
A Bayesian Network Framework for Stochastic Discrete-Event Control

Gregory Provan

Abstract— This article focuses on the use of Bayesian
networks for stochastic Discrete-Event control applications.
Bayesian networks offer several advantages for such applica-
tions, including a well-developed suite of efficient inference
algorithms, model generality and compactness, and ease of
model construction and/or model-learning. We show how we
can formalise the control-theoretic semantics of a stochastic
discrete-event control representation using a Bayesian network.
We prove the space-efficiency of a Bayesian network relative
to a probabilistic finite state machine. We demonstrate our
approach on a simple elevator system.

I. I NTRODUCTION

This article addresses stochastic discrete control appli-
cations in which noise and other forms of uncertainty are
associated with the evolution of a discrete-event system.
Many formalisations of such models exist in the literature,
such as [4], [13].

Bayesian networks [12] provide a method for modeling a
stochastic system (defined over variablesV) using a factored
probability distributionP (V), and for efficiently comput-
ing arbitrary posterior distributions overP (V). Bayesian
networks have been used for building models for higher-
level decision-making (e.g., [11]), and also for a wide
variety of lower-level control applications, e.g., [16]. The
Bayesian network (BN) framework is attractive for a number
of reasons, including its ability to model both high-level
decision-making and low-level control in a semantically clear
manner, its large literature on efficient inference algorithms,
and the compactness of the generated models (relative to
many other modeling formalisms), and its ability to model
system topology and take computational advantage of such
topology.1 The BN computational framework can provide
stochastic control applications with more efficient algorithms
than are currently being used, similar to that shown in the
use of hidden Markov models and Kalman filters for speech
recognition [19], assuming that we can show equivalence of
the BN and control representations.

However, the Bayesian network literature contains little
work addressing the control-theoretic issues when there
is a control process underlying the system dynamics. For
example, standard control-theoretic issues like controllability,
liveness, etc. have not been studied with systems modeled
as Bayesian networks. For real-world applications in which
safety, liveness, and controllability are critical, it is impor-
tant to be able to formalise and verify such properties for
Bayesian network control models. This article provides the
framework for addressing such formal properties.

Gregory Provan is with the Computer Science Department, University
College Cork, Cork, Irelandg.provan@cs.ucc.ie

1A finite state machine cannot model system topology.

This article describes the properties necessary for a
Bayesian network, or its decision-theoretic extension, the
Influence diagram (ID) [7], to correctly model a stochastic
control system. This is important from two perspectives.
First, Bayesian networks have already been used to model
several control applications, in some cases in inconsistent
fashions. Second, increasingly many applications must in-
tegrate control with higher-level decision-making (e.g., air
traffic control, integrated battle planning), and it is preferable
to have a single representation for such applications rather
than to use an ID for the higher-level decision-making and
a control model, e.g., Petri net, for the control.

We formalise a Bayesian network for a discrete-event
system [14] as follows. We start with a typical BN model
B, which describes the set of probability distributions over
a set V of variables. We describe a transformation of a
Bayesian networkB into an equivalent networkBe in which
states and events are made explicit. We can then use our
representationBe to describe the control-theoretic properties,
given its equivalence to standard control representations. We
adopt the probabilistic finite state machine (PFSM) [15]
as our standard representation, although other probabilistic
representations, such as probabilistic Petri nets ([9]), could
also be used.

This article makes the following contributions. First, we
outline a semantically clear representation of control models
that capture event and action sequencing using a Bayesian
network (BN) framework, which we call a BN control
modelBe. Second, we show that a BN control modelBe is
equivalent to a stochastic finite state machine model. Third,
we describe an algorithm to map a BN model into a BN
control model, thereby verifying the control properties of
the BN. Fourth, we show the improvements that can be
obtained by using BN control models, from the perspectives
of more efficient algorithms, and of representational power
and efficiency.

