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Abstract—This article focuses on the use of Bayesian This article describes the properties necessary for a
networks for stochastic Discrete-Event control applications. Bayesian network, or its decision-theoretic extension, the
Bayesian networks offer several advantages for such applica- yfjyence diagram (ID) [7], to correctly model a stochastic
tions, including a well-developed suite of efficient inference L L .
algorithms, model generality and compactness, and ease of C‘?”"O' syst(_am. This is important from two perspectives.
model construction and/or model-learning. We show how we First, Bayesian networks have already been used to model
can formalise the control-theoretic semantics of a stochastic several control applications, in some cases in inconsistent
discrete-event control representation using a Bayesian network. fashions. Second, increasingly many applications must in-
We prove the space-efficiency of a Bayesian network relative teqgrate control with higher-level decision-making (e.g., air
to a probabilistic finite state machine. We demonstrate our traffic control, integrated battle planning), and it is preferable
approach on a simple elevator system. - ) ! ok

to have a single representation for such applications rather
|. INTRODUCTION than to use an ID for the higher-level decision-making and

This article addresses stochastic discrete control apph-control model, e.g., Petri net, for the control.
cations in which noise and other forms of uncertainty are We formalise a Bayesian network for a discrete-event
associated with the evolution of a discrete-event systeraystem [14] as follows. We start with a typical BN model
Many formalisations of such models exist in the literature3, which describes the set of probability distributions over
such as [4], [13]. a setV of variables. We describe a transformation of a

Bayesian networks [12] provide a method for modeling 8ayesian networl3 into an equivalent networB, in which
stochastic system (defined over variabldsusing a factored states and events are made explicit. We can then use our
probability distribution P(V), and for efficiently comput- representatioi8, to describe the control-theoretic properties,
ing arbitrary posterior distributions oveP(V). Bayesian given its equivalence to standard control representations. We
networks have been used for building models for highemdopt the probabilistic finite state machine (PFSM) [15]
level decision-making (e.g., [11]), and also for a wideas our standard representation, although other probabilistic
variety of lower-level control applications, e.g., [16]. Therepresentations, such as probabilistic Petri nets ([9]), could
Bayesian network (BN) framework is attractive for a numbealso be used.
of reasons, including its ability to model both high-level This article makes the following contributions. First, we
decision-making and low-level control in a semantically cleaputline a semantically clear representation of control models
manner, its large literature on efficient inference algorithmshat capture event and action sequencing using a Bayesian
and the compactness of the generated models (relative rietwork (BN) framework, which we call a BN control
many other modeling formalisms), and its ability to modemodel B.. Second, we show that a BN control modgl is
system topology and take computational advantage of suelguivalent to a stochastic finite state machine model. Third,
topology! The BN computational framework can providewe describe an algorithm to map a BN model into a BN
stochastic control applications with more efficient algorithmsgontrol model, thereby verifying the control properties of
than are currently being used, similar to that shown in ththe BN. Fourth, we show the improvements that can be
use of hidden Markov models and Kalman filters for speechbtained by using BN control models, from the perspectives
recognition [19], assuming that we can show equivalence af more efficient algorithms, and of representational power
the BN and control representations. and efficiency.

However, the Bayesian network literature contains litle We organize the remainder of the document as follows.
work addressing the control-theoretic issues when theection Il briefly summarizes the Bayesian network and finite
is a control process underlying the system dynamics. Fatate machine approach upon which our general modeling
example, standard control-theoretic issues like controllabilitframework is defined, and introduces an illustrative example.
liveness, etc. have not been studied with systems model8éction Il defines the control properties necessary for a
as Bayesian networks. For real-world applications in whicBayesian network in terms of order relations on the BN.
safety, liveness, and controllability are critical, it is impor-Section IV guides the reader through our proposed event-
tant to be able to formalise and verify such properties fapased Bayesian network framework, as well as an algorithm
Bayesian network control models. This article provides théorm mapping this framework into a control framework.

framework for addressing such formal properties. Section V show the improvements that can be obtained
Gregory Provan is with the Computer Science Department, UniversitkiLy using BN Contml. mOde.ls’ from. sevgral pgrspectlves.
College Cork, Cork, Ireland).provan@cs.ucc.ie inally, we conclude in Section VI with discussions on the

1A finite state machine cannot model system topology. implications of our framework and possible future studies.



