
Approximate Compilation for Embedded Model-based Reasoning

Barry O’Sullivan ∗ and Gregory M. Provan†

Department of Computer Science, University College Cork, Ireland
{b.osullivan|g.provan}@cs.ucc.ie

Abstract

The use of embedded technology has become widespread.
Many complex engineered systems comprise embedded fea-
tures to perform self-diagnosis or self-reconfiguration. These
features require fast response times in order to be useful in
domains where embedded systems are typically deployed.
Researchers often advocate the use of compilation-based ap-
proaches to store the set of environments (resp. solutions) to
a diagnosis (resp. reconfiguration) problem, in some compact
representation. However, the size of a compiled representa-
tion may be exponential in the treewidth of the problem. In
this paper we propose a novel method for compiling the most
preferred environments in order to reduce the large space re-
quirements of our compiled representation. We show that ap-
proximate compilation is an effective means of generating the
highest-valued environments, while obtaining a representa-
tion whose size can be tailored to any embedded application.
The method also provides a graceful way to tradeoff space
requirements with the completeness of our coverage of the
environment space.

Introduction
Model-based reasoning, and its application to diagnosing
or (re)configuring complex systems, is a computationally
intensive task; it is an NP-hard problem in general. For
product configuration, several researchers have explored the
use of compilation methods (Amilhastre, Fargier, & Mar-
quis 2002; Subbarayan 2005). In general, knowledge com-
pilation separates the computational task into an instance-
dependent and an instance-independent part (Cadoli &
Donini 1997; Darwiche & Marquis 2002b). Compiling the
instance-independent part into a structureΘ, corresponding
to a compact representation of its solution space, can lead to
a speedup in online inference. This is because the computa-
tional task is linear in the size of the compiled form.

If the knowledge-base we wish to compile is represented
as a constraint satisfaction problem (CSP), the space required
to compile it is exponential in the tree-width of theCSP’s
constraint graph (Bodlaender 1997). For real-world prob-
lems the size of the compiled form can often be too large for
practical inference.

∗ Also 4C and CTVR. Supported by SFI grant 03/CE3/I405.
† Supported by SFI grant 04/IN3/I524.

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

In this paper we propose a technique to compile a sound
but incomplete representation of a knowledge-base that can
smoothly trade off the space required to store all (partial)
solutions, which we refer to as feasible environments, for
the completeness of the coverage of the compiled represen-
tation. This approach is suitable for embedded real-time ap-
plications, where speed of response is critical, but space is
highly constrained. In order to effectively make such trade-
offs we compile only the highest-valued environments. The
valuation used can reflect the likelihood of an environment
being selected, its cost or some historical notion of its pref-
erence. For example, in diagnosis the valuation can come
from the prior failure probabilities of the system compo-
nents, which provide relative likelihoods of faults occurring
in subsets of components.

We define two measures to determine the “quality” of an
approximate compilation. First,η measures the relative frac-
tion of important environments that are generated by the ap-
proximate compilationΘϕ, relative to the full compilation
Θ. Second,λ measures the proportion of the space the ap-
proximate compilationΘϕ requires, relative to that ofΘ.

We model probabilistic information, e.g., about the rela-
tive likelihood of customers choosing various options over
past interactions in configuration, using a probabilisticCSP.
We then empirically study the kinds of tradeoffs that are pos-
sible with probabilisticCSPs. We show that one can main-
tain the majority of most-likely solutions by compiling a rel-
atively small percentage of the total number of solutions,
given a naive method of compiling all solutions. We also
examine the impact of approximate compilation on using
prime implicates andDNNF as the compilation targets. We
show that approximate compilation is an effective means of
generating the highest-valued solutions that fit within a pre-
specified amount of memory.

Preliminaries
We are interested in the approximate compilation of NP-
Hard problems such as the constraint satisfaction problem.