We organize the remainder of the document as follows.
Section II briefly summarizes the Bayesian network and finite
state machine approach upon which our general modeling
framework is defined, and introduces an illustrative example.
Section III defines the control properties necessary for a
Bayesian network in terms of order relations on the BN.
Section IV guides the reader through our proposed event-
based Bayesian network framework, as well as an algorithm
form mapping this framework into a control framework.
Section V show the improvements that can be obtained
by using BN control models, from several perspectives.
Finally, we conclude in Section VI with discussions on the
implications of our framework and possible future studies.

II. I LLUSTRATIVE EXAMPLE

We first introduce a model of an elevator system that is
used for illustrative purposes. We then introduce the notation
for our Bayesian Network (BN) and Finite State Machine
(FSM) frameworks, and show how we build a model for the
elevator system within each framework.

A. Elevator System

Figure 1(a) depicts a simple elevator system, which trans-
ports passengers from the ground floor to the upper floor.
From a physical perspective, the system consists of an eleva-
tor, a cable, two sensors, a motor, and an actuator/controller.
There are three marked positions on the elevator system,x,
y, and z. The sensor turns on whenever the elevator is at
its corresponding position. The motor can move the elevator
cable up (fromx to z), down (fromz to x), or not move it at
all, according to the actuator/controller command it receives.
The controller is programmed to move the elevator cable up
until the elevator has arrived at positionz (i.e., thesensor-z
is “on”), when it automatically returns to positionx, at which
time (i.e., the elevator is sensed to be present at positionx
and thesensor-x is “on”) the system resets.

Sx

Sy

Sz

Controller (C)

Motor (M)

Elevator
(E)

S
en

so
rs

 (
S

)

P
os

iti
on

 (
P

os
)

x

y

z
C

M

Pos

Sx Sz

(a) Elevator System

(b) Bayesian Network

for Elevator System

Fig. 1. (a) shows a simple elevator system. (b) shows the Bayesian Network
for the elevator system, where the arcs for the physical causal links are solid,
and the arcs for the control causal links are dashed.

B. Bayesian Network Model for Elevator

1) Bayesian Networks:Our underlying model representa-
tion is a directed acyclic graph (DAG)G = (V, E) of vertices
V and edgesE ⊆ V × V. We denote a directed edge from
Vi to Vj by (Vi, Vj). The edges show dependence relations,
such that the absence of an edge fromVi to Vj denotes that
Vj is independent ofVi. VariableVi ∈ V has a set of values,
its domain, denoted byDi.

Definition 1 (Bayesian Network):B is a tuple (G,P),
whereG is a DAG, andP a set ofprobability distributions
constructed from vertices inG using the topological structure
of G. P satisfiesPr{V} =

∏n
i=1 Pr{Vi|pa(Vi}, where

pa(Vi) are the parents ofVi in G.

It is well known that the BN is a superset of many
stochastic models, such as a Markov model and a hid-
den Markov model (HMM).2 In addition, restrictions of
several BN inference algorithms are equivalent to well-
known model-specific algorithms. For example, a hidden
Markov model (HMM) focuses on representing the string
configuration of maximal probability, which is referred to as
the most probable explanation; the Viterbi algorithm [17] for
HMM inference is a special case of the Max-prob inference
algorithm [3] for Bayesian networks.

2) BN Elevator Model: To model this simple system
directly as a Bayesian network, we first construct a graphical
model as shown in Figure 1(b). This model shows a directed
acyclic graph with nodes for the controller (actuator) (C),
motor (M), position (Pos), and sensors (SX , SZ). Directed
arcs show the causal influences, e.g., the motor’s state (on or
off) is causally influenced by the actuator’s state (on or off),
etc. We show feedback control using dashed arcs from each
sensor to the actuator.3 We can compose the model for the
complete elevator system from models of the components of
the elevator, such as sensors, motor, controller, etc.4

It is important to note that this model:
• Explicitly represents variables and not states. Each

node in the network represent a variable, and each arc
(V1, V2) represents a causal relationship ofV1 on V2.
States of the system (e.g., elevator at ground floor) are
thus represented implicitly.

