisation, we introduce a valuation over the constraints
in terms of c-semiring operations [2]. A valuation denotes
the importance of a constraint. We represent a valuation of a
constraint c using ϑ(c). In the probabilistic case, for exam-
ple, our valuation is taken from the interval [0, 1] with total
order≤, and ϑ associates a probability with each constraint.

Given this framework, we can define an optimisation
task given a valuation over a set of constraints. We solve this
optimisation task in a distributed fashion, using an agent-
based approach [25].

6.1.3 Mapping Constraints as Attributes

Given a constraint graph, or a constraint hypergraph, we can
assign a constraint-based attribute to every variable at the
higher-level representations. Given the constraint specifica-
tion just described, we define a constraint-based attribute as
follows:

Definition 9 A constraint-based attribute for variable v
consists of the tuple 〈ρv,Dv, Cv, ϑv〉, where:

• ρv is the name for v;
• Dv is the domain for v;
• Cv is the set of constraints for v;
• ϑv is the valuation over the constraints for v.

Given a model with constraint-based attributes, it is
simple to prove that we can map it into a constraint-
optimisation task, and solve a variety of optimisation tasks,
such as scheduling, diagnosis, function optimisation, etc.,
given an appropriate objective function [25].

6.1.4 Resource Allocation Optimisation

The mission-model of the chilled water system focuses on
resource allocation and scheduling: given a fixed set of
chilled-water resources and loads, the objective is to min-
imise energy usage (based on an energy function ξ), i.e., to
schedule turning on one or both chillers to best satisfy the
(prioritised) demands from the various loads. If at time t
we supply L̂i(t) units of chilled water to load i, when the
actual demand is Li(t), then our objective function is

min

{
ξ(t) +

∑
i

ωi|L̂i(t) − Li(t)|
}

, (1)

where ωi is a penalty function for supplying too much or
too little chilled water to load i.

This model thus consists of: (a) variables for supplies
(Ch1 and Ch2) and loads (L1 through L9), each with do-
main values {0, nominal, max}, together with (b) con-
straints that record the topology of the interconnections of
loads and supplies, which note which loads can acquire
chilled water from which chilling units.

6.2 Chilled Water System Process-Model

The process-model of Chilled Water System focuses on
describing how the chilled water system can actually supply
all the loads. In other words, it consists of a discrete-event
control and diagnostics model that specifies the chiller and
valve settings necessary to optimally supply a give set of
loads.

This section describes a simplified constraint process-
model of the chilled water system, described as an attributed
constraint graph.

Graph Nodes: The nodes of the graph consist of vari-
ables for supply (Ch1 and Ch2), loads (L1 through L9),
piping segments (P1 through P8), and valves (V1 through
V6). For each component that can fail, we have an asso-
ciated failure-mode variable, and for the controllable ele-
ments (supply and valve nodes), we have an associated con-
trol variable.

Graph Topology: we can build a hypergraph model
G of the interconnections of the components of the ship-
board system. Figure 3 depicts both a top-level view of
the chilled-water system hypergraph, as well as a more de-
tailed representation. In this figure we focus on the hyper-
edges between the Chilled Water sub-system and other sub-
systems. This constraint model captures much of the ChW
structure shown in Figure 4. For example, it shows the
two chiller units (Ch1 and Ch2), the piping connecting the
chillers to the loads (both piping for flows from a chiller to
a load and the return flows), as well as a subset of the loads.

Graph Attributes: Table 2 shows some attributes that
can be assigned to the constraint graph: subsystem ρ; do-
main D; constraint C; and transport-system capacity ϑ. For
each subsystem, we list a triplet of (C1, C2, C3) of con-
straints in C, in terms of acceptable tuples. The elements
of each triplet denote the (mode, capacity) values. These
correspond to: (1) for supply (ChW1, ChW2), each tu-
ple denotes the pair {mode, supply}; (2) for load (radar,
sonar), each tuple denotes the pair {mode, demand}; (3) for
transport-system, each tuple denotes the pair {mode, capac-
ity}. For example, for the ChW1 subsystem, the possible
values of this chiller are {high, nominal, off}; in its operat-
ing mode of high, it can put out 10 units of chilled water, in
its its operating mode of nominal, it can put out 5 units of
chilled water, etc.

We use this constraint model to compute an optimal con-
trol setting, given the loads, chiller capacities and fault con-



subsystem domain constraint
ρ D C

ChW1 {high, nominal, off} {high, 10}
{nominal, 5}
{low, 2}

ChW2 {high, nominal, off} {high, 10}
{nominal, 5}
{low, 2}

radar {high, nominal, off} {high, 15}
{nominal, 5}
{low, 2}

pipe {nominal, leak} {high, 7}
{nominal, 5}
{low, 1}

Table 2. Attributes for ChW constraint graph.
The constraints denote allowable tuples for
the model.

ditions at time t. We use a distributed inference approach
based on the frameworks described in [16] and in [18].