Definition 1 (Constraint Satisfaction Problem) A
constraint satisfaction problem (CSP) is a 3-tuple
P =̂ 〈X ,D, C〉 where X is a finite set of vari-
ables X =̂ {x1, . . . , xn}, D is a set of finite domains
D =̂ {D(x1), . . . ,D(xn)} where the the domainD(xi)

is the finite set of values that variablexi can take, and
a set of constraintsC =̂ {c1, . . . , cm}. Each constraint
ci is defined by the ordered setvar(ci) of the variables
it involves, and a setsol(ci) of allowed combinations of
values. An assignment of values to the variables invar(ci)
satisfiesci if it belongs tosol(ci). A feasible solutionto a
constraint satisfaction problem is an assignment of a value
from its domain to each variable such that every constraint
in C is satisfied. We denote theset of feasible solutionsto P
assols(P).

We will refer to a (partial) solution as an environment. An
m-ary environment hasm variables instantiated.

Definition 2 (Feasible Environment) A feasible environ-
mentE of P is a subset of a feasible solution ofP , i.e.
E ⊆ S ∈ sols(P). H is the set of all feasible environments
of P, i.e.H =

⋃
S∈sols(P){E|E ⊆ S}.

We associate valuations with environments in order to rea-
son about those that are most preferred. A valuation denotes
the importance, preference or probability of an environment.
We represent the valuation of an environmentE asυ(E).

In applying compilation to the problem we proceed as fol-
lows. Given a problemP , intensionally defining the set of
feasible environments, we replaceP by an equivalent, but
computationally more efficient, compiled representationΘ.
Thus given an entailment problem for determining conse-
quencesα of C, i.e.,C ∪ K |= α, we can compileC into C ′

and express this asC′ |= α ∨
∨

ξ∈K ¬ξ, whereK is the set
of varying constraints. In this paper we takeK to be a set of
unary constraints that we call assumptions.

Existing approximate compilation techniques typically
weaken the problem representation. For example, papers
such as (Selman & Kautz 1996) and (del Val 1995) present
studies of approximating propositional and first-order for-
mulae using Horn lowest upper bound (LUB) representa-
tions, as well as their generalisations. In contrast, we are
interested in using the valuation functionυ to compile a sub-
set ofmost preferred(feasible) environments. This is similar
to the penalty logic framework introduced in (Darwiche &
Marquis 2002a), except that in this case we compile only a
subsetof the most preferred environments based onC ∪ H,
using a threshold,ϕ. In other words, we compile all environ-
ments such that their valuation is at least as good as a given
bound. For example, in a weightedCSPcontext, where bet-
ter solutions have lower valuations, we would compile all
environments whose valuationυ(E) ≤ ϕ.

This approach is a general one, and can be applied to
several compilation methods. For example, with regard to
the prime implicates (or labels) computed by an ATMS (de
Kleer 1986) or consequence generation (Darwiche 2002),
we ensure that no label (consequence) will have valuation
worse than a boundϕ. Whether the approach will actually
result in good coverage/space tradeoffs depends on the val-
uation and the compilation target, as we discuss later.

Threshold-Based Prime Implicates
This section describes our notion of threshold-based compi-
lation in terms of prime implicates. Analogous definitions

can be specified for other forms of compilation. Here we
represent our CSPP in terms of an equivalent propositional
logic theory∆.

Definition 3 (Prime Implicate) An implicate of ∆ is a
clauseβ such that∆ |= β. A prime implicate of∆ is an
implicate of∆ that is minimal with respect to|=.

Computing the set of prime implicates of∆, PI(∆), gen-
erates an equivalent theory∆′, which is important in that
entailment of a clauseα can be determined in linear time in
the size of∆′ ∪ α. This is because we can check if a query
β is entailed by∆ since∆ |= β iff ∃γ ∈ PI(∆) that is a
sub-clause ofβ.

We extend this notion of computing (minimal) sub-
clauses of queries in a compilation to that of computing
a sound but incomplete set of sub-clauses, which we call
threshold implicates.

Definition 4 (Threshold Implicate) A threshold implicate
γ of a theory∆ is a clauseγ such that∆ |= γ andυ(γ) ≤ ϕ
for some threshold valuationϕ. A threshold prime implicate
of ∆ is a threshold implicate of∆ which is minimal with
respect to|=.

If PI(∆) is the full set of prime implicates of∆,
andPIϕ(∆) is the threshold prime implicates of∆, then
PIϕ(∆) ⊆ PI(∆) andPI(∆) |= PIϕ(∆) (but the con-
verse does not necessarily hold).