• Has no explicit representation of state transitions.
• Explicitly shows physical structural relationships. For

example, it shows the physical structural relationship
between motor and actuator through their causal rela-
tionship, i.e., the motor’s state (on or off) is causally
influenced by the actuator’s state (on or off), but is not
directly causally related to the sensor outputs.

C. Finite State Machine Model for Elevator

1) Finite State Machine Representation:
Definition 2 (FSM): An FSM is defined asF =

(X , Σ, δ, x0), whereX is the state space,Σ is the set of
events,δ is the partial transition functionδ : X × Σ → X
(and defines the transitions between states inX), and x0

is the initial state of the system. More precisely, equation
δ(X1, σ) = X2 means that there is a transition of eventσ
from stateX1 to stateX2 in F .

A probabilistic FSM [15] augments an FSM with a set of
probability distributions for all the transitions of the FSM.

Definition 3 (Probabilistic FSM):A probabilistic FSM is
an FSMFΠ = (X , Σ, δ,Π, x0), whereΠ : δ → [0, 1] denotes
the probabilities assigned toδ such that, for every statex ∈
X and every event labelσ ∈ Σ, one of the following holds:
eitherδ(X, a) = ∅, or

∑
X′∈δ(X,a) Pr{X a−→ X ′} = 1.

2[5] shows the equivalence of a BN to several stochastic models.
3We can remove the cycles induced by the dashed arcs using a temporal

BN, as we will show in later sections.
4We use a composability relation⊗ that ensures that we can compose

large models from a library of model components; see [8] for details.

We can also define an FSM using a graphical representa-
tion, in which a node representingX1 is connected to a node
representingX2 by a directed edge labeled with transitionσ
iff δ(X1, σ) = X2.

2) FSM Elevator Model:For the FSM approach, a model
for the full elevator system is large and complex. Rather than
overwhelm the reader with the details of this full model, we
present a FSM model of one of its components, a position
sensor. Note that, given the component FSMs, the complete
system behaviour can then be obtained through parallel
synthesis of these components [1]. We now present an FSM
component model (and its corresponding BN model).

D. Component-Based Elevator Models

This section compares component models for the position
sensor of the elevator system. A position sensor triggers
when the elevator is at a fixed location. For example, upon
the arrival of the elevator at positionx (i.e., eventix occurs),
the sensorSx moves from initial stateXoff to stateXon,
indicating that the sensor turns on (i.e., outputs an “on”
signal). Any motor actions (i.e., m+) will then move the
elevator fromx to x̄, and bring the sensor from stateXon

to its initial state. We also assume that the sensor can fail,
moving it from eitherXon or Xoff to failure stateXfail,
through transitionσf .

The states of a sensor involve the variables:
• Pos, the elevator position, which we can assume for this

example has values{x, x̄};
• Sx, the sensor state, which has values{on,off};
• M , the sensor mode, which has values{OK, fail}.

If we represent a sensor state by the pair〈Pos, S, M〉,
then we haveXoff = 〈x̄,off,OK〉, Xon = 〈x,on,OK〉, and
Xfail = 〈·, ·,fail〉. Figure 2(a) shows the state machine
model FSx for sensorSx. In our PFSM, we describe the
transitions using (transition, probability) pairs. The model
has (a) two state-change transitions,(ix, π2) and (m+, π1);
(b) two self-transitions, (ix, π4) and (m+, π3); and (c) two
failure transitions(σf1, π5) and (σf2, π6). The transition
probabilities obey:π1 + π3 + π6 = 1 andπ2 + π4 + π5 = 1.

The two self-transitions have the following semantics.ix
takesXoff back to itself, andm+ takesXon back to itself.
For example, theXoff self-transition corresponds to the
sensor’s response to the elevator waiting at the ground floor
for a customer to arrive, and the probability for this self-
transition corresponds to the relative amount of time that the
elevator is idle on the ground floor.

