
Inferential Complexity Control for Model-Based Abduction

Gregory Provan
Rockwell Scientific Company

1049 Camino Dos Rios, Thousand Oaks, CA 91360, USA
gprovan@rwsc.com

Abstract

We describe a technique for speeding up inference for
model-based abduction tasks that trades off inference
time and/or space for the fraction of queries correctly
answered. We compile a knowledge base (for which in-
ference may be intractable) into a set of rules that cover
the most likely queries using simple criteria that do
not entail extensive knowledge engineering effort, such
as subset-minimal or most probable query-responses.
We demonstrate this approach on the abduction task
of model-based diagnosis, and show that this approach
can predictably produce order-of-magnitude reductions
in time and memory requirements for abductive tasks
in which the queries have skewed distributions; for ex-
ample, in diagnosis the faults are skewed towards being
highly unlikely.

Introduction
Abduction can be defined as the task of generating a plau-
sible explanation for a set of observations (Paul 1993).
Abductive inference has been applied to several domains,
such as plan recognition (Appelt & Pollack 1009), planning
(Poole & Kanazawa 1994), natural language understanding
(Stickel 1990), user modeling (Poole 1988), and vision (Ku-
mar & Desai 1996), and has shown the most utility in the
field of diagnosis (Console, Portinale, & Dupre 1996).

This article focuses on the task of generating all plausible
explanations for a set of observations, and on approximating
this task. This task is important for areas such as diagno-
sis, where we are interested in knowing all possible causes
of some anomalous behavior, in order to be able to repair
all faults. Whereas computing a plausible explanation has
received significant attention in the literature, computing all
plausible explanations has received less attention, e.g., (Eiter
& Makino 2003).

We address the task of approximate compilation: we trade
off compiled model size for reduced coverage of abductive
queries, in order to overcome the intractability of abduc-
tion. Abductive tasks are intractable (Eiter & Gottlob 1995;
Bylander et al. 1991), and remain so even when we pre-
compile the system model to speed up inference (Libera-
tore & Schaerf 2000). Compilation (or preprocessing) for

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

abductive tasks such as diagnosis is an attractive approach,
since it offers the possibility of reducing the run-time ab-
ductive inference by making use of prior knowledge dur-
ing the compilation phase. This is possible since part of the
data of the problem (namely, the possible assumptions, the
possible observations, and the theory relating assumptions
and observations) are often known a priori. This knowledge
has been exploited in (Console, Portinale, & Dupre 1996;
Darwiche 1999; Darwiche & Marquis 2002). Compilation
approaches that compile the complete solution space, e.g.,
(Darwiche 1999), make a time/space tradeoff, resulting in
compiled models that can be excessively large for complex
systems.

The main topic addressed in this article is the nature of
the space induced when we trade off inference complex-
ity for query-answering completeness of compiled models.
For a propositional model with probabilistic preference cri-
teria, we show how to reformulate a large problem into an
approximation-model, specified by a set of rules. Our ap-
proach allow a user to smoothly trade off the “quality” of the
output with the time/space necessary for inference.1 This
provides a technique for controlling inferential complexity
with known tradeoffs.

In this article we adopt a compilation technique called
rule generation (Darwiche 1999), and show how expected-
query rule generation can significantly reduce inference
time/memory by trading off query-answering completeness.
We make the following contributions:

1. We define a sound but incomplete compilation procedure
for abductive tasks. This approach loses the ability to an-
swer all queries, but provides an upper bound 2 to infer-
ence tasks.

2. We propose a metric for “completeness” of inference,
where completeness is a measure of the total space of all
possible queries that can be answered. Our metric adopts
a probabilistic semantics, and assigns a weight (probabil-
ity) to each assumable.

3. We analyse this approach to approximate compilation
along two dimensions:

1We can think of solution quality as the likelihood of answering
a query correctly.

2See (Cadoli & Donini 1997, Section 4)

(a) We set all assumption weights to be equal, and we ex-
amine the inference complexity of the resulting rule set.
We examine the impact on complexity of the numbers
of assumptions and observables, as well as the impact
of problem decomposition.

(b) We allow the weights to vary and examine the impact
of weights on inference complexity.

For the class of propositional models we have addressed,
our results are encouraging. We employ two parameters to
identify the tradeoffs of compiled approximate inference:
(1) the coverage value χ and (2) the memory reduction fac-
tor λ of the compiled model, which provides a measure of
the relative complexity of approximate compiled inference
versus using the full model. We show that this approach can
predictably produce order-of-magnitude reductions in time
and memory requirements for abductive tasks in which the
queries have skewed distributions; for example, in diagnosis
the faults are skewed towards being highly unlikely.

For a diagnostics application, this approach relies on prior
knowledge of the observations available (typically sensor
and actuator data) and the components for which faults are
to be computed (the assumables). When such prior knowl-
edge is complete, this approach can reduce the memory re-
quired by an embedded diagnostics model by orders of mag-
nitude; moreover, as the prior knowledge diminishes, this
approach has memory requirements that gracefully degrade
to the memory requirement of the original abductive (diag-
nostics) model.

The remainder of the article is organized as follows. We
first outline the motivation for the approach we have devel-
oped, and then introduce our rule generation approach. Next
we provide a theoretical analysis of our approach, and de-
scribe the results of experiments used to apply the approach
to several real-world models. We then compare the results
presented here with prior work in the literature, and con-
clude by summarizing the main results.

Motivation and Notation
Motivation
We describe model-based abduction as a method for finding
explanations for a set of observationsO given a model Φ de-
fined over a set V of variables (Paul 1993). Potential abduc-
tive explanations are represented in terms of distinguished
variables from A ⊆ V , , called assumables or targets, and
are typically subjected to preference criteria, such as subset
minimality, minimal cardinality, minimal weight, etc.