Il. ILLUSTRATIVE EXAMPLE It is well known that the BN is a superset of many

stochastic models, such as a Markov model and a hid-

We first introduce a model of an elevator system that iSen Markov model (HMM® In addition, restrictions of
used for illustrative purposes. We then introduce the ”°tatiqﬂavera| BN inference algorithms are équivalent to well-

for our Bayesian Network (BN) and Finite State IVlad'ineknown model-specific algorithms. For example, a hidden

(FSM) frameworks_, a_nd show how we build a model for thg, 4oy model (HMM) focuses on representing the string
elevator system within each framework. configuration of maximal probability, which is referred to as

the most probable explanation; the Viterbi algorithm [17] for
A. Elevator System HMM inference is a special case of the Max-prob inference

Figure 1(a) depicts a simple elevator system, which tranglgorithm [3] for Bayesian networks.
ports passengers from the ground floor to the upper floor. 2) BN Elevator Model: To model this simple system
From a physical perspective, the system consists of an eleirectly as a Bayesian network, we first construct a graphical
tor, a cable, two sensors, a motor, and an actuator/controll&todel as shown in Figure 1(b). This model shows a directed
There are three marked positions on the elevator system,acyclic graph with nodes for the controller (actuator) (C),
y, and z. The sensor turns on whenever the elevator is &fotor (M), position (os), and sensorsSy, Sz). Directed
its corresponding position. The motor can move the elevat@cs show the causal influences, e.g., the motor’s stater(
cable up (fromz to z), down (fromz to z), or not move it at  Off) is causally influenced by the actuator’s state ¢r off),
all, according to the actuator/controller command it receive€tc. We show feedback control using dashed arcs from each
The controller is programmed to move the elevator cable U§gnsor to the actuatdiWe can compose the model for the
until the elevator has arrived at positier(i.e., thesensor-z ~ complete elevator system from models of the components of
is “on”), when it automatically returns to positian at which ~ the elevator, such as sensors, motor, controller! etc.
time (.e., the elevator is sensed to be present at position It is important to note that this model:

and thesensor-x is “on”) the system resets. o Explicitly represents variables and not states. Each
node in the network represent a variable, and each arc

Controller (C) (V1, V) represents a causal relationship 1af on V5.
Motor (M% States of the system (e.g., elevator at ground floor) are

thus represented implicitly.

« Has no explicit representation of state transitions.

« Explicitly shows physical structural relationships. For
example, it shows the physical structural relationship
between motor and actuator through their causal rela-
tionship, i.e., the motor's state (on or off) is causally
influenced by the actuator’s state (on or off), but is not
directly causally related to the sensor outputs.
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for Elevator System 1) Finite State Machine Representation:
Definition 2 (FSM):An  FSM is defined asF =
Fig. 1. (a) shows a simple elevator system. (b) shows the Bayesian Netwo(v‘é)’z’(s7 x.0)7 Where_‘)( IS th?_State sp_aceZ is the set of
for the elevator system, where the arcs for the physical causal links are sol@yents,d is the partial transition functiod : X x ¥ — X
and the arcs for the control causal links are dashed. (and defines the transitions between statestin and z,
is the initial state of the system. More precisely, equation

d(X1,0) = X2 means that there is a transition of event
B. Bayesian Network Model for Elevator from stateX; to stateX, in F.

1) Bayesian NetworksOur underlying model representa- A Probabilistic FSM [15] augments an FSM with a set of
tion is a directed acyclic graph (DAG) = (V, €) of vertices probability distributions for all the transitions of the FSM.
V and edges€ C V x V. We denote a directed edge from Definition 3 (Probabilistic FSM):A probabilistic FSM is
V; to V; by (Vi,V;). The edges show dependence relationgn FSMFr = (&', %, 4, I, z), wherell : 6 — [0, 1] denotes
such that the absence of an edge fréinto V; denotes that the probabilities assigned tbsuch that, for every state €
V; is independent of;. VariableV; € V' has a set of values, X and every event labet € %3, one of the following holds:
its domain, denoted byp;. either (X, a) =0, or 3" cs(x,0) Pr{X — X'} =1.

Definition 1 (Bayesian Network)3 is a tuple (G, P),
whereG is a DAG, andP a set ofprobability distributions 2[5] shows the equivalence of a BN to several stochastic models.

constructed from vertices i@ using the topological structure 3We can remove the cycles induced by the dashed arcs using a temporal
BN, as we will show in later sections.