The BN component model forSx is straight-forward. As
shown in Figure 2(b), the positionPos of the object on the
conveyor and the failure modeM are the only variables that
affect the output ofSx (assuming normal sensor operation).5

For this BN we need to specify three distributions:Pr{Pos},
Pr{M} andPr{Sx|Pos,M}.

Although this pair of corresponding models has great
intuitive appeal, it permits only trivial BN control models.

5We assume here that we have what we call “naive” BN models,i.e.,
atemporal variable-based models typically defined for diagnosis and control
tasks.

Xoff Xon

ix

m+

m+
ix

[π2]

[π1] [π3][π4]

Pos

SX

(b) Bayesian
network

M

[π6]Xfail

σf1
σf2

[π5]

(a) PFSM

Fig. 2. (a) showsFSx , the state machine for SensorSx. We show the
event labels, as well as the transition probabilities as shaded[πi] labels.
(b) shows the BN for the sensor, noting thatSx depends only onPos, the
position of the elevator, andM , the sensor mode variable.

Closer inspection of the BN models reveals some important
restrictions, stemming from the order relations inherent in
BNs. We explore these in Section III.

III. E QUIVALENCE OF PFSMAND BAYESIAN NETWORK

REPRESENTATIONS

This section introduces the framework to prove that a
temporal Bayesian network [18] can represent a PFSM. In
particular, we examine the different order relations present in
the BN/ID framework and in a typical discrete-event control
framework. We show that a standard BN cannot represent a
non-trivial control model, but that a temporal BN can capture
the sequencing and timing inherent in control actions..

A. Order Relations for Decision-Making

We start out by examining the order relations for the
BN/ID framework. We assume that we are addressing con-
trol, rather than control optimisation, tasks. As a conse-
quence, we could represent the class of control problems
in which we are interested as Influence Diagrams (IDs)
that contain decision nodes but no value nodes. Under this
interpretation, the chance nodes represent random variables,
and the decision nodes represent actions (controls) available
to the decision maker. We assume that there is no value
function assigned to the outcomes of actions. Further, we
assume that the arcs entering a chance node are quantified
by conditional probabilities, and the arcs entering a decision
node D indicate which quantities and previous decisions can
be consulted before making decision D.

When formulating a decision (or control) problem as an
influence diagram, a linear temporal ordering of the decision
variables is required. This constraint ensures that the decision
problem is well defined; however, it does not ensure that the
control problem is well defined.

This ID-based interpretation of control is important, but
does not allow us to address the rich set of control-theoretic
issues defined within the control community. Further, it does
not have a clear method for taking control actions on an
event-based framework. For example, a factory lift-and-carry
robot will close a clamp when a proximity sensor triggers,
which is an event based on a part being positioned correctly.

It is precisely this event-based framework that is at the heart
of many control specifications.

In the following, we extend this interpretation to allow a
clear discrete-event semantics to be defined. To simplify our
analysis, we adopt the approach specified in [2] for using
BNs as IDs, as this does not change our analysis or ordering
among nodes in the network.

B. Order Relations for Control Applications

This section examines the order relations specified for
BNs and IDs (without temporal indexing of variables), and
compares this with the order relations required by control
applications.

One of the first key points to note is the importance of
an event-based representation. Loosely speaking, an event-
based representation specifies an ordered set of states with
events defining state transitions. Such a system can be
described using models such as the FSM model summarised
in Section II-C.1. The representational power of a discrete-
event control model is well-known; see, e.g., [1].

Lemma 1:For a discrete control model, an event-based
control representation (FSM, Petri net) can adequately spec-
ify any control properties involving control sequencing of a
discrete-event system.

We will use the PFSM representation as the gold-standard
control model, and compare the ordering of a BN with that
of a PFSM.

