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Abstract. This article introduces a technique for improving the efficiency of di-
agnosis through approximate compilation. We extend the approach of compiling a
diagnostic model, as is done by, for example, an ATMS, to compiling an approxi-
mate model. Approximate compilation overcomes the problem of space required
for the compilation being worst-case exponential in particular model parame-
ters, such as the path-width of a model represented as a Constraint Satisfaction
Problem. To address this problem, we compile the subset of most “preferred” (or
most likely) diagnoses. For appropriate compilations, we show that significant
reductions in space (and hence on-line inference speed) can be achieved, while
retaining the ability to solve the majority of most preferred diagnostic queries.
We experimentally demonstrate that such results can be obtained in real-world
problems.

1 Objective

One of the most influential approaches to model-based diagnosis (MBD) consists of
compiling the diagnostic model into a representatién,from which diagnoses can
be more efficiently computed. This approach has been adopted within a number of
approaches, e.g., [1-3]. The advantage of this approach is that the computational task
is linear in the size of the compiled representation. However, the disadvantage with
compiling a large model is the space required for the compilation; for example, for a
model represented as a Constraint Satisfaction Problem (CSP), e.g., as a causal network
[4], this space is worst-case exponential in the path-width of the CSP [5]. For real-
world problems (which have large path-width or thousands of variables), the size of the
compiled representation is typically too large for practical inference.

To address the large size of a compiled diagnostic médale compile a subset of
the space of diagnoses, namely the most preferred subset of diagnoses, using a valuation
function to specify the most preferred diagnoses. The most common valuation function
is the likelihood of a fault, which can be specified in terms of a probability (e.g., [6])
or order-of-magnitude probability (e.g., [4]) assigned to failure modes. We address two
well-known diagnostic compilation approaches for which valuations can be assigned
to each compiled diagnosis, prime implicants [1] and consequences in d-NNF [2]. We
are interested in the tradeoff between the proportion of the most-preferred diagnoses
represented in a partial compilatiéh, versus the space saved &y, relative to that
of @. We use two measures to analyse this tradeoff for a partial compilationg (1)
measures the relative fraction of important diagnoses that are generated by the partial



compilation®,,, relative to the space of the full compilation; and (2jneasures the
proportion of the space that a partial compilati®p requires, relative to the space of

6.1 We provide a theoretical bound that can be used to predict the tradeoff parameters
(x, A) for a partial compilation, and show experimental results that such bounds are
relevant for real-world problems.

We frame our analysis using the general diagnostic framework of constraint optimi-
sation using CSPs [7]. This framework describes the diagnostic model using the CSP
framework, with valuations over the CSP described using a c-semiring. For the class
of CSPs we have addressed, our partial compilation results are encouraging. For par-
tial compilations in which all failure modes are unlikely or in which some failure modes
are much more likely (preferred) than others, we can produce order-of-magnitude space
savings, with little loss of deductive coverage; in other words, we can have compilations
with x close to 1 and? < 1. Under these scenarios, the most likely diagnoses com-
prise a small fraction of the number of total diagnoses, with the majority of remaining
diagnoses being significantly less likely.

This article makes two main contributions. First, it describes a general framework
for MBD in which a variety of valuations and compilation techniques can be adopted.
Second, it describes the conditions under which approximate preference-based com-
pilation can significantly speed up diagnostic inference with little loss of diagnostics
coverage.

2 Notation and Representation

This section introduces our notation for CSPs, for compilation, and for valuations of
solutions to CSPs.

2.1 CSP Problem Formulation
We assume the CSP diagnostic formulation of [7]:

Definition 1 (Constraint Satisfaction Problem (CSP))A Constraint Satisfaction Prob-
lem (CSP)YI = (X,D,C,H) over{T, L} consists of:
— aset of variablest = ix

sy T b _ . .
— for each variablez;, a _inllte selﬁl} of possible values (its dom_aml); )
— and a setC of constraints restricting the values that the variables can simultane-

ously take. A constrain; is a relation defined on a subs&t of the variables, that
is,¢; C Xj{.’L'j 1Ty € X/}

The constraints:; can be considered as functions defined over the variableg,in
V(c;), where allowed tuples have valteand disallowed tuples have value

Diagnostic applications typically consider the case where (1) we assume a subset
of distinguished unary constraintg C C referred to as assumptions, and (2) we can
measure a seéd C X of variables, called observables. Given this framework, we can
specify a diagnosis as follows:

1 X\ provides a measure of the relative complexity of approximate compiled inference versus
using the full model.



Definition 2 (Diagnosis).LetII = (X, D,C, H) be a CSP and an observation, i.e.,
a constraint on variables ik’. A diagnosis 0© on I] is a subset of constraints C ‘H
suchthaC UO U E [~ L, or equivalently, there exists an assignment of valud3 io
X consistent witl€ and O.