In other words, the threshold prime implicates are a subset
of the prime implicates, restricted only by removing prime
implicates that exceed the threshold valuationϕ.

An Example
We adopt the T-shirt configuration example of (Subbarayan
2005). This example addresses configuring a T-shirt by
choosing the color (black, white, red, or blue), the size
(small, medium, or large) and the print (“Men In Black -
MIB or “Save The Whales - STW). There are two configu-
ration requirements: (1) if we choose the MIB print then the
color black has to be chosen as well, and (2) if we choose
the small size then the STW print (including a big picture of
a whale) cannot be selected as the large whale does not fit on
the small shirt. We can represent this configuration problem
as the following CSP:

• variablesX = {x1, x2, x3} denote colour, size and print.

• domains D(x1) = {black, white, red, blue},
D(x2) = {small,medium, large}, and D(x3) =
{MIB,STW}.

• constraintsC = {c1, c2}, wherec1 ≡ (x3 = MIB) ⇒
(x1 = black); andc2 ≡ (x3 = STW) ⇒ (x2 = small).

There are|D(x1)|×|D(x2)|×|D(x3)| = 24 possible con-
sistent assignments, of which 11 are feasible configurations.

Now assume that we have collected customer data on
the probabilitiesυ(xi) of a customer choosingxi (colour,
size and print). If each choice is independent of the
other,υ(xi) takes the following distributions, given the do-
mains defined above:υ(x1) = (.5, .1, .2, .2); υ(x2) =
(.1, .3, .6); υ(x3) = (.7, .3). For example,υ(x3) = (.7, .3)

.036.018-Blue,STW

.036.018-Red,STW

.018.009-White,STW

.090.045-Black, STW

.210.105.035Black,MIB

largemediumsmall

Figure 1: Weighted solutions to the T-shirt example. Inconsistent
solutions are shown with a –.

may mean that, based on past sales history 70% of customers
selected the MIB print, and 30% selected the STW print.

There are many ways that we can compile this problem
so that simple table-lookup can identify consistent configu-
rations for a customer. For example, we could compile all
complete feasible solutions, or we could compile all feasible
partial solutions. If we compile all full solutions (i.e., ternary
environments with values forx1, x2, x3), Figure 1 shows the
the likelihoods of the full set of possible consistent solutions,
which is our target compilationΘ. The cumulative valuation
of these solutions isυ(Θ) = 0.62.

Our approach focuses on compiling only a subset of the
most-likely solutions. We introduce a thresholdϕ, such that
we will not generate any solutions with valuationυ(s) <
ϕ.1 For example, ifϕ = 0.1, then we will compile only
2 solutions ({Black, MIB, medium}, {Black, MIB, large}),
which together have total valuation of 0.315, out of the val-
uation of all solutions of 0.62.

We use two parameters to measure the “quality” of an ap-
proximate compilation, with respect to the target compila-
tion Θ. The first measure,λ, is the proportion of memory
relative to that ofΘ, which is 2

11 = 0.18 in this case. The
second measure,η, is the proportion of the cumulative valu-
ation relative to that ofΘ, which is 0.315

0.62 = 0.508.
If instead we compile all feasible partial solutions, then a

full compilation generates 30 environments: 9 unary, 10 bi-
nary and 11 ternary environments. If we introduce a thresh-
old ϕ = 0.1, then we will compile only 16 of these envi-
ronments, with compilation parametersλ = 16

30 = 0.53 and
η = 4.685

5.26 = 0.89.
We use the threshold valuationϕ to induce an approxi-

mate compilation with particular(λ, η) parameters. In other
words, by varyingϕ we can compile a representation that re-
quires some fraction of the memory of the full compilation,
trading off coverage of solutions in the process.

Valuation-Based Compilation Analysis
In this paper we focus on a valuation widely used in areas of
cost-based abduction, such as diagnosis (Console, Portinale,
& Dupré 1996). In this valuation we assign a probabilityp to
each assumption:Pr : K → [0, 1]. The valuation of an envi-
ronmentE ∈ H is given byPr(E) =

∏
H∈E Pr(H), where

we assume that all assumptions are independent, such that

1In probabilistic valuations the preferred valuations have high
probabilities.

we can compute the joint probabilityPr(E) by the products
of the probabilities forH ∈ E.