In a BN, an order relation¹B is imposed by the DAG
G(V, E). For verticesV1, V2 ∈ V , we say thatV1 ¹B V2 if
V1 is a predecessor ofV2 in G.6 In addition, we must have
V1 6¹B V1, since this would make the DAG cyclic.

In a PFSMF (or other event-based control representation),
we have an order relation¹ over states, which in turn will
imply an order relation over the variables defining those
states. For statesX1, X2 ∈ X, we say thatX1 ¹ X2 if
∃ a transition(X1, σ,X2) ∈ F , or, loosely speaking, ifX1

is a predecessor ofX2 in F . Since we allow self-loops and
other forms of cycles in the graph depictingF , the ordering
¹ in general will violate a BN’s ordering¹B .

This analysis can be generalised into a result showing that
only trivial deterministic BN control models can be generated
using atemporal BNs.

Theorem 1:An atemporal, variable-based BN/ID cannot
represent an event-based control model.7

For a BN to be able to capture the ordering¹ inherent
in a PFSMF , the variables in the BN must be composable
into states that obey¹. One way to accomplish this is to
define a temporal BN, in which we have temporally-indexed
variables.8 A temporal BN is defined over a set of temporal
random variables. A temporal random variable is a random
variable indexed by a time pointt, [V]t. A time pointis one

6Note that this ordering captures the linear ordering on decision nodes
required in an ID, since this linear ordering is represented by a predecessor
ordering in a graphG.

7We omit proofs due to space constraints.
8Note that we do not require every pair of variables to satisfy¹, but

rather variable-sets (states) must satisfy¹. This allows a temporal BN with
mixed temporal and atemporal variables.

of t, i, t + i or t − i, where i is a positive integer. Given
these notions, we define a temporal BN as follows:

Definition 4 (Temporal Bayesian Network):A temporal
Bayesian networkBt is a tuple (G, [P]t), where G
is a DAG, and [P]t is a set of temporal probability
distributions constructed from vertices inG based
on the topological structure of G. P satisfies
Pr{[V]t} =

∏n
i=1 Pr{[Vi]τ |pa([Vi]t}, where pa([Vi]t)

are the parents of[Vi]τ in G, andτ is eithert or t + 1.
In this representation, variables corresponding to temporal

indicest and t + 1 will obey the ordering[Vi]t ¹B [Vi]t+1

for all domain values ofVi. If we represent variables in
different states using different temporal indices, then we
obtain the desired correspondence between the PFSM and
BN representations.

Lemma 2:A temporal, variable-based BN/ID can repre-
sent an discrete event-based stochastic control model.

C. Temporal Elevator Models

This section now shows what temporal models will look
like for the elevator sensor.

Figure 3(a) shows the temporal BN for the sensor with
faults for time slicest and t + 1; the solid arcs cover edges
within a time slice, and dashed arcs cover edges between time
slices. Figure 3(b) shows the distributions for these variables.
The failure-mode distribution shows that the sensor will
move from being OK to failed with probabilityp; however,
once failed, the sensor will remain failed.

[Pos]t

[SX]t

[M]t

[Pos]t+1

[SX]t+1

[M]t+1

t t+1
OK fail

OK 1-p p
Fail 0 1

t t+1
x x

x q 1-q
x 1-q q

F
ai

lu
re

 m
od

e
P

os
iti

on

(b) Distributions for Sx
(a) Temporal BN for Sx

Fig. 3. (a) Temporal BN for failure scenario for SensorSx. (b) Distributions
for failure scenario for SensorSx.

IV. EVENT-BASED BAYESIAN NETWORKS

This section describes our Event-Based Bayesian Network
(EBN) representation.

A. Event-Based Bayesian Network Representation

Generating a PFSM from an EBN requires defining: (1)
states, (2) event-based transitions, and (3) transition probabil-
ities. We now define the notions of state, event and transition
probability that will be generated from a BN representation.