The assumables represent the variables of interest, which
are then used to formulate query-responses. For example,
in a diagnostics scenario the assumables are defined to be
the failure modes of the system components, and responses
to all diagnostics queries consist of A-sentences, i.e., com-
binations of component faults like (motor-faulty ∧ wiring
faulty) ∨ (power-supply-faulty). Assumables are a key fo-
cus of abductive inference, and correspond to the variables
over which special-case inference takes place, in contrast to
generic satisfiability, where there are no distinguished vari-
ables. For example, abductive inference often uses the gen-
eral notion of parsimony to select, among all responses to a

query, the responses that are simplest (e.g., have fewest as-
sumables in a sentence). Many real-world tasks can be de-
fined to have a special subset of variables, in contrast to sat-
isfiability or Bayesian networks representations, which do
not select a subset of distinguished variables. We explicitly
make use of these variables to obtain computational savings.

The particular instance of abduction on which we focus is
diagnosis, which is a domain with clear practical relevance.
Note, however, that although we focus on a particular in-
stance of abductive inference, the principles entailed in all
algorithms that we develop should be applicable to other ab-
ductive domains.

The intuition for expected-query diagnostics is as follows:
whereas the full diagnostic model over set A of failure-
mode variables can diagnose all 2 |A|-1 possible multiple-
fault combinations, in reality one needs only to diagnose
multiple-fault combinations with some fixed number of si-
multaneous faults, since a large number of simultaneous
faults is extremely unlikely.3 If we assign a probability dis-
tribution over the discrete values of each failure-mode vari-
able, and define the size of a multiple-fault diagnosis D as
the number of assumables in the diagnosis, then it is sim-
ple to show that the smaller diagnoses are more likely, i.e.,
Pr{Di} < Pr{Dj} whenever |Di| > |Dj| and every fail-
ure has a non-zero chance of occurring. 4

Underlying Representation
We represent our KB using Φ = (Aw,O,∆), where Aw is
the set of weighted assumables or target variables (denoting
the primitive entities that we are interested in), O is the set of
observables (variables that can be observed), and ∆ is the set
of domain axioms. We define these more precisely below.

Definition 1 (System Variables) We assume that every
variable {V1, ..., Vl} has an associated discrete finite do-
main, denoted by {x1, ..., xl}, respectively, which describes
the possible states of that variable.

For a system defined using a set V of variables, we iden-
tify two disjoint subsets: A = {γ1, ..., γn}, the set of n target
variables, and ϑ, the set of non-target variables, such that
V = A ∪ ϑ, with A ∩ ϑ = ∅.

We assign a set of weights to assumables so that we can
rank the abductive solutions.

Definition 2 (Target Variables) Each weighted target vari-
able, Aw

i , consists of a target variable Ai together with
a real-valued weight pi ∈ [0, 1] associated with Ai, i.e.,
Aw

i = (Ai, pi).
Definition 3 (Observables) The set of observables is a sub-
set of ϑ, i.e., O ⊆ ϑ.

Definition 4 (Observation) An observation is an instantia-
tion of a conjunction of the observable literals O.

3TopN (Henrion 1991) uses a similar approach to develop an al-
gorithm that searches over a complete model for the most likely di-
agnoses; we compile a model that describes only those most likely
diagnosis combinations.

4Even if we don’t have probabilities for assumables, then we
can use parsimony to argue that the most likely explanations are
those that are simplest.

Definition 5 (Domain Axioms) The set ∆ of domain ax-
ioms is a set of propositional clauses defined over a set V
of variables.

In this article, for simplicity of exposition we restrict
each target variable to have binary-valued domain; there is a
straightforward generalization to n-ary domains, for n ≥ 3. 5

Another key aspect of abductive inference is the prefer-
ence ordering � over the target variables. The ordering cap-
tures the notion of likelihood of an explanation: given two
explanations R and R′, R ≺ R′ if R is more likely to be
the true cause of the observations than R ′.

The literature contains a broad range of preference rela-
tions; see, for example, those described in (Paul 1993). In
this article we assume that we have either (1) a discrete prob-
ability distribution �P over the target variables, i.e., for target
γi, pi = Pr{γi = true}, or (2) order-of-magnitude proba-
bilities (Goldszmidt & Pearl 1991).

The solution to an abductive problem Φ = (A,O,∆) is
given by

Γ(A,O,∆) = {A′ ⊆ A|A∪∆ is consistent, and A′∪∆ |= O}.

Given an ordering � on the weights assigned to assum-
ables, the set of minimal solutions is defined as:

Γ�(Aw ,O,∆) = min(Γ(Aw,O,∆),�).

Model-Based Abductive Rule Generation

Rule Generation Method

This section briefly summarizes the technique for generat-
ing rules from a declarative database encoded as a causal
network (Darwiche 1999). Note that this approach applies
to different database representations and different compila-
tion techniques, and is not limited to the particular approach
we describe.

We define a rule as follows (adapted from the robust rule
of (Darwiche 1999)):

Definition 6 Given a KB Φ = (A,O,∆), let α be an in-
stantiation of a subset O′ of O, and β be an instantiation of
a subset A′ of A. A rule Ri for (O′,A′) is a sentence of the
form α ⇒ ∨

i βi, where the βi are the minimum-cardinality
instantiations of A that are consistent with ∆∧ α, such that
α ∧ α′ ⇒ ∨

i βi is a rule for (O,A′) for every instantiation
α′ ⊆ O −O′.

(Darwiche 1999) shows that we can always compile a sys-
tem Φ into a set of such rules, such that the rules are guar-
anteed to provide complete target coverage for the system.

Given that we have compiled a set R of rules, rule infer-
ence is linear in the size of the rule-base. The main issue to
consider then is the size of the rule-base, which is what we
focus on in the remainder of the article.