The semantics of this valuation are that we can interpret
a probability as a degree of likelihood of choosing an as-
signment. Starting from a maximum valuation of 1 (which
represents a product that violates none of the restrictionsof
H) all valuations less than 1 correspond to solutions which
are increasingly less-preferred (i.e., less likely to be chosen).
Hence, our objective is to computemaximum-probability
solutions. In the case of probabilistic CSPs, the valuation
will guarantee the we compile themaximum-probability so-
lutions. If the valuation corresponds to a utility measure,
then our derived approximate compilation will include the
maximum-utility solutions.

We now examine the valuations for compilations, and in
particular the tradeoffs of relative size of the compilation
version the total relative value of the compilation.

We pose an optimisation task, that of computing the least-
cost feasible environmentsη∗ up to a thresholdϕ. In other
words, we compile all feasible environmentsE ∈ η∗ such
thatυ(E) ≤ ϕ. The objective of our approximate compila-
tion is to provide coverage for a fixed percentage of possible
queries. We use the following notation for specifying the
relative value of a partial compilation:
Definition 5 (Environment Set Valuation) The valuation
associated with a environment setH (or equivalently, with a
complete compilationΘ of H), is given by the sum over all
valuations:υ(Θ) =

∑
E∈

�
(h∈H) 2h υ(E).

Definition 6 (Partial Environment Set Valuation) The
valuation of a partial compilationΘϕ with valuation thresh-
old ϕ is: υ(Θϕ) =

∑
E∈

�
(h∈H) 2h{υ(E)|υ(E) ≤ ϕ}.

We can use these notions to define a key parameter for our
experimental analysis, the valuation coverage ratio.
Definition 7 (Valuation Coverage Ratio) We define the
valuation coverage ratioη of a partial compilationΘϕ, with
valuation thresholdϕ, as the fraction of the complete system
valuation provided byΘ: η =

υ(Θϕ)
υ(Θ) .

The second key parameter in which we are interested is
the relative memory of a partial compilation, which we can
formalize as follows. Let|Θ| be a measure for the size of the
original compiled CSP, and|Θϕ| be a measure for the size of
the CSP compiled based on valuation thresholdϕ. For sim-
plicity, we assume that all feasible environments (solutions)
take up equal memory, and define a ratio based only on the
relative number of solutions.
Definition 8 (Memory Reduction Ratio) The memory re-
duction of a partial compilationΘϕ, with respect to com-

piling the full CSP intoΘ, is given byλ =
|Θϕ|
|Θ| .

Applicability of Different Valuations
One of the key issues for valuation-based compilation is the
compilation methods for which it is applicable. To describe
that, we introduce a notion of valuation monotonicity.
Definition 9 (Valuation Monotonicity) Given two envi-
ronmentsα andβ such thatα ⊆ β, a valuationυ is mono-
tonic if υ(α) ≥ υ(β).

A wide range of valuations are monotonic, including
minimum-cardinality, probability, and Order-of-Magnitude
probability (Spohn 1988).

A threshold-bounded compilation is guaranteed to be
more space-efficient than a full compilation, which occurs
whenλ ≤ 1, when the following conditions hold:

Lemma 1 Given a compilation method that can explicitly
represent feasible environments and a monotonic valuation
υ, λ ≤ 1.

There are several important compilation approaches that
can explicitly represent (minimal) feasible environments, in-
cluding prime implicates,DNNF, or simply enumerating fea-
sible environments.

Example 1 Consider the case ofDNNF for the following
boolean formulae∆ : A∧X ⇒ Ȳ , A∧ X̄ ⇒ Y, B ∧Y ⇒
Z̄, B ∧ Ȳ ⇒ Z. We can compile these formulae holding
X,Y,Z to be the fixed part andA,B to be the variable part,
to obtain theDNNF structure (Darwiche 2002) shown in Fig-
ure 2. In this structure, the nodes denote either∧/∨ symbols
or literals. The structure in Figure 2(a) encodes four possi-
ble solutions:{}, Ā, B̄, Ā ∧ B̄. If we introduce a thresh-
old on solution-cardinality of 1 (i.e., we want solutions with
no more than 1 assumable), then we will prune the solution
Ā∧ B̄; the prunedDNNF is shown in Figure 2(b). Note that,
since the size of this graphical representation ofDNNF has
size determined by the number of edges, we have reduced
the size of theDNNF from 14 to 12 edges, while reducing
the number of solutions encoded from 4 to 3.