Definition 5 (State):The stateX of a system represented
by a BNB is an assignment of values toV , i.e.,X ⊆ ×iDi.
Further, the stateXS of a sub-system represented by a BN
sub-networkBS is an assignment of values to the nodesVS

in BS such thatVS ⊆ V , i.e.,XS ⊆ ×i:Vi∈VS Di.
As in a PFSM, we denoteΣ as the set of events. We define

an event as follows:

Definition 6 (BN-Event):An event σ ∈ Σ is a state
transition. We denote a transition function overσ using
δ : Σ×X → X . Given an event(X, σ,X ′), with statesX,X ′

and corresponding variable domain-values denoted by[VX =
D], [VX′ = D′], we define a BN-event as the variable-based
representation of the event,i.e., ([VX = D], σ, [VX′ = D′]).

We now define the transition probability corresponding to
an arc in an EBNBe.

Definition 7 (Transition Probability):Given an event
transition(X, σ,X ′), the corresponding transition probability
is given byPr{X ′|X}.

Given these definitions, we can now specify an Event-
Based Bayesian Network.

Definition 8 (Event-Based Bayesian Network):An
Event-Based Bayesian NetworkBe = H(V,E) is a BN
model of a control system in which each node represents a
state and every edgeEi = (Vj , Vk) represents a transition
distribution over the transition set defined inVj × Vk.

Using this notion ofBe, we will use the equivalence ofBe

with an appropriate PFSM to denote its validity for control
purposes. In other words, such an equivalence means thatBe

will possess the same control properties than a PFSM has.
Definition 9 (Valid Event-Based BN):An Event-Based

Bayesian NetworkBe is a valid BN model of a control
system if a 1:1 onto transformation exists to a PFSM for
that control system.

Example: Figure 4 compares the BN, EBN and PFSM
models for SensorSx. This figure shows that: (a) the BN cap-
tures the variables of the sensor as its nodes; (b) the Event-
based BN defines the sensor states as its nodes, specifying a
single causal arc from the state att, [X]t to [X]t+1, together
with distributions forPr{[X]t} andPr{[X]t+1|[X]t}; and
(c) the Probabilistic FSM models the sensor states as its
nodes, specifying arcs for transitions, together with transition
probabilities.

Pr{[Pos]t}

Pr{SX|Pos}

Xoff Xon

ix

m+

m+ix
[π2]

[π1] [π3]
[π4]

[Pos]t

[SX]t

(c) PFSM(a) Bayesian

network

Xoff Xon

Pr{[X]t}

(b) Event-based

Bayesian network

Pr{[X]t| [X]t+1}

Fig. 4. Comparison of (a) BN, (b) Event-based BN and (c) Probabilistic
FSM models for SensorSx. We explicitly show the probability distributions
represented in each model by the shaded labels associated with nodes and
edges.

B. Event-Based Bayesian Network Transformation

We can determine if a BN corresponds to a PFSM by
transforming that BN into a PFSM. This transformation is
performed in two steps, first transforming the BN into an
EBN, and then transforming the EBN into a PFSM.

This section describes how we transform a BN into an
EBN. We assume that we have the following representations:
• B = (G(V, E),P) is a BN;

• Be = (H(V ′, E′),P ′) is an event-based BN;
• F = (H(V ′, E′), Π) is a PFSM.

We transform a BNB into an EBN by converting each
family of B into an by EBN. For any BN familyf , we:

• convert variablesV (f) into corresponding stateX(f);
• convert distributionsP(f) into distributions for the

corresponding statesX(f), which we callP(X).
To transform an EBNBe into a PFSMF we:

• expand stateX(f) of Be into a set of distinct
(state,value) pairs, and order these based on the ordering
induced by the cross-product ordering¹B of V (f).
Each (state,value) pair becomes a node of the PFSM.

• define transitions and transition probabilities for the
ordered nodes of the PFSM. A transition(X1, δ,X2)
exists if there is a non-zero probabilityPr{X2|X1}
in P(X); the transition probability forδ is given by
Pr{X2|X1}.