5Under this assumption we denote γi = true using γi, and
γi = false as γ̄i.

Expected-Query Rule-Generation
The task that we are trying to solve is to compute query cov-
erage, a set of minimal (weighted or most likely) query re-
sponses that covers some fraction of all possible query re-
sponses from a given theory, where we determine minimal-
ity using the assumption weight associated with the query re-
sponse. By computing the relationship over query coverage
versus size and complexity of coverage, we show that we can
smoothly trade off query coverage for inference complexity,
and thereby “control” inferential complexity for abductive
inference.

We now define the metrics we propose to use for our ap-
proximation task. We use a notion of “most likely” query,
where the likelihood of a query is the probability of the oc-
currence of that query. We represent a query as a conjunction
of target variables, Q = ∧iγ̄i, and we can derive the proba-
bility of queryQ as

∏
i pi.6 More generally, we could extend

this notion to the utility of query, or the expected utility of a
query.

This semantics of query likelihood adheres to Occam’s
razor, in that it favors the simplest queries as the most likely.
In addition, it holds in several domains. For example, in
diagnostic inference, if we assign prior probabilities to fault-
modes, then this corresponds to our proposed semantics.

We adopt a sound but incomplete compilation approach,
and our compiled KB Φ′ provides an upper bound on any
query response. As defined by Cadoli and Donini (1997), an
approximation Φ′ of a knowledge based KB is sound when
for every query Q, if Φ′ |= Q then KB |= Q, in which case
Φ′ is called an upper bound for KB.

Evaluation Metrics The objective of our approximate
compilation is to provide coverage for a fixed percentage of
possible queries. We adopt two evaluation metrics to mea-
sure how well our compilation approach is doing.

Hence if the space of all possible queries is 2A, and the
full KB Φ can respond to all queries, then we want to com-
pile a reduced KB Φ′ that can respond to some fraction of
those queries that Φ can respond to.

We can formalize the memory savings of expected-query
rule generation as follows. Let |∆| be a measure for the size
of the original KB, and |∆q| be a measure for the size of the
compiled KB that contains rules with only up to q targets per
rule.
Definition 7 (Memory Reduction Factor) The memory
reduction of expected-query rule generation, with respect to
using the full KB, is given by

λ =
|∆q|
|∆| . (1)

Example: Space Requirements of Expected-Query Rule-
Generation Generating rules from a KB (e.g., causal net-
work model) can offer significant space advantages over us-
ing the standard inference approach, provided that the ob-
servables and assumables (target variables) are known a pri-
ori. If we assume a system with n target variables, then we

6If we do not have a probability measure, we can use an order-
or-magnitude probability to rank query weights, as in (Darwiche
1998).

must generate O(2n) rules to specify all target cases. To de-
fine the target cases when there are q targets, we need O(

(
n
q

)
)

rules. It is simple to prove that there are far fewer rules that
include only up to q targets per rule than rules that include
up to all n targets, for q � n, i.e.,

q∑
i=1

(
n

i

)
� 2n for q � n.

For example, if n = 10 and we enumerate single- and
double-target rules, we will generate 10 rules, as opposed
to the space of 1023 total rules; i.e., we generate only about
1.3% of all rules. As n grows, the percentage of all rules that
we must generate diminishes.

Expected-Query Analysis
This section analyses expected-query compilation along two
dimensions: (1) holding weights equal and examining the
impact of the model structural parameters, such as number
of observables and target variables, as well as model decom-
positions, and (2) the impact of weights on target coverage.

Target Spaces
The following discussion characterizes the space of solu-
tions in which we are interested, which is those abductive
solutions in which at least one assumable is true. In diag-
nosis, such a space corresponds to those solutions where at
least one component if faulty, which is exactly the class of
solution in which we are interested. We will then use this
characterization to define the most-likely solutions of inter-
est.

To begin our analysis we first define our notion of target
space. A target space corresponds to assumable instantia-
tions where at least one assumable is true. We make use of
the following definition:

Definition 8 (Assumable Instantiation) An instantiation
of all n assumables Ai ∈ A.

In terms of abductive solutions, an assumable instantia-
tion (or state vector) is an extension of Γ�(Aw,O,∆) in
which all assumables not set truth values in Γ�(Aw,O,∆)
are instantiated to their minimum-weight values.

We define Ω to be the set of all assumable instantiations.
We define an assumable instantiation in which all assum-
ables are false,7 as

S∅ ≡
n∧

i=1

γ̄i.

Definition 9 (Target Instantiation) The set of target in-
stantiations ST of a system is the set of all assumable in-
stantiations in which at least one assumable is true:

ST = Ω − S∅

= Ω −
n∧

i=1

γ̄i.

7In terms of a diagnosis application, this corresponds to the
state where all components are functioning normally.

We define an assumable instantiation that assigns true to
m simultaneous assumables as follows. Assume that the as-
sumables with true values are indexed by i ∈ I. We can
thus define:

Sm =
∧
i∈I

γi

n∧
j=1

{γ̄j |j �∈ I}.

Model Structural Parameters
This section examines the impact of the number of observ-
ables, assumables, and problem structure on approximate
compilation.

The space required by a set of compiled rules is expo-
nential in both A and O in the worst case, hence these are
the two most critical parameters in evaluating the resulting
compiled model. It is possible to decompose a model into
a representation that is space-optimal with respect to com-
plete query response: this is done by decomposing the set
of assumables A into independent subsets—see (Darwiche
1999) for details. However, this optimal compilation is still
exponential in O and the maximal subset of A. One key
advantage of decomposing a model is that we can compute
rules for each individual component, and obtain the rules for
the full model simply by merging the component rule-sets.
This is formally stated as follows.

Theorem 1 If we decompose a model into m independent
sub-models Φi, i = 1, ...,m, each with corresponding rule-
base Ri, i = 1, ...,m, then the model rule-set is given by

R =
m⋃

i=1

Ri.