‘ of n
of G. P satisfies Pr{V} = [[i=, Pr{Vilpa(Vi}, where 4We use a composability relatiop that ensures that we can compose
pa(V;) are the parents of; in G. large models from a library of model components; see [8] for details.



We can also define an FSM using a graphical representa-
tion, in which a node representinj; is connected to a node
representingX, by a directed edge labeled with transition
iff (5(X1,0) = Xg.

2) FSM Elevator Model:For the FSM approach, a model
for the full elevator system is large and complex. Rather than
overwhelm the reader with the details of this full model, we
present a FSM model of one of its components, a position
sensor. Note that, given the component FSMs, the complete (a) PFSM
system behaviour can then be obtained through parallel
synthesis of these components [1]. We now present an FS@- 2. (&) showsFs,, the state machine for Sens6f. We show the

: : event labels, as well as the transition probabilities as shadgdliabels.
component model (and Its correspondlng BN mOdel)' (b) shows the BN for the sensor, noting thf depends only orPos the

position of the elevator, and/, the sensor mode variable.

fo9 ()

(b) Bayesian
network

D. Component-Based Elevator Models
This section compares component models for the position

sensor of the elevator system. A position sensor triggegSigser inspection of the BN models reveals some important

when the elevator is at a fixed location. For example, upOfugirictions, stemming from the order relations inherent in
the arrival of the elevator at positian(i.e., eventiz occurs), gNs. We explore these in Section Il

the sensorS, moves from initial stateX,;s to stateX,,,

indicating that the sensor turns one( outputs an “on” ||| EquvaLENCE OF PFSMAND BAYESIAN NETWORK
signal). Any motor actionsi.e., m+) will then move the REPRESENTATIONS

elevator fromz to z, and bring the sensor from stafé,,

to its initial state. We also assume that the sensor can fail, This section introduces the framework to prove that a
moving it from eitherX,, or X, to failure stateX ;uq, temporal Bayesian network [18] can represent a PFSM. In

through transition ;. particular, we examine the different order relations present in
The states of a sensor involve the variables: the BN/ID framework and in a typical discrete-event control
« Pos the elevator position, which we can assume for thif@mework. We show that a standard BN cannot represent a
example has value§r, 7 }; non-trivial control model, but that a temporal BN can capture
. S,, the sensor state, which has valjes,off;; the sequencing and timing inherent in control actions..

« M, the sensor mode, which has valdgK, fail}.
If we represent a sensor state by the péftos, S, M),
then we haveX,;; = (z,0ff,0OK), X,, = (z,0n,0K), and We start out by examining the order relations for the
Xtau = (-,-fail). Figure 2(a) shows the state machineBN/ID framework. We assume that we are addressing con-
model Fs, for sensorS,. In our PFSM, we describe the trol, rather than control optimisation, tasks. As a conse-
transitions using (transition, probability) pairs. The modetjuence, we could represent the class of control problems
has (a) two state-change transitiofg;, m2) and (m™*,7;); in which we are interested as Influence Diagrams (IDs)
(b) two self-transitions,if, 74) and (n*,73); and (c) two that contain decision nodes but no value nodes. Under this
failure transitions(os1,75) and (o2, 7). The transition interpretation, the chance nodes represent random variables,
probabilities obeyr; +73 +m = 1 andwy + 74 +75 = 1. and the decision nodes represent actions (controls) available
The two self-transitions have the following semantics. to the decision maker. We assume that there is no value
takesX, s, back to itself, andn* takesX,, back to itself. function assigned to the outcomes of actions. Further, we
For example, theX,;; self-transition corresponds to theassume that the arcs entering a chance node are quantified
sensor’s response to the elevator waiting at the ground floby conditional probabilities, and the arcs entering a decision
for a customer to arrive, and the probability for this selfnhode D indicate which quantities and previous decisions can
transition corresponds to the relative amount of time that thee consulted before making decision D.
elevator is idle on the ground floor. When formulating a decision (or control) problem as an
The BN component model fo§, is straight-forward. As influence diagram, a linear temporal ordering of the decision
shown in Figure 2(b), the positioRos of the object on the variables is required. This constraint ensures that the decision
conveyor and the failure mod¥ are the only variables that problem is well defined; however, it does not ensure that the
affect the output of5, (assuming normal sensor operatién). control problem is well defined.
For this BN we need to specify three distributiofs{ Pos}, This ID-based interpretation of control is important, but
Pr{M} andPr{S,|Pos,M. does not allow us to address the rich set of control-theoretic
Although this pair of corresponding models has greaksues defined within the control community. Further, it does
intuitive appeal, it permits only trivial BN control models. not have a clear method for taking control actions on an
s I event-based framework. For example, a factory lift-and-carry
We assume here that we have what we call “naive” BN modeds,

atemporal variable-based models typically defined for diagnosis and contrrd?b.ot W'" close a clamp when a pI’O?(ImIty ;epsor triggers,
tasks. which is an event based on a part being positioned correctly.