This series of transformations will map an arbitrary BN
into a PFSM, thereby determining if the BN possesses the
necessary ordering for control purposes.

V. A DVANTAGES OF BAYESIAN NETWORKS FOR

INTEGRATED CONTROL SYSTEMS

BNs can provide improved inference and modeling for
integrated control systems, as described below.

A. Efficient Algorithms

Significant research has been devoted to developing effi-
cient BN inference algorithms, and a wide range of efficient
exact and approximation algorithms have been developed [6].
For example, HMMs and Kalman filters have been outper-
formed by their more general temporal BN representations
in applications such as speech recognition [19], due to BN
optimisations and to limitations of HMMs and Kalman filters
such as:

• the assumption of uni-modal (and often Gaussian) ob-
servation and state probability densities (e.g. in the
Kalman filter),

• exponential growth of their parameterisation with the
number of state variables (e.g. HMM), and

• static model structure (both Kalman filter and HMMs).

In general, stochastic DES applications can make direct
use of these advances, e.g., by converting a PFSM into the
equivalent stochastic model (such as an HMM or BN)9, and
then performing inference.

B. Modeling

A BN offers several potential modeling advantages over a
PFSM, including greater generality, modeling compactness,
and faster, more intuitive modeling.

Generality: A BN is a strict superset of the PFSM we
have defined, and as such can model more complex systems
than can a PFSM [5].

9The PFSM can represent the same distribution class as that modeled by
an HMM, with the same time- and space-complexity [15].

Modeling Compactness:A BN can be used to model
the states of a system or the variables defining the system.
By adopting the latter approach, one needs a much more
compact model in terms of number of nodes, if we rule out
a trivial model where each variable has a single value.10

Lemma 3:Given a BNB with n variablesV1, ..., Vn, each
of arity k ≥ 2, the variable-based BN representation has
fewer nodes than the state-based BN representation.

As an example, in the model of the elevator system, the
BN model has 10 nodes, and the corresponding PFSM model
has 96 nodes. This scale of difference in model size is typical
for many typical models.

It is important to note the the BN implicitly represents
states and state transitions, and a simple inference algorithm
can generate all states and state transitions as required, as
described in Section IV-B.

Intuitive Modeling: The modeling compactness of a BN
means that system models are simpler to construct, store
and visualise, using tools such as Hugin, Netica and Genie.
Moreover, one is not restricted to building models by hand,
as there is a significant literature in learning temporal BNs,
e.g. [5], so that one can learn stochastic control models
using a BN representation. Finally, as opposed to FSMs,
BNs can directly encode system topology, and many BN
inference algorithms use optimisations that take advantage
of the topology of the BN. The techniques include the
clique-tree algorithm [10], node-pruning [12], and cutset-
conditioning [12].

VI. CONCLUDING REMARKS

This article has described a representation for stochastic
discrete-event systems using a “traditional” variable-based
Bayesian network representation. We now have a formalism
that captures the control-theoretic properties of stochastic
discrete-event systems but can also make use of the wealth
of inference techniques developed in the Bayesian-network
community. From the Bayesian network perspective, this
represents the first specification of control-theoretic seman-
tics where issues such as controllability, observability, etc.
can be precisely defined. This representation also defines
a single model that can be used for control synthesis and
monitoring/diagnostics.

This work illustrates key differences between control and
Bayesian network representations. First, control representa-
tions, such as PFSMs, have a graphical framework in which
the nodes represent states, and arcs represent transitions
between states. This representation does not explicitly rep-
resent physical relationships of the device being modeled;
we have introduced the system causal graph to capture
such relationships. On the other hand, Bayesian networks
also have an underlying graphical framework, but in which
the nodes typically representvariables, and arcs represent

10The number of probabilities that must be specified in both model types
is identical. In a variable-based model we specify a distribution over a
variable given its parents inG, i.e. P (Vi|pa(Vi)); in a state-based model
we specify an equivalent set of probabilities in terms of state-transitions,
i.e., P (Xi|Xj), for appropriateXj .

potential dependence relations among the variables. The
notions of events and state transitions areimplicit. The
graphical structure can also capture physical relationships of
the device being modeled. Second, an event-based control
representation like PFSM can specify a sequence of state
transitions without defining variables representing time; in
contrast, in Bayesian networks specific ordering relations,
euch as time-indexed variables, are needed for this task.