Proof: Assume that for every Φi,Φj , i �= j and i, j ∈
{1, ...,m}, the sub-models share no variables, i.e., Φ i∩Φj =
∅. If we generate rules for each sub-model, we must have
Ri∩Rj = ∅, when i �= j and i, j ∈ {1, ...,m} since Ri,Rj

share no variables by virtue of being in different model par-
titions. If Ri is complete for Φi, for i = 1, ...,m, then since
Φ =

⋃m
i=1 Φi, we must have R =

⋃m
i=1 Ri. �

We experimentally analyse the effect of structural param-
eters (observables and assumables) and model decomposi-
tion later in the article.

Weight-Based Rule Approximations
This section describes how we can use the weights associ-
ated with target variables in order to approximate the model
compilation. In this approach, we compile a set of rules that
is incomplete with respect to the number of solutions that it
covers. The set of rules will omit target scenarios containing
the least likely solutions. We will use a probabilistic anal-
ysis to compute the percentage of the total set of solutions
that would be omitted. For this analysis, we assume that all
assumables are mutually independent.

We define the assumable instantiation likelihood ΨS as:

Definition 10 (Assumable Instantiation Likelihood) the
probability measure associated with assumable instantia-

tion S is given by

ΨS = Pr{S} =
n∏

i=1

Pr{Ai = ξi},

where assumable Ai is assigned the value ξi in S.

Definition 11 (System Target Likelihood) The system tar-
get likelihood Ψ is the probability that at least one assum-
able in an assumable instantiation is true.

Ψ = Pr{ST } = 1 − Pr{S∅} = 1 −
n∏

i=1

γ̄.

The probability measure Ψq assigned to a set of rules each
containing q simultaneous targets, assuming that the assum-
ables with true values are indexed by i ∈ I, is

Ψq =
∏
i∈I

Pr{γi}
n∏

j=1

{Pr{γ̄j}|j �∈ I}

In our analysis we generate rule sets with rules each con-
taining a fixed number of assumables with true values. The
probability measure ΨQ assigned to a set of rules containing
up to q simultaneous targets is defined below.

We define the index set corresponding to the case where q
assumables have a true value as Iq = {1, 2, ..., q}.

ΨQ = =
q∑

k=1

∏
i∈Ik

Pr{γi}
n∏

j=1

{Pr{γ̄j}|j �∈ Ik}

We use these notions to define a key parameter for our
experimental analysis, the target coverage.

Definition 12 (Target Coverage Ratio) We define the tar-
get coverage χ of a set Λ of rules, with target space SΛ,
as the fraction of the system target likelihood provided by Λ:

χ =
ΨΛ

Ψ
. (2)

Example We now outline an example in which we assume
that the prior probability of all target variables is equal. Our
rule generation heuristic translates to selecting the rules with
the fewest simultaneous targets.

The probability measure assigned to the total target space
Ψ is

Ψ = 1 − (1 − p)n.

The probability measure Ψq assigned to a set of rules con-
taining q simultaneous targets is

Ψq =
(
n

q

)
pq(1 − p)n−q.

If we generate rules containing up to q simultaneous tar-
gets, the cumulative probability measure is

ΨQ =
q∑

i=1

(
n

i

)
pi(1 − p)n−i.

The coverage of the cumulative q-target set is

χ(Q) =
∑q

i=1

(
n
i

)
pi(1 − p)n−i

1 − (1 − p)n
.

From this term we can calculate bounds on the target cov-
erage value χ in terms of n and p. For example, for the set
of single-target rules, we can have

χ =
np(1 − p)n−1

1 − (1 − p)n
.

For a system with 3 target variables with priors p1, p2, p3

respectively, the system target likelihood is given by

Ψ = 1 − (1 − p1)(1 − p2)(1 − p3).
The target space likelihood for the single- and double-

target scenario is given by

ΨS12 = ΨS1 +(p1p2(1−p3)+p1(1−p2)p3+(1−p1)p2p3).
The target coverage of the set of single-target rules is

given by:

χ =
1

1 − (1 − p1)(1 − p2)(1 − p3)
[p1(1 − p2)(1 − p3) +

p2(1 − p1)(1 − p3) + p3(1 − p1)(1 − p2)].
We will use this framework in the following section to

show experimentally the influence of these probability val-
ues on rule generation and on target coverage.

Experimental Analysis
We have performed a set of empirical studies of target cov-
erage. This section describes these studies, focusing first on
the structural parameters, and then on the weights.

We start off by describing the approach that we use for
our experiments. Our objective is to compare the diagnostic
performance of the full model Φ (or corresponding set of full
rules) with the approximate rules R. We call the diagnosis
produced by the full model DΦ, and the diagnosis produced
by the rules DR. An approximate rule covers a case if the
rule contains all the diagnoses that would be generated by
the full model. The relative coverage can be understood as a
ratio between covered cases and total cases, where each case
is weighted by its likelihood.

We randomly generate a set of test cases for each model,
where each test case is an observation, and compare the di-
agnostic performance of Φ and R on each test case. If the
test case is physically unrealizable and Φ produces an “in-
valid observation” output, then the test case is thrown out.
Otherwise, for test case i Φ will compute a diagnosis, and
we score the corresponding rule-base Ri using the target
coverage ratio (equation 2) as follows:

s(Ri) =

{ 0 if DR = ∅
1 if DR = DΦ

χ if DR ⊂ DΦ

The overall weighted score is based on the product of (a)
the relative performance of rule-set i in covering the faults,
s(Ri), and (b) the likelihood of the faults Ψ i that occur
within test case i: s(Ri) · Ψi.