A. Order Relations for Decision-Making




It is precisely this event-based framework that is at the heaof ¢, i, ¢ + ¢ or ¢t — i, wheres is a positive integer. Given
of many control specifications. these notions, we define a temporal BN as follows:

In the following, we extend this interpretation to allow a Definition 4 (Temporal Bayesian Networkk temporal
clear discrete-event semantics to be defined. To simplify ofayesian network B* is a tuple (G,[P]:), where G
analysis, we adopt the approach specified in [2] for using a DAG, and [P]; is a set of temporal probability
BNs as IDs, as this does not change our analysis or orderidgstributions constructed from vertices inG based
among nodes in the network. on the topological structure ofG. P satisfies
Pr{Vli} = [T, Pr{[Vil-lpa([Vil:}, where pa([Vi];)

_ _ ] ) y are the parents d;]. in G, andr is eithert or ¢ + 1.

This section examines the order relations specified for | thjs representation, variables corresponding to temporal
BNs and IDs (without temporal indexing of variables), andngicest andt + 1 will obey the orderingV;]; =g [Vilss1
compares this with the order relations required by contrghy all domain values ofV;. If we represent variables in
applications. different states using different temporal indices, then we

One of the first key points to note is the importance Opptain the desired correspondence between the PFSM and
an event-based representation. Loosely speaking, an evegy representations.

based representation specifies an ordered set of states with emyma 2: A temporal, variable-based BN/ID can repre-
events defining state transitions. Such a system can Bgnt an discrete event-based stochastic control model.
described using models such as the FSM model summarised
in Section 1I-C.1. The representational power of a discretéc. Temporal Elevator Models
event control model is well-known; see, e.g., [1]. This section now shows what temporal models will look
Lemma 1:For a discrete control model, an event-baseflke for the elevator sensor.
control representation (FSM, Petri net) can adequately spec-Figure 3(a) shows the temporal BN for the sensor with
ify any control properties involving control sequencing of &aults for time slices andt + 1; the solid arcs cover edges
discrete-event system. within a time slice, and dashed arcs cover edges between time
We will use the PFSM representation as the gold-standagtices. Figure 3(b) shows the distributions for these variables.
control model, and compare the ordering of a BN with thathe failure-mode distribution shows that the sensor will
of a PFSM. move from being OK to failed with probability; however,
In a BN, an order relation<p is imposed by the DAG once failed, the sensor will remain failed.
G(V, E). For verticesVy, V, € V, we say thatl, <p V5 if

B. Order Relations for Control Applications

Vi is a predecessor df, in G.° In addition, we must have @ ........ @ LY L
V1 A Vi, since this would make the DAG cyclic. g OK_fail
In a PESMF (or other event-based control representation), S |OK|1p p
we have an order relatiog over states which in turn will @ """"" @ ‘_LTE Fall 0 1
imply an order relation over the variables defining those c |t L tl...
states. For stateX;, X, € X, we say thatX; < X, if @ ......... @ % X é >1<_q
3 a transition(X;, 0, X5) € F, or, loosely speaking, ifX; £ |x 1q q
is a predecessor of, in F. Since we allow self-loops and (a) Temporal BN for S, (b) Distributions for S,
other forms of cycles in the graph depictitfg the ordering
<in general will violate a BN'’s orderingiB_ Fig. 3. (a) Temporal BN for failure scenario for Sensgr. (b) Distributions

This analysis can be generalised into a result showing thiSf failure scenario for Sensd.
only trivial deterministic BN control models can be generated

using atemporal BNs. IV. EVENT-BASED BAYESIAN NETWORKS

Theorem 1:An atemporal, variable-based BN/ID cannot This section describes our Event-Based Bayesian Network
represent an event-based control mddel. (EBN) representation