2.2 Valuation

In this article, we assign a valuation to unary constraints (i.e., assumptions), and then
use this valuation to compute most preferred diagnoses. A valuation denotes the im-
portance of a constraint. We represent a valuation of a constrasingv(c). Hence,

we have a weighted-paik;, v;) for each constraint and valuation. We formalise this
general notion of valuation in terms of c-semiring operations [8]. Note that this formal-
ism covers, among others, the probabilistic valuation of [6] and the order-of-magnitude
probabilistic valuation of [4].

Definition 3 (c-semiring). A c-semiring is a tuplé A, +, x, 0, 1) such that

— Aisasetand0,1} € A4;

— + is a commutative, associative and idempotent operation with unit element 0 and
absorbing element 1;

— X is a commutative, associative and idempotent operation with unit element 1 and
absorbing element 0O;

— x distributes over +.

Definition 4 (c-semiring constraint system ).A constraint system over a c-semiring
is a constraint system where the constrainfse C are functions defined over the
variables inc; assigning to each tuple a value

Definition 5. An objective functionv maps tuplesZ C X to a setA with a partial
order < 4 that forms a complete lattice.

In the probabilistic case [6] (see Section 3.2)is the interval0, 1] with total order
<, andv associates a probability with each failure mode assignment.

We can define an optimization task over a constraint system in terms of c-semiring
operations provided that the objective functiorxiseparable.

2.3 Compilation

Diagnosis can be formalised as a type of Consistency Maintenance Algorithm, and
a number of techniques have been developed for compiling this type of task. These
techniques include prime implicates [1], d-NNF [2], OBDD [9], and cluster-trees [10].
Given a set of constraints, we compile the constraints after partitioning them into
a constant pad,. and a varying paif,. The constant part is then replaced by an equiv-
alent, but computationally more efficient, compiled representafjorThus given an
entailment problem for determining consequeneesf C, i.e.,C. UC, | «, we can
compileC. into C!, and express this as

C.EaVv \/ =£.

§eCy



Prior approximate compilation techniques typically weaken the problem represen-
tation. For example, papers by Selman and Kautz [11] and by del Val [12] have stud-
ied approximating propositional and First-Order formulae by Horn lowest upper bound
(LUB) representations, as well as their generalisations.

In contrast to this approach, we are interested in using the prior valuations on as-
sumptions to compile a subsetmibst preferregotential diagnoses. This is similar to
the penalty logic framework introduced in [13], except that in this case we compile only
a subsetof the most preferred diagnoses, rather than the full set of ranked diagnoses.
We compile the least-cost diagnose<’ta H up to a threshold. In other words, we
compile all diagnoses such thatF) < . This approach is a general one, and can be
applied to any compilation method. For example, with regard to the prime implicants
(or labels) computed by an ATMS [1] or consequence generation [2], we ensure that no
label (consequence) will have cost more than a bapind

3 Valuation-Based Diagnosis

We now introduce some well-known methods for valuations, and in later sections we
will see the types of results that are possible given those valuations. We derive some
theoretical results about such partial compilations, and then present experimental results
for real-world models.

3.1 Valuation 1: Unary Integral Valuation

We first examine the valuation addressed in [4]. The valuation corresponds to a semiring
Sy given by(N U {co}, min, +, co, 0). This valuationy : H — N, is assigned to the
assumptions, and is a totally ordered mapping over an diaghbsisH such that the
valuation for any diagnosig' is given by

HeH

In other words, the valuation is a measure assigned to the assumptions (constraints)
contained inF; i.e., it represents the likelihood of occurrence of the diagnBsisin-

der this valuation, a 0-cost represents a normal system and increasing costs (greater
than zero) correspond to increasingly unlikely (less-preferred) diagnoses. Hence, our

inference objective is to compute minimum-cost diagnoses.