The coverage ratio for the set of all t test cases, each of
which has an associated probability of occurrence of Ψ i, i =
1, ..., t, is then given by:

χ =
∑t

i=1 s(Ri) · Ψi∑t
i=1 Ψi

.

In our results we assume a relative equivalency between
memory and inference-time, since evaluating the rules takes
time linear in the number of rules. The relative memory of a
set R of rules is the ratio of the memory of the approximate
rules (or model) and the complete rules (or model):

Relative memory =
|ΦR|
|Φ| .

Structural Parameters

System
B

Monitoring
SystemCB-4

CB-5

CB-1 CB-2 CB-3

CB-STATUS

Power
System

System
A

System
C

System
DCB-6

Figure 1: Example of a system that we analyze. This is an
abstract view of aircraft subsystems, noted SystemA through
SystemD, provided power through circuit breakers CB-1
through CB-6.

We have performed experiments on a large collection
of real-world diagnostics models, including models of hy-
draulic, electrical and mechanical systems. Table 1 shows
the basic parameters of the models we used for experimen-
tation. The model classes are as follows: (a) the WoW-
v1 through WoW-v6 models are for an autopilot subsys-
tem in which velocity, altitude and other parameters deter-
mine autopilot settings; (b) the AC-v1 through AC-v4 mod-
els are for integrating multiple aircraft subsystems; (c) the
MCP models are for a control system. Each model class
has multiple models, denoted by version numbers (e.g., v2),
which denote the increased size and complexity over the
basic model (v1). In addition, we have experimented on
randomly-generated models with varying numbers of vari-
ables, assumptions and observables.

Table 1 shows data for a variety of models. One of the
key factors to note is the memory required for the compiled
model, displayed in the last column. In particular, the mod-
els cover memory values ranging from small (12.1KB) to
large (52.4MB). As noted earlier, the memory of the com-
piled model is our metric for evaluation complexity, since
evaluating a model is linear in the size of the compiled data.
As a consequence, it is important to note that models with
compiled data in excess of 20-30MB are computationally

Name V A O Memory (KB)
WoW-v1 17 5 4 12.1
WoW-v2 19 6 5 22.4
WoW-v3 21 7 6 46.3
WoW-v4 25 9 6 49.0
WoW-v5 23 8 7 87.7
WoW-v6 27 10 7 89.4
AC-v1 12 5 8 1439
AC-v2 41 9 13 37,626
AC-v3 64 17 12 52,376
AC-v4 70 19 13 52,447
MCP 40 20 5 20.1

MCP-extended-v1 66 32 5 22.5
MCP-extended-v2 66 32 8 359.9

Table 1: Model Statistics for Real-world Models. We re-
port data for the total number V of variables, number A of
assumables, number O of observables, and memory for the
full compiled model.

expensive to evaluate.8 Figure 1 shows the system corre-
sponding to the AC-v2 model. This figure displays an ab-
stract view of a collection of aircraft sub-systems, denoted
system-A, etc., which receive power from a Power sub-
system through circuit breakers (CB-1, CB-2, etc.), and then
send their status information to a Monitoring System.

Model Size Parameters We have performed experiments
to study the dependence of compiled-model performance
on the parameters A and O. To accomplish this, we have
studied a broad range of models. Figure 2(a) shows the
growth of the compiled memory required for instances of
several model classes. For each model class, we augment
the size of the basic model by adding additional model struc-
ture. For example, for the aircraft model shown in Figure 1,
we add extra subsystems, with associated circuit-breakers.
Figure 2(a) shows that the growth, in terms of model vari-
ables, is basically linear, except for the class of circuit mod-
els named Circuit2.

Figure 2(b) shows the growth of the compiled memory
required for instances of several model classes, measured
versus the number of observable variables. Again, we see
that the growth is roughly linear with respect to the num-
ber of observables. The Circuit2 class of models shows
much steeper growth than the other models, which is a func-
tion of the model structure. These experiments have shown
that adding extra structure to the model classes under study
created a linear relationship between the number of vari-
ables/observables and relative model memory.

Our next experiments studied the coverage of model
classes. Figure 3 shows the coverage versus relative memory
for four different aircraft sub-system models, AC-v1 through
AC-v4. Note that every such coverage/memory curve has a
similar shape, with the coverage asymptotically approaching
1 as memory increases. This particular graph shows how the

8Even though the models AC-v2, AC-v3 and AC-v4 have rela-
tively few variables, each variable has many (up to 20) values, and
diagnosing these models took hours on a 1GHz Pentium3 machine.

Model Growth (Compiled Memory)

0

20

40

60

80

100

120

140

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Relative Memory

Va
ria

bl
es

WoW
AC
Circuit
Circuit1
circuit2

0

5

10

15

20

25

30

35

40

45

50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Relative Memory

#
O

bs
er

va
bl

es

Circuit
WoW
AC
Circuit2

(a)

(b)

Figure 2: Graph showing tradeoff of coverage versus relative memory for several model classes. Graph (a) shows the memory
growth versus the number of variables, and Graph (b) shows the memory growth versus the number of observables.

curves are displaced downwards (meaning reduced cover-
age for any relative memory value) as the models grow in
size and complexity.

AC Data

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.05 0.1 0.15 0.2 0.25 0.3

Relative Memory

C
ov

er
ag

e AC-v4
AC-v3
AC-v1
AC-v2

v4

v3

v2

v1

Figure 3: Graph showing tradeoff of coverage versus relative
memory for four different aircraft sub-system models, AC-
v1 through AC-v4.

Model Decomposition We now report on our experiments
with decomposing models. We have adopted a causal net-
work representation for our models, since it is possible to
decompose such models by choosing observables appropri-
ately (Darwiche & Provan 1997b). If we choose observables
that form a cutset for a model, then the model is effectively
decomposed into disjoint sub-models.