For a BN to be able to capture the orderinginherent
in a PFSMF, the variables in the BN must be composableA. Event-Based Bayesian Network Representation
into states that obeyx. One way to accomplish this is to Generating a PFSM from an EBN requires defining: (1)

define a temporal BN, in which we have temporally-indexedates, (2) event-based transitions, and (3) transition probabil-
variables’ A temporal BN is defined over a set of temporalijjes. \we now define the notions of state, event and transition
random variables. A temporal random variable is a randomyopapility that will be generated from a BN representation.
variable indexed by a time point [V];. A time pointis one Definition 5 (State):The stateY’ of a system represented

SNote that this ordering captures the linear ordering on decision nodgy a BN B is an assignment of values 16, i.e., X C x;D;.
required in an ID, since this linear ordering is represented by a predecesorrther, the stateéts of a sub-system represented by a BN
Orglering in a graplg. sub-networkBg is an assignment of values to the nodés

We omit proofs due to space constraints. in such thatVe C ie. Xo C x.. D.

8Note that we do not require every pair of variables to satisfybut BS. Vs C ;/' =S h Z'Viefvs v defi
rather variable-sets (states) must satisfyThis allows a temporal BN with As in a PFSM, we denote as the set of events. We define
mixed temporal and atemporal variables. an event as follows:



Definition 6 (BN-Event):An evento € ¥ is a state  « B. = (H(V',E’),P’) is an event-based BN;
transition. We denote a transition function over using « F=(H(V',E'),II) is a PFSM.

§: ¥xX — X.Given an eventX, o, X'), with states¥, X" We transform a BNB into an EBN by converting each
and corresponding variable domain-values denoteldpy= family of B into an by EBN. For any BN familyf, we:

— ! 1 - i - . . .
D], [Vx: = D'], we define a BN-event as the variable-based convert variabled/ (f) into corresponding staté (f);

representation of the evene, ([Vx = DJ, o, [Vx- = I')). « convert distributionsP(f) into distributions for the
We now define the transition probability corresponding to corresponding statex (f), which we callP(X)

an arc in an EBNS.. ) i
Definition 7 (Transition Probability):Given an event To transform an EBNS, into a PFSMF we:

transition(X, o, X’), the corresponding transition probability « expand stateX(f) of B. into a set of distinct

is given by Pr{X’|X}. (state,value) pairs, and order these based on the ordering
Given these definitions, we can now specify an Event- induced by the cross-product orderings of V(f).
Based Bayesian Network. Each (state,value) pair becomes a node of the PFSM.
Definition 8 (Event-Based Bayesian Networin « define transitions and transition probabilities for the
Event-Based Bayesian Netwo, = H(V,E) is a BN ordered nodes of the PFSM. A transitidX 1, J, X»)
model of a control system in which each node represents a €xists if there is a non-zero probabilithr{X2|X; }
state and every edgg; = (V;,V}) represents a transition in P(X); the transition probability fors is given by
distribution over the transition set defined it x V;. Pr{Xs|X1}.
Using this notion ofB., we will use the equivalence @, This series of transformations will map an arbitrary BN

with an appropriate PFSM to denote its validity for controinto a PFSM, thereby determining if the BN possesses the
purposes. In other words, such an equivalence meansthat necessary ordering for control purposes.
will possess the same control properties than a PFSM has.

Definition 9 (Valid Event-Based BNAn  Event-Based V. ADVANTAGES OF BAYESIAN NETWORKS FOR
Bayesian Network, is a valid BN model of a control INTEGRATED CONTROL SYSTEMS
system if a 1:1 onto transformation exists to a PFSM for BNs can provide improved inference and modeling for
that control system. integrated control systems, as described below.

Example: Figure 4 compares the BN, EBN and PFSM

models for Sensa$,.. This figure shows that: (a) the BN cap-A. Efficient Algorithms

tures the variables of the sensor as its nodes; (b) the EventSignificant research has been devoted to developing effi-
based BN defines the sensor states as its nodes, specifyingiént BN inference algorithms, and a wide range of efficient
single causal arc from the statetafX]; to [X];,1, together exact and approximation algorithms have been developed [6].
with distributions for Pr{[X];} and Pr{[X]:41|[X];}; and For example, HMMs and Kalman filters have been outper-
(c) the Probabilistc FSM models the sensor states as i#srmed by their more general temporal BN representations
nodes, specifying arcs for transitions, together with transitiom applications such as speech recognition [19], due to BN
probabilities. optimisations and to limitations of HMMs and Kalman filters

such as:
@ Pr{[X],
Pr{[Pos]| @ .
off 0

« the assumption of uni-modal (and often Gaussian) ob-

servation and state probability densities (e.g. in the
Kalman filter),

@ PHIX]| X} « exponential growth of their parameterisation with the

Pr{S, Pos} (b) Event-based number of state variables (e.g. HMM), and

@ Bayesan Bayesian network « static model structure (both Kalman filter and HMMSs).