3.2 Valuation 2: Probabilistic Valuation

We now outline a valuation widely used in diagnosis [3, 6] and other areas of cost-based
abduction. In this valuation we assign a probabilitto each assumptio®?r : H —
[0, 1]. The valuation of a diagnosig C H is given by

Pr(E) = [] Pr(#),

HeH



where we assume that all assumptions are independent, such that we can compute the
joint probability Pr(E) by the products of the probabilities féf € H. The valuation
corresponds to a semirirp,- given by([0, 1], max, -, 0, 1).

The semantics of this valuation are slightly different than those of Valuation 1. Start-
ing from a maximum valuation of 1 (which represents a normal system), all valuations
less than 1 correspond to solutions which are increasingly less likely (preferred). Hence,
our objective is to computmaximurprobability diagnoses.

4 Valuations for Compilations

This section examines the valuations for compilations, and in particular looks at the
tradeoffs of relative size of the compilation versus the total relative value of the compi-
lation.

We pose an optimisation task for Valuation 1, that of computing the least-cost diag-
noses, and then the compile the least-cost diagnoses up to a threshoid . In other
words, we compile all diagnosés € £* such thaw (E) < ¢.

4.1 Relative Value of a Partial Compilation

The objective of our approximate compilation is to provide coverage for a fixed per-
centage of possible diagnosis queries. We use the following notation for specifying the
relative value of a partial compilation:

Definition 6 (Constraint Set Valuation). The valuation associated with a constraint
set’H (or equivalently, with a complete compilatiéh of ), is given by the sum over
all valuations:

Ee2H

Definition 7 (Partial Constraint Set Valuation). The valuation of a partial compila-
tion ©,, with valuation threshold is given by

v(B,) = Y {u(E)(E) < ).

Ee2™

We use these notions to define a key parameter for our experimental analysis, the
valuation coverage ratio.

Definition 8 (Valuation Coverage Ratio).We define thealuation coverage ratig of
a partial compilation®,,, with valuation threshold, as the fraction of the complete
system valuation provided f#y:

U(@w)
(@) 1)




Our approach cannot use a valuation with an unbounded maximum valuexe.g.,
for Valuation 1, as we are interested in computing ratios of cumulative valuations. For
such valuations we must construct an inverse valuation, which we call a loss function, in
order to compute an appropriate measurefole adopt a standard decision-theoretic
loss functionZ, defined for constraintas. : v(c) — [0, 1].2 Using a loss function, we
can modify Equation 1 intoy = ‘2((@@*’)). We say that a partial compilation éffective
if it has a high coverage ratio.

There are a variety of methods that we can use to map valuations with unbounded
maximum values into a loss function. For example, we can define two classes of loss
function for Valuation 1 as follows. First, we could adopt an appropt@geransfor-
mation of the formuv(e) — log¢ (¢ —v(e)),? for a set of diagnoses with maximum valu-
ation(. A second method of representing a loss function uses a parameterised equation
of the form:£(c) = v¢¥(9), for constanty and parameter.*

4.2 Relative Memory of a Partial Compilation

The second key parameter in which we are interested is the relative memory of a partial
compilation, which we can define as follows. Lét| be a measure for the size of the
original compiled CSP, an,,| be a measure for the size of the CSP compiled based
on valuation thresholg. For simplicity, we assume that all diagnoses (solutions) take
up equal memory, and define a ratio based only on the relative number of solutions.

Definition 9 (Memory Reduction Factor). The memory reduction of partial compila-

tion, with respect to compiling the full CSP, is given by '%"ll .

4.3 Analysis of Different Valuations

This section analyses the impact of two parameters on the size and effectiveness of a
partial compilation: (1)aluation distribution the relative proportion of different pref-
erences; and (2)aluation differential the difference in degree of preference between
any two different valuations. A model may specify a preference ordering in which some
assumptions are very strongly preferred, and others are not preferred; in that case the
distribution specifies theslative proportionsof highly preferred to not preferred as-
sumptions, and the differential indicates the differencdégreeof preference among

the assumption valuations.