We applied this cutset-based approach to several models,

and report results for three circuit models in Table 2. The
results for the first two models show dramatic reductions of
model size, and the last network shows roughly a 50% re-
duction. For the first two models, it turned out that adding
the new observables reduced the multiple-fault rules of the
original model to all single-fault rules.9 As an example,

Model Memory (KB) Relative Memory
Circuit1 4,176.2 1.0
Circuit1-Decomposed 45.8 0.010
Circuit2 2,026.6 1.0
Circuit2-Decomposed 43.0 0.021
Circuit3 20.0 1.0
Circuit3-Decomposed 10.3 0.515

Table 2: Model Statistics for decomposition of Real-world
Models. The relative memory is the fraction of the memory
of the full model.

for Circuit2 the decomposition reduced 3597 multiple-fault
rules to 10 single-fault rules. We provide examples of these
rules below. We first two two rules derived from the full
model with 4 faults (or Failure-Modes) in each:

9In terms of underlying causal model parameters, this corre-
sponds to converting a multiply-connected model with large clique-
sizes (with inference complexity exponential in the size of the
largest clique) to a singly-connected model, in which inference is
linear.

——– Full Model: rule 362 ——————

([Tx1-out=false] ∧ [Tx2-out=true] ∧ [Tx3-out=false]∧
[Tx4-out=false] ∧ [Tx5-out=false] ∧ [Tx6-out=false]∧

[B-out=false] ∧ [B1-out=false] ∧ [B2-out=false]∧
[B3-out=false] ∧ [B4-out=false] ∧ [B5-out=false])

⇒ ([B-Mode=BAD] ∧ [B2-Mode=BAD]

∧ [B4-Mode=BAD] ∧ [B5-Mode=BAD])

——– Full Model: rule 363 ——————

([Tx1-out=true] ∧ [Tx2-out=false] ∧ [Tx3-out=false]∧
[Tx4-out=true] ∧ [Tx5-out=true] ∧ [Tx6-out=false]∧

[B-out=true] ∧ [B1-out=false] ∧ [B2-out=true]∧
[B3-out=false] ∧ [B4-out=true] ∧ [B5-out=true])

⇒ ([B-Mode=BAD] ∧ [B3-Mode=BAD]

∧ [B4-Mode=BAD] ∧ [B5-Mode=BAD]))

In contrast, all rules derived from the decomposed model
have a single fault each, as shown below:

——–Decomposed Model: rule 9 —————–
(6AND-out=false] ∧ [B3-out=false]) ⇒ [B3-Mode=BAD]
——–Decomposed Model: rule 10 —————-
(6AND-out=false] ∧ [B4-out=false]) ⇒ [B4-Mode=BAD]

Weights
We have performed a variety of experiments to study the in-
fluence of assumption probability values on coverage. In
these experiments, we have assigned different probability
values to the assumptions, and report our results using the
mean probability value, averaged over all the model proba-
bilities.

Real-World Models Figure 4 shows the effect of mean
assumption probability values on the coverage for two con-
trol models, a basic model and an extension of that model.
These figures show how the mean probability value reduces
the coverage values. For example, Figure 4(b) shows that
for small probability values, the coverage asymptotes very
quickly to coverage values near 1 at relatively small relative
memory values, but as the probability gets larger, greater
memory is needed to achieve high coverage values.

Randomized Models Computing a closed-form solution
for ΨΛ defined over an arbitrary distribution �P over A is a
complex task, and we have derived results for some special
cases, such as the case where are target prior probabilities
are the same. In the following, we present results of an em-
pirical analysis of rule generation. We use the parameters
(χ, n, �P) to perform an empirical tradeoff analysis of the
rules compiled from a randomly-generated model.

We make the following assumptions:

1. Each target probability is skewed, i.e., either p i � p̄i or
pi � p̄i.

2. All targets are conditionally independent.

In our experiments, we assigned skewed probabilities to
the target variables ranging from p = 0.1 to p = 0.001 for
a true instantiation. In reporting our results, we averaged all
target probability values and plot graphs using this average,
p̄. We used diagnostic models of digital electrical circuits
with a rough ratio of 5 non-target variables for every target
variable. We report results for models with between 3 and
1000 target variables.

Figure 5 shows a sample of some data, plotting expected
outcome (or target coverage) versus average target probabil-
ity. This figure describes plots for 5 different models, con-
taining 10, 25, 50, 100 and 1000 target variables. For each
model, we compiled 3 different expected case rule-sets. For
example, for the 1000-target model we compiled rule-sets
containing up to 2, 3 and 4 target variables per rule. In the
figure we use the pair (i, j) to tag each graph, where i de-
notes the number of target variables per rule, and j the num-
ber of targets in the KB.

One of the key observations of this data is that for small
KBs (10 or fewer targets), the target coverage remains high
even when the average target probability (p̄) rises to around
0.05 (and up to 0.1, even though it is not shown). However,
as the KB size increases, the coverage is high only for quite
small values of p̄.

A second observation is that the graphs for a particular
KB tend to cluster together. For example all graphs for the
KB with n = 1000 are clustered, and increasing the number
of target variables per rule produces graphs that occur very
close to the group of three shown in the figure. Contrast this
with the graphs for n = 100, which occur a region quite
different to those for the cluster for n = 1000.

Our results indicate that we can smoothly trade off target
coverage for decreased memory/inference time within a par-
ticular range of p̄ for a given KB. For example, for a KB
with n = 10 this p̄ range is about (0,0.5), whereas for a KB
with n = 1000 this p̄ range is about (0,0.01).

Coverage given fixed memory and computation time

Probability(Target)

C
ov

er
ag

e

(i,j): i= # simultaneous targets per rule
j=# total target variables

0

0.2

0.4

0.6

0.8

1

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

(4,1000)

(3,1000)
(2,1000)

(1,100)

(3,100)(2,100)

(1,50)

(2,50)

0

(2,25)

(1,10)
(2,15)

(2,10)

Figure 5: Graph showing tradeoff of solution quality versus
time/memory.