6.3 Machine-Level Model of Chilled-
Water System

In this ChW application, at the machine level we solve
fluid transport equations for the system, in order to: (1) De-
termine if we can fulfill the required demands for chilled
water; (2) Compute the time to deliver ChW to various De-
mands; and (3) Incorporate system modes in order to be
able to reason about system mode configurations, e.g., bat-
tle mode specifies port/starboard partitioning, and various
failure modes specify faults that can cause problems with
delivery of chilled water, e.g., Chiller1-failure specifies that
only Chiller2 can supply chilled water.

We have used a qualitative abstraction of dynamical sys-
tems, qualitative differential equations [14], to model our
system at the machine level. We use qualitative differen-
tial equations to model only the qualitatively significant dif-
ferences. We represent such significant differences using a
qualitative range of values, such as {low, normal, high}.

For example, for a pipe, we can approximate the pressure
drop along a length l of pipe with diameter d, flow F and
friction coefficient µ, using the difference between the inlet
and outlet pressures, Pin − Pout:

∆P = Pin − Pout =
128 ∗ µ ∗ l

π ∗ d4 ∗ F

Using our qualitative approach, we can define this pres-
sure difference ∆P as being either nominal, low or high,
and then relate these values to the presence of leaks and/or
faults in upstream pumps. For example, if we have possible

modes of a pipe MP as {OK, blocked, leak}, then we might
have the equations:

[MP = OK] ∧ [∆P = nominal] ⇒ [Pout = nominal]

[MP = blocked] ∧ [∆P = nominal] ⇒ [Pout = low]

[MP = leak] ∧ [∆P = nominal] ⇒ [Pout = low]

Each local component computes its status (both mode
and operating parameters), and reports it to its neighbours.
Using the distributed agent framework to be summarised in
the following section, all of these component status values
are synthesized and coordinated, in order to solve the global
system optimisation task (Equation 1).

7 Distributed Agent Framework

We use an agent-based approach for multi-model infer-
ence, where each agent represents a physical process or
component and coordinates its operation with other agents.
Control actions are the result of coordinated decisions
among all agents.

The agent structure consists of a collection of agents at
each level: mission-level, process-level, and machine-level.
Each agent at each level receives performance goals from a
higher-level agent, and uses its internal model (whether it
be a mission-, process-, or machine-level model) to achieve
the desired performance goal, and/or diagnose problems.

We assign a process-level agent to each of a set of ele-
ments of the ChW system by decomposing the ChW system
based on function and topology. Figure 4 shows this decom-
position, where the entities in the decomposition consist of:
supply elements (Ch1 and Ch2), loads (L1 through L9), pip-
ing segments (P1 through P8), and valves (V1 through V6).
In addition, we have an agent governing the entire ChW
“mission”, as well as multiple machine-level agents.

When a requested performance goal cannot be achieved,
agents initiate distributed problem solving actions to find al-
ternative solutions that best meet the system’s goals. Based
on the physical relationships among machine agents (as
specified by the system topology), the agents develop feasi-
ble plans that satisfy both local and shared constraints.

Agent-based inference is asynchronous, but is coordi-
nated via an event-based mechanism: each agent acts inde-
pendently unless an event occurs that requires inter-agent
communication. For example, if an agent assigned to a
valve detects that the valve has failed, it sends that failure
event to its neighbours at the same level, and to its higher-
level (parent) agent(s).

Another key feature of this agent architecture is that it
integrates inference performed simultaneously on several
multi-level models. For example, in the Chilled Water sys-
tem, agents deal with constraint-based models for discrete-
event control and steady-state diagnostics, as well as dy-
namical systems models for transient analysis/FDI.



This agent-based approach has proven itself successful
at deriving an energy-minimal control regime for the ChW
system (Equation 1), under a variety of operating condi-
tions. In particular, it quickly introduces appropriate control
reconfigurations given faults injected into the system, such
as simulated pipe leaks and chiller failures.

Cooperative software agents permit the creation of
highly flexible control systems based on both autonomy and
cooperation. The agent framework is well suited for solv-
ing resource allocation problems on distributed hardware
[16]. Autonomous capabilities are directly designed into
each agent so that it can continue to operate in the event of
failures in the other agents.

8 Conclusions

We have described a framework for modeling complex
systems, based on an Attributed Programmed Graph Gram-
mar (APGG) meta-model, and on performing inference on
a set of multi-level models generated from the meta-model
via model transformations. In particular, we examined
higher-level constraint-based models as applied to a ship-
board application, and how a distributed agent-based frame-
work can coordinate inference performed asynchronously
on these multi-level models.
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