Example 1.Consider a simple example with a lattice defined over assumptioisc, d}
and semiringSp,.. In this case we assign probabilities describing the failure likelihoods
of the variables. If we have a valuation distribution given®y(a) = Pr(b) = 0.09,

2 Note that Valuation 2 automatically satisfies this requirement, but Valuation 1 does not.

3 Note that a complete mapping is more complicated than this example.

* This mapping corresponds to the semirisig given by([0, 1], maz, -, 0, 1), and is very close
to the calculus proposed in [14].



and Pr(c) = Pr(d) = 0.01,° then assume that we have a model in which a full com-
pilation would generate a lattice containing the 13 diagnoses shown in Figfiehk

lattice elements represent all possible consistent diagnoses for potential observations;
the valuations on the diagnoses can be used to rank-order the diagnoses in terms of
likelihood; for example, if we have diagnosis et \/ abd} for an observatiorO, the
most-likely diagnosis will bécd}.

Fig. 1. Lattice for simple example, showing the probabilistic valuations to lattice elements, and
the lattice elements (in lower left corner) with probability greater than 0.2, 0.1 and 0.05.

Consider the effect of introducing partial compilations with boyndf we intro-
duce a bound of = 0.02, then we would compile only 2 diagnos€s,(}) out of
13 total diagnoses; note that this would give valuation coverage ratid 0.849, and
relative memory of 0.15. In this case, we have used only 15% of the memory of the to-
tal compilation, and can answer roughly 85% of the diagnosis queries. Decreasing
0.01 and 0.005 results ify, ) pairs of (.943, .308) and (.999, .769) respectively. These
results show that we obtain diminishing increaseg ias we compile more diagnoses.

If we increase the differential in this valuation to roughly two orders of magnitude,
i.e.,, Pr(a) = Pr(b) = 0.09, and Pr(c) = Pr(d) = 0.001, then the relative coverage
of an equivalent partial compilation increases significantly. ko= 0.02 we obtain
a (x,A) pair of (0.992, 0.15), in which 15% of the memory covers @& of the
most-preferred diagnosis querids.

We can study the impact of valuation differential on partial compilation tradeoffs
for Valuation 1 using the loss functiofi(c) = ~¢¥(9), for ¢ < 1. Figure 2 shows the
impact of the value of on the types of tradeoff curves that are possible. At one extreme,
the valuec = 1 produces an equi-loss situation where we generate a flat lattice that does
not even respect subset inclusion; hence, there is no value to compilation. The benefit

5 Note that there is roughly an order-of-magnitude differential between a strong preference, e.g.,
Pr(a), and a weak preference, e.§x(c).
% The lattice element$abc} and{bcd} have been ruled inconsistent by the constraints.



of compilation improves asgrows smaller, i.e., as the gap between different valuations
increases.
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Fig. 2. Curves depicting the influence of the valuecan the tradeoff curves.

In our analysis, we have found that the relative efficiency of a partial compilation,
i.e., having a high query coverage with large reduction in memory, is directly related
to the type of valuation. If a valuation is skewed, in the sense that some diagnoses
are highly preferred and others are not at all preferred, then we can compute a very
efficient partial compilation. If most diagnoses are relatively equally preferred, then
little is gained by partial compilations.

Although it is too complicated to derive closed-form representations for the val-
uation tradeoff space in the general case, we can derive results for simple cases. For
example, we can use the following result as a bound on the impact of partial compila-
tion:’

Lemma 1. Consider a model with variables, where each diagnosis has identical loss
of I € (0,1]. We generate a partial compilation, based on the maximum numbér
variables in any diagnosis, with parameters given by:

q n 3 q n
_ 2i=1 (i)lz . _ 2u=1 (z)
X= v -1 M o1 @

Equation 2 predicts a series of curves similar to those shown in Figuree2far.
Each predicted curve defines an upper bound for the expégted results of a partial

7 If we start with valuation (as in Valuation 1) that generates an invgrgen we must map
this into a loss function using an approach such as that described in Section 4.1.



compilation, i.e., it specifies the effectiveness of the compilation in the best case. We
now present experimental results for real-world examples that show that the predictions
of Equation 2 are relevant to real-world application problems.

5 Experimental Analysis

We have performed a set of empirical studies of compilation coverage. We represented
the diagnostic models as causal networks [2], which is a CSP representation with propo-
sitional constraints and non-negative integer weights similar to Valuation 1. We then
generated complete DNNF-compilations of all models, and used various thregholds
to compute partial compilations from these. For each pair comprising a full and partial
compilation, we posed identical queries, and compared the statistics of correct query-
responses for the partial and full compilations. This section describes these studies,
focusing first on the structural parameters, and then on the weights.