network In general, stochastic DES applications can make direct

Fig. 4. Comparison of (a) BN, (b) Event-based BN and (c) Probabilistié’Ise of these advances, €9, by converting a PFSM into the

FSM models for Sensdf,. We explicitly show the probability distributions €duivalent stochastic model (such as an HMM or Bnind
represented in each model by the shaded labels associated with nodes #ngn performing inference.
edges.

B. Modeling

B. Event-Based Bayesian Network Transformation A BN offers several potential modeling advantages over a
We can determine if a BN corresponds to a PFSM b?FSM, including gregt_er genere_tlity, modeling compactness,
transforming that BN into a PFSM. This transformation i@nd faster, more intuitive modeling.

performed in two steps, first transforming the BN into an Generality: A BN is a strict superset of the PFSM we
EBN, and then transforming the EBN into a PFSM. have defined, and as such can model more complex systems

This section describes how we transform a BN into aff1an can a PFSM [3].
EBN. We assume that.we have the foIIowmg representatlons:gThe PFSM can represent the same distribution class as that modeled by
e B=(G(V,E),P) is a BN; an HMM, with the same time- and space-complexity [15].



Modeling Compactness:A BN can be used to model potential dependence relations among the variables. The
the states of a system or the variables defining the systenotions of events and state transitions amgplicit. The
By adopting the latter approach, one needs a much mogeaphical structure can also capture physical relationships of
compact model in terms of number of nodes, if we rule outhe device being modeled. Second, an event-based control
a trivial model where each variable has a single vafue.  representation like PFSM can specify a sequence of state

Lemma 3:Given a BNB with n variablesVi, ..., V,,, each transitions without defining variables representing time; in
of arity & > 2, the variable-based BN representation hasontrast, in Bayesian networks specific ordering relations,
fewer nodes than the state-based BN representation. euch as time-indexed variables, are needed for this task.

As an example, in the model of the elevator system, the Much work remains to be completed. Additional work is
BN model has 10 nodes, and the corresponding PFSM modeteded to examine the applicability of this approach to real-
has 96 nodes. This scale of difference in model size is typicalorld problems. These results extend the range of choices
for many typical models. available for modeling (and monitoring/diagnosing) control

It is important to note the the BN implicitly representssystems; however, whether one implements an FSM with
states and state transitions, and a simple inference algoritithe extended properties outlined here, or a BN, requires
can generate all states and state transitions as required,adslitional study.
described in Section IV-B.

Intuitive Modeling: The modeling compactness of a BN
means that system models are simpler to construct stofldl C. Cassandras and S. Lafortunelntroduction to Discrete Event

. : ) . . L SystemsKluwer, 1999.
and visualise, using tools such as Hugin, Netica and Gen'qZ] G.F. Cooper. A method for using belief networks as influence
Moreover, one is not restricted to building models by hand, diagrams. IrProceedings of the Workshop on Uncertainty in Artificial
i iqnifi i i i Intelligence pages 5563, 1988.

as there is a significant literature in Iearnmg temporal BNSE’] A. P, Dawid.  Applications of a general propagation algorithm for
e.g. [5], so that one can learn stochastic control modelS™ prohapilistic expert systemstatistics and Computing:25-36, 1992.
using a BN representation. Finally, as opposed to FSMs[4] E. Doberkat. Stochastic Automata: Stability, Nondeterminism and
BNs can directly encode system topology, and many BN Prediction Number 113. Springer Verlag, Lecture Notes in Computer
. . o ! Science, 1981.
inference algorithms use optimisations tlhat take advantag@; zoubin Ghahramani. Learning dynamic Bayesian netwotlecture
of the topology of the BN. The techniques include the  Notes in Computer Scienc387:168-197, 1998.

i - i - i _[6] H. Guo and W. Hsu. A survey on algorithms for real-time bayesian
clique-tree algorithm [10], node-pruning [12], and cutset network inference. Injoint AAAI-02/KDD-02/UAI-02 workshop on
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