V
V V

V V

X ZX

(a) Full DNNF
(b) Threshold-Bounded DNNF,

With pruned edges shown dashed

A B

VV

Z

V
V V

V V

X ZX

A B

VV

Z

Figure 2: DNNF compilations for a simple boolean formula. (a)
shows the fullDNNF representation, while (b) shows the repre-
sentation with a cardinality-2 solution pruned by removing two
(dashed) edges from the structure.

Analysis of Different Valuations
This section analyses the impact of two parameters on the
size and effectiveness of a partial compilation: (1)valua-
tion differential, the difference in degree of preference be-
tween any two different valuations; and (2)valuation distri-
bution, the relative proportion of different preferences. For
example, in configuration, a customer may assign a pref-
erence ordering in which some assumptions are more pre-
ferred than others; in that case the distribution specifies the
relative proportionsof highly preferred to weakly preferred

assumptions, and the differential indicates the difference in
degreeof preference among the assumption valuations.

We study the impact of valuation differential on partial
compilation tradeoffs using a parameterised valuation func-
tion υ(c) = γεκ(c), for ε ≤ 1, κ(c) ∈ N

+, and constantγ.
If we fix ε and varyκ, this function, based on the Order-of-
Magnitude probability proposed in (Spohn 1988), approxi-
mates a probability distribution. This valuation allows usto
vary the difference in valuation betweenci andcj that have
differentκ-rankings, e.g., ifκ(ci) = 1 + κ(cj). Hence, if
we setε = 0.1 thenci is 10 times more likely thancj ; if we
setε = 0.01, ci is 100 times more likely thancj .

Figure 3 shows the impact of the value ofε on the possible
types of tradeoff curves. At one extreme, the valueε = 1
produces an equi-loss situation where there is no value to
compilation. The benefit of compilation improves asε grows
smaller, i.e., as the gap between valuations increases.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Memory Ratio
C

ov
er

ag
e

R
at

io

epsilon=1

epsilon=0.1

epsilon=0.5

Figure 3: Curves depicting the influence of the valuation differ-
ential. In using a parameterised valuation functionυ(c) = γεκ(c),
we can vary the parameterε to generate different tradeoff curves.

The valuation distribution also affects the relative effi-
ciency of a partial compilation, i.e., having a high query
coverage with large reduction in memory. If a valuation is
skewed, in the sense that some environments are highly pre-
ferred and others are not at all preferred, then we can com-
pute a space-efficient partial compilation. If most environ-
ments are relatively equally preferred, then little is gained
by partial compilations.

Empirical Evaluation
The objective of our empirical evaluation was to demon-
strate that the savings that can be achieved by compiling
only the most preferred environments is consistent with the
formal analysis presented above. We implemented our ap-
proach as an “approximate compiler” in the lazy functional
programming language Haskell. We considered the task of
compiling a set of solutions of predetermined cardinality
in which each one was generated as a set of uniform ran-
domly generated assignments to a set of variables. Our ex-
periments are based on solution sets involving 10 variables,
with binary domains, i.e. each variables takes either a 0 or
1 value. For the purposes of the evaluation we generated
solution sets containing 10, 20, 30, 40 and 50% of all pos-
sible assignments one can generate for 10 variables over a
binary domain of values. Note that this should not be seen
as an unreasonable number of variables. In order to properly
evaluate how well our method performs we compiled the set

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 0.2 0.4 0.6 0.8 1

co
ve

ra
ge

 r
at

io

memory ratio

phi=0.05
phi=0.10
phi=0.15
phi=0.20
phi=0.25

(a) 10% of all possible solutions,p = 1.00.

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 0.2 0.4 0.6 0.8 1

co
ve

ra
ge

 r
at

io

memory ratio

phi=0.05
phi=0.10
phi=0.15
phi=0.20
phi=0.25

(b) 50% of all possible,p = 1.00.