5.1 Structural Parameters

We have performed experiments on a collection of real-world models, including models
of hydraulic, electrical and mechanical systems. Table 1 shows the basic parameters of
the models we used for experimentation. The model classes are as follows: (a) the AC-
v1 through AC-v4 models are for multiple aircraft subsystems; (b) the MCP models
are for a control system. Each model class has multiple models, denoted by version
numbers (e.g., v2), which denote the increased size and complexity over the basic model

(v1).

| Name [[V[H][O[Memory (KB)|
AC-v1 12/5|8 1439
AC-v2 41913 37,626
AC-v3 64(17/12] 52,376
AC-v4 7011913 52,447
MCP 40[20 5 20.1

MCP-extended-v{166/32| 5 225

MCP-extended-v266/32| 8 359.9

Table 1. Model Statistics for Real-world Models. We report data for the total nuribef vari-

ables, numbef of assumables, numbé& of observables, and memory for the full compiled
model.

Table 1 shows data for a variety of models. One of the key factors to note is the
memory required for the compiled model, displayed in the last column. In particular,
the models cover memory values ranging from small (20.1KB) to large (52.4MB). As
noted earlier, the memory of the compiled model is our metric for evaluation complex-
ity, since evaluating a model is linear in the size of the compiled data. As a consequence,
it is important to note that models with compiled data in excess of 20-30MB are com-
putationally expensive to evaluate.



Model Size ParametersWe have performed experiments to study the dependence of
compiled-model performance on the parameteend . Figure 3 shows the cover-

age versus relative memory for four different aircraft sub-system models of increasing
size, AC-v1 through AC-v4. All models have identical failure-mode probabilities of
0.05. Note that every such coverage/memory curve has a similar shape, with the cov-
erage asymptotically approaching 1 as memory increases. This particular graph shows
how the curves are displaced downwards (meaning reduced coverage for any relative
memory value) as the models grow in size and complexity.
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Fig. 3. Graph showing tradeoff of coverage versus relative memory for four different aircraft
sub-system models, AC-v1 through AC-v4.

5.2 Valuations

We have performed a variety of experiments to study the influence of assumption prob-
ability on coverage. In these experiments, we assigned different probability values to
the assumptions, and report our results using the mean probability, averaged over all
probabilities assigned to failure-statesHn

Figure 4 shows the effect of mean assumption probability values on the coverage for
two control models, a basic model and an extension of that model. These figures show



how the mean probability value reduces the coverage values. For example, Figure 4(b)
shows that for small probability values, the coverage asymptotes very quickly to cover-
age values near 1 at relatively small relative memory values, but as the mean probability
gets larger, greater memory is needed to achieve high coverage values. These experi-
mental results concur relatively well with predictions made by equation 2.
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Fig. 4. Graph showing tradeoff of coverage versus relative memory for control sub-system model,
for various mean loss values.

This experimental analysis has shown that Equation 2 provides bounds that can
predict results such as:

— For a given CSP size, it tells you the type of skewed loss function that guarantees
an efficient partial compilation.

— Given an appropriate loss function, it can tell you the coverage valtieat is
achievable.



— Given an appropriate loss function and required coverage valug can predict
the size of the partial compilation.

6 Summary

The article described a partial-compilation technique for improving the efficiency of
model-based diagnosis, and more generally for any compilation-based inference with
preferences. For DNNF-compilations, we showed that significant reductions in space
(and hence on-line inference speed) can be achieved, while retaining the ability to solve
the majority of diagnosis queries. We experimentally demonstrated that such results can
be obtained in real-world problems. For example, under skewed preference structures,
we have found that extremely good coverage can be provided by relatively small partial
compilations. Given the general c-semiring CSP framework for compilation, we argue
that this partial compilation approach will work for a variety of c-semiring CSPs, and
for compilation methods in which valuations can be assigned to compiled diagnoses
(e.g., ATMS labels).

These results imply that high-reliability systems need only a relatively small com-
piled model to guarantee high diagnostic coverage. In contrast, low-reliability systems
need a relatively large compiled model, e.g., containing up to 10 simultaneous faults
(depending on the system), to guarantee high diagnostic coverage.

This analysis needs to be extended to cover failure consequences, i.e., incorporate
utility functions. For many applications, e.g., commercial aircraft and space shuttle mis-
sions, one is interested in the low-probability/high-consequence failures. Our future
work plans to analyse such situations.
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