Much work remains to be completed. Additional work is
needed to examine the applicability of this approach to real-
world problems. These results extend the range of choices
available for modeling (and monitoring/diagnosing) control
systems; however, whether one implements an FSM with
the extended properties outlined here, or a BN, requires
additional study.

REFERENCES

[1] C. Cassandras and S. Lafortune.Introduction to Discrete Event
Systems. Kluwer, 1999.

[2] G.F. Cooper. A method for using belief networks as influence
diagrams. InProceedings of the Workshop on Uncertainty in Artificial
Intelligence, pages 55–63, 1988.

[3] A. P. Dawid. Applications of a general propagation algorithm for
probabilistic expert systems.Statistics and Computing, 2:25–36, 1992.

[4] E. Doberkat. Stochastic Automata: Stability, Nondeterminism and
Prediction. Number 113. Springer Verlag, Lecture Notes in Computer
Science, 1981.

[5] Zoubin Ghahramani. Learning dynamic Bayesian networks.Lecture
Notes in Computer Science, 1387:168–197, 1998.

[6] H. Guo and W. Hsu. A survey on algorithms for real-time bayesian
network inference. InJoint AAAI-02/KDD-02/UAI-02 workshop on
Real-Time Decision Support and Diagnosis Systems, Edmonton, Al-
berta, Canada, 2002.

[7] R.A. Howard and J.E. Matheson. Influence diagrams. In R. Howard
and J. Matheson, editors,The Principles and Applications of Decision
Analysis, pages 720–762. Strategic Decisions Group, CA, 1981.

[8] J. Keppens and Q. Shen. On compositional modelling.Knowledge
Engineering Review, 16(2):157–200, 2001.

[9] Pieter Kritzinger and F. Bause.Introduction to Stochastic Petri Net
Theory. Advanced Studies in Computer Science, Vieweg Verlag, 1995.

[10] S. Lauritzen and D. Spiegelhalter. Local Computations with Probabil-
ities on Graphical Systems and their Application to Expert Systems.
J. of the Royal Stat. Soc, 50(2):157–224, 1988.

[11] A. Terry Morris and Peter A. Beling. Space Shuttle RTOS Bayesian
Network. In 20th Digital Avionics Systems Conference, 2001.

[12] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan
Kaufmann, 1988.

[13] M. O. Rabin. Probabilistic Automata.Information and Control, 6:230–
245, 1963.

[14] Peter Ramadge and W. Murray Wonham. The control of discrete-event
systems.Proceedings of the IEEE, 77(1), 1989.

[15] E. Vidal, F. Thollard, C. de la Higuera, F. Casacuberta, and R. C.
Carrasco. Probabilistic finite-state machines – Part I.IEEE Trans. on
Pattern analysis and Machine Intelligence, 27(7):1013–1025, 2005.

[16] K. Virtanen, T. Raivio, and R.P. Hmlinen. Modeling pilot’s sequential
maneuvering decisions by a multistage influence diagram.Journal of
Guidance, Control, and Dynamics, 27(4):665–677, 2004.

[17] A. J. Viterbi. Error bounds for convolutional codes and an asymptoti-
cally optimum decoding algorithm.IEEE Transactions on Information
Theory, 13:260–269, 1967.

[18] Joel D. Young and Jr. Santos, Eugene. Introduction to temporal
bayesian networks. InMidwest Conference on Artificial Intelligence
and Cognitive Science, 1996.

[19] G. Zweig and S.J. Russel. Speech recognition with dynamic bayesian
networks. InAmerican Association for Artificial Intelligence, 1998.