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 0.2 0.4 0.6 0.8 1

co
ve

ra
ge

 r
at

io

memory ratio

phi=0.05
phi=0.10
phi=0.15
phi=0.20
phi=0.25

(c) 10% of all possible ,p = 0.75.

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 0.2 0.4 0.6 0.8 1

co
ve

ra
ge

 r
at

io

memory ratio

phi=0.05
phi=0.10
phi=0.15
phi=0.20
phi=0.25

(d) 50% of all possible,p = 0.75.

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 0.2 0.4 0.6 0.8 1

co
ve

ra
ge

 r
at

io

memory ratio

phi=0.05
phi=0.10
phi=0.15
phi=0.20
phi=0.25

(e) 10% of all possible,p = 0.50.

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 0.2 0.4 0.6 0.8 1

co
ve

ra
ge

 r
at

io

memory ratio

phi=0.05
phi=0.10
phi=0.15
phi=0.20
phi=0.25

(f) 50% of all possible,p = 0.50.

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 0.2 0.4 0.6 0.8 1

co
ve

ra
ge

 r
at

io

memory ratio

phi=0.05
phi=0.10
phi=0.15
phi=0.20
phi=0.25

(g) 10% of all possible,p = 0.10.

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 0.2 0.4 0.6 0.8 1

co
ve

ra
ge

 r
at

io

memory ratio

phi=0.05
phi=0.10
phi=0.15
phi=0.20
phi=0.25

(h) 50% of all possible,p = 0.10.

Figure 4: Partial compilation results. The parameterp is the proportion of all possible assignments to the variables having a non-1probability
of being afault. We plot coverage ratio (η) on the y-axis and memory ratio (λ) on the x-axis.

of unique partial feasible environments associated with each
solution, which is exponential in the number of variables.
Of course, in a real context, we would only be interested
in the environments better than some threshold and so, for
suitably low values of our threshold, we can often avoid the
worst-case complexity of the method considerably.

We interpret the randomly generated solution set as the set
of solutions to a probabilistic constraint satisfaction prob-
lem. We assigned probabilities to the domain values of
each variable based on a uniform randomly generated prob-
ability. We interpret each non-1 probability as represent-
ing the probability of the corresponding assignment being a
fault. We varied the proportion,p, of all possible domain

values that had a non-1 probability associated with them.
Therefore, in a strict sense, our probabilities should be in-
terpreted as likelihoods, however the distinction is not im-
portant here. For experimental purposes we selectedp from
[0.10, 0.25, 0.50, 0.75, 1.00]; however, for space reasons, we
omit the results forp = 0.25.

For each combination of parameters we generated 50 so-
lution sets and compiled them. For each compilation step
we compute (1)η (as the ratio of the sum of the valuations
of the environments compiled divided by the total valuation
of all unique environments in the original solution set), and
(2) λ (as the ratio of the number of environment in compiled
divided by the total number of unique environments in the

original solution set).
Our measure of relative memory (λ) is very conservative.

No effort is made to compute a compact representation of
the set of environments we compile. If a target representa-
tion, such asDNNF, was used the space savings would be
considerably greater.

Figure 4 shows the results of our evaluation. Each row
of plots in this figure corresponds to different settings of
p, decreasing from top to bottom. The rows correspond
to the extremes of the range of solution set cardinalities
we used, i.e. 10% and 50% of all possible solutions. For
each plot we show a scatter of the points corresponding
to different thresholds,ϕ. For experimental purposesϕ ∈
{0.05, 0.10, 0.15, 0.20, 0.25}.

The results confirm the analytical predictions presented
earlier. We almost always observe a saving in space when
we compile the most preferred environments. A saving cor-
responds to a point being placed above a line with unit slope.
The only points where we do not observe savings are when
we compile all environments, giving a relative memory of
1.0. However, this is exactly what is to be expected: if we
compile everything, we need all the original space. Asp
ranges from 0.1 to 1.0, we move from a setting where we
observe relatively fewer savings (Figure 4(g) and 4(h)) to
regions with dramatic savings. For example, whenp = 0.50
we can often cover more than 80% of the environments with
only 20% of the space (Figure 4(e) and 4(f)).