Our experimental analysis has identified, for the set of
models analyzed, a pair of parameters for which this ap-

MCP

0.25

0.35

0.45

0.55

0.65

0.75

0.85

0.95

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Relative Memory
C

ov
er

ag
e .4

.2

.133

.1

.02

.01

MCP-extended

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Relative Memory

C
ov

er
ag

e

.4

.2

.133

.1

.066

.05

.04

.02

.01

.002

(b)

(a)

Figure 4: Graph showing tradeoff of coverage versus relative memory for control sub-system model, for various mean proba-
bility values.

proach will provide good expected coverage, regardless of
KB size. For a target coverage value χ∗, a model with n
target variables and mean target probability p̄, the following
result holds:

1.05 ≤ χ∗np̄ ≤ 1.625.

This result provides some important insights into this ap-
proach, as it has been applied to the set of models analyzed.

• For a given KB size, it tells you the type of skewed prob-
ability distribution necessary for the approach to work.

• Given an appropriate probability distribution, it can tell
you the target coverage value that is achievable.

• Given an appropriate probability distribution and target
coverage value, it tells you the size of the compiled KB.

One key issue that needs further work is to examine this re-
sult in greater detail, to see if it is more a property of the
diagnostic models studied, or if it will generalize across mul-
tiple domains.

Another interesting result is the phase transition behav-
ior based on the mean target probability p̄: for large KBs,
once the mean target probability increases beyond a certain
threshold, the number of rules required to maintain a high
coverage value increases dramatically. In fact, for some
threshold value of n target variables, the savings associated
with this approach are negligible if we desire a solution that
covers arbitrary values of p̄.

Relevance for Diagnosis

Under reasonable assumptions, we have found that the cov-
erage provided just by rules containing few simultaneous
targets can be extremely good. For diagnosis the basic in-
tuition is that, assuming components are all well-designed
and have low prior target probabilities, all multiple-target
outcomes with three or more targets are very unlikely.

If the prior fault probabilities are all small (e.g., p≤0.003)
then the diagnostics coverage is at least 90% using triple-
target embedded models for n=1000 and a KB with 25,000
variables; this represents a reduction in the number of pos-
sible diagnoses from O(21000) in the full model to O(227)
in the compiled model, leading to a 1000-fold decrease in
memory needed and 100-fold decrease in diagnostics infer-
ence time. However, when these prior probabilities grow
larger, the coverage diminishes for fixed k-target embedded
models; to maintain coverage, the value of k needs to be
increased.

Related Work
The task that we are trying to solve is to compute query cov-
erage, using a set of minimal (weighted or most likely) query
responses that covers some fraction of all possible query
responses from a given theory. We determine minimality
using the assumption weight associated with the query re-
sponse. By computing the curve of query coverage versus
size and complexity of coverage database, we show that we

can smoothly trade off query coverage for inference com-
plexity, and thereby “control” inferential complexity for ab-
ductive inference.

This work straddles a considerable body of work in sev-
eral different areas, which we group into three primary areas:
abductive reasoning, (approximate) knowledge compilation,
and test set generation. We review the most relevant litera-
ture, and explain the ways in which our work is different.

Abductive Inference: Abduction has received consider-
able attention; for a review of the field see (Paul 1993). This
article focuses on compiling a representation that is tailored
to efficiently computing all minimal explanations, particu-
larly for diagnostics applications. As mentioned earlier, the
task of computing all plausible explanations has received
less attention than that of computing a plausible explanation.
This multiple-explanation task has been addressed by (Eiter
& Makino 2003), who show the intractability of this task.
More generally, the computational complexity of abduction
has been studied thoroughly, e.g., in (Bylander et al. 1991;
Eiter & Gottlob 1995; Liberatore & Schaerf 2000; del Val
2000).

Knowledge Compilation: This area has been surveyed
by Cadoli and Donini (1997), who mention that the major-
ity of approaches focus on complete compilation, and that
the approximate compilation approaches lack obvious met-
rics for determining the distance of a compilation from the
complete solution. In contrast to these approaches, we pro-
vide a clear distance metric for our approximate compila-
tion. Darwiche and Marquis (2002) describe an approach
to compiling weighted knowledge bases. Our approach is
quite different, in that we assign weights not the clauses but
to assumptions, and we approximate the quality of solution
coverage.

Many researchers have developed techniques for compil-
ing models for various applications, particularly diagnosis
(Darwiche & Marquis 2001; Darwiche 1998). One of the
most successful approaches, that of (Darwiche 1998), pro-
vides an approach that enables a simple evaluator to be used
for embedded applications; the drawback of this approach is
that it basically makes a time/space tradeoff, producing an
embedded model for which inference is too inefficient for
complex real-world systems.

For example, the Query DAG paradigm (Darwiche &
Provan 1997a; Darwiche 1998) compiles a Bayesian net-
work into an arithmetic expression (the Query DAG, or Q-
DAG) that may be evaluated using a simple numerical eval-
uation algorithm. The complexity of Q-DAG evaluation is
linear in the size of the Q-DAG; for example, for a Bayesian
network such inference amounts to a standard evaluation of
the arithmetic expression it represents. The value of the Q-
DAG is that it reduces both the software and hardware re-
sources required to utilize Bayesian or causal networks in
on-line, real-world applications. Our proposed compilation
approach extends the causal network compilation method of
(Darwiche 1998): we compile a sub-model that can answer
only the most-likely queries, given a pre-defined set of obser-
vations. This expected-query approach provides a method
for making principled coverage/complexity tradeoffs.