The number of solutions being compiled in our experi-
ments does not seem to have a dramatic effect on the savings
we have observed. However, studying this for very large
numbers of variables is part of our future work. We plan to
use importance-based sampling to increase the size of prob-
lem that we can study. However, the limit on the number of
variables here comes primarily from the restrictions placed
upon us by our desire to make perfect measurements on the
savings achievable through partial compilation.

Related Work

The literature contains a considerable body of work on com-
pilation, and on its application to a variety of model-based
applications, such as configuration and diagnosis. The stan-
dard compiled representations include prime implicates (de
Kleer 1986),DNNF (Darwiche 2002), Ordered Binary Deci-
sion Diagrams (OBDDs) (Bryant & Meinel 2001), cluster-
trees (Pargamin 2003), and finite-state automata (Amilhas-
tre, Fargier, & Marquis 2002). All approaches compile
sound and complete representations, even if they approxi-
mate the original problem, e.g., by approximating propo-
sitional and first-order formulae using Horn lowest upper
bound representations and their generalisations (Selman &
Kautz 1996; del Val 1995).

Our approach is novel with respect to the literature on
compilation since we sacrifice completeness of our com-
piled form for savings in space. This is a very useful prop-
erty in domains such as real-time embedded systems, where
we typically only require access to the most preferred, most
likely or most cost-effective environments of our problem.

Conclusion
We have proposed a novel method for compiling the most
preferred environments in problems as a means to reduce
the large space requirements of compiled representations.
We have provided both a theoretical analysis and an em-
pirical evaluation of the approach. The method provides a
graceful way to trade off space requirements with complete-
ness of our coverage of the environment space to fit the re-
quirements of embedded systems, up to including all solu-
tions/environments.

Our future work will involve the development of a trace-
based algorithm for generating approximate compilations
based on a preference threshold. We will also study the sav-
ings that can be achieved using various target representations
such asDNNF when compiling large real world problems. In
addition, we intend to examine whether we can modify OB-
DDs to generate approximate compilations with guaranteed
lower space requirements.

References
Amilhastre, J.; Fargier, H.; and Marquis, P. 2002. Consis-
tency restoration and explanations in dynamic csps appli-
cation to configuration.Artif. Intell. 135(1-2):199–234.
Bodlaender, H. L. 1997. Treewidth: Algorithmoc tech-
niques and results. InMFCS, 19–36.
Bryant, R., and Meinel, C. 2001. Ordered binary deci-
sion diagrams. In Hassoun, S., and Sasao, T., eds.,Logic
Synthesis and Verification. Kluwer.
Cadoli, M., and Donini, F. M. 1997. A survey on knowl-
edge compilation.AI Commun.10(3-4):137–150.
Console, L.; Portinale, L.; and Dupré, D. T. 1996. Using
compiled knowledge to guide and focus abductive diagno-
sis. IEEE Trans. Knowl. Data Eng.8(5):690–706.
Darwiche, A., and Marquis, P. 2002a. Compilation of
propositional weighted bases. InNMR, 6–14.
Darwiche, A., and Marquis, P. 2002b. A knowledge com-
pilation map.J. Artif. Intell. Res. (JAIR)17:229–264.
Darwiche, A. 2002. A compiler for deterministic, decom-
posable negation normal form. InAAAI/IAAI, 627–634.
de Kleer, J. 1986. An assumption-based tms.Artif. Intell.
28(2):127–162.
del Val, A. 1995. An analysis of approximate knowledge
compilation. InIJCAI (1), 830–836.
Pargamin, B. 2003. Extending cluster tree compilation
with non-boolean variables in product configuration. In
Proceedings of the IJCAI-03 Workshop on Configuration.
Selman, B., and Kautz, H. A. 1996. Knowledge compila-
tion and theory approximation.J. ACM43(2):193–224.
Spohn, W. 1988. Ordinal conditional functions: A dynamic
theory of epistemic states. InCausation in Decision, Belief
Change, and Statistics. 105–134.
Subbarayan, S. 2005. Integrating CSP Decomposition
Techniques and BDDs for Compiling Configuration Prob-
lems. InCP-AI-OR. Prague: Springer LNCS 3524.