Test Set Generation: The large body of work in test set

generation focuses on computing a minimal (smallest car-
dinality) set of tests, where each test is an instantiation of
observables that can isolate faults for a given system (Simp-
son & Sheppard 1994). In other words, we can define a rule
as a test minimal with respect to the number of observables
in the test.

The task we address is a strict generalization of test
set generation, in that we adopt a more complex model
with fewer restrictions, and we compute the equivalent of
weighted tests. For the most part, the literature in test set
generation focuses on a model that needs to be represented
only by the system inputs I , outputs O, failure-modes F ,
and the relation of outputs to inputs and failure-models,
O = R(I, F) (Simpson & Sheppard 1994). In addition,
most of the literature focuses on binary-valued variables
and deterministic relations, although some approaches re-
lax these restrictions (Deb et al. 1994). The primary algo-
rithm for test set compaction is set covering (Flores, Neto, &
Marques-Silva 1999), although many other algorithms have
been adopted (Hamzaoglu & Patel 1998).

Conclusions
Generating expected-query rules to approximate the com-
plete target coverage provided by a KB (e.g., causal network
model) can save significant space and still guarantee high
target coverage with respect to using the full model. Fur-
ther, our analysis has identified a set of parameters (χ, n, p̄),
respectively the coverage ratio, number of components and
average prior target probability, to perform a tradeoff anal-
ysis of the rules generated by a model. This approach pro-
vides a method for defining the number and type (based on
number of simultaneous targets in a rule) of rule necessary
to achieve a prescribed coverage ratio χ.

Analysis of data on randomized models has identified that
target coverage is highly sensitive to the average prior tar-
get probability p̄ (especially for very large models), and is
relatively insensitive to the number of components n for
small p̄. For example, if we fix p̄ to some small value such
as p = 0.003, increasing the number of components from
100 to 1000 causes a reduction in coverage only from 0.99
to 0.81 (for rules containing up to 4 targets); however, for
a fixed model size of 1000, coverage falls from 0.81 (for
p = 0.003) to 0.44 for for p̄ = 0.005 to 0.028 for for
p̄ = 0.01.

Hence, high-reliability systems need only a relatively
small number of rules, each containing up to a few simulta-
neous targets, to guarantee high diagnostic coverage. In con-
trast, low-reliability systems need a relatively large number
of rules, containing up to 10 simultaneous targets (depend-
ing on the system), to guarantee high diagnostic coverage.

Future work is needed to determine, from a theoretical
perspective, the significance of the bounds governing the re-
lation among (χ, n, p̄), and to explore the phase transitions
observed during compilation. We are also exploring the use
of approximate cutset algorithms to identify good model de-
compositions and key observables that will lead to simplify-
ing decompositions.

References
Appelt, D., and Pollack, M. 1009. Weighted abduction for
plan ascription. Technical report, Tech. Rep. AI Center and
CSLI, SRI International, Menlo Park, CA.

Bylander, T.; Allemang, D.; Tanner, M. C.; and Josephson,
J. R. 1991. The computational complexity of abduction.
Artificial Intelligence 49(1-3):25–60.

Cadoli, M., and Donini, F. M. 1997. A survey on knowl-
edge compilation. AI Communications 10(3-4):137–150.

Console, L.; Portinale, L.; and Dupre, D. T. 1996. Using
Compiled Knowledge to Guide and Focus Abductive Diag-
nosis. IEEE Trans. on Knowledge and Data Engineering
8(5):690–706.

Darwiche, A., and Marquis, P. 2001. A perspective on
knowledge compilation. In Proceedings of the Intl. Joint
Conference of Artificial Intelligence. Morgan Kaufmann,
San Francisco, CA.

Darwiche, A., and Marquis, P. 2002. Compilation of
Propositional Weighted Bases. In Proceedings of the
Ninth International Workshop on Non-Monotonic Reason-
ing (NMR’02), 6–14.

Darwiche, A., and Provan, G. 1997a. Query DAGs: A
Practical Paradigm for Implementing Belief Network In-
fernece. Journal of Artificial Intelligence Research 6:147–
176.

Darwiche, A., and Provan, G. M. 1997b. The effect of ob-
servations on the complexity of model-based diagnosis. In
Proceedings of the 14th National Conference on Artificial
Intelligence (AAAI), 94–99.

Darwiche, A. 1998. Model-based diagnosis using struc-
tured system descriptions. Journal of Artificial Intelligence
Research 8:165–222.

Darwiche, A. 1999. On Compiling System Descriptions
into Diagnostic Rules. In Proceedings of the Conference
on Principles of Diagnosis.

Deb, S.; Pattipati, K.; Raghavan, V.; Shakeri, M.; and
Shrestha, M. 1994. Multi-Signal Flow Graphs: A novel
Approach for System Testability Analysis and Fault Diag-
nosis. In Proc. IEEE AUTOTESTCON, 361–373.

del Val, A. 2000. The complexity of restricted consequence
finding and abduction. In AAAI: 17th National Conference
on Artificial Intelligence. AAAI / MIT Press.

Eiter, T., and Gottlob, G. 1995. Semantics and complexity
of abduction from default theories. In Mellish, C., ed., Pro-
ceedings of the Fourteenth International Joint Conference
on Artificial Intelligence, 870–877. San Francisco: Morgan
Kaufmann.

Eiter, T., and Makino, K. 2003. Generating all abduc-
tive explanations for queries on propositional horn theories.
Technical Report Tech. Rep. INFSYS RR-1843-03-09, In-
stitute of Inf.Sys., TU Vienna.

Flores, P.; Neto, H.; and Marques-Silva, J. 1999. On Ap-
plying Set Covering Models to Test Set Compaction. In
roceedings of the IEEE Great Lakes Symposium on VLSI
(GLS).

Goldszmidt, M., and Pearl, J. 1991. System Z+: A for-
malism for reasoning with variable strength defaults. In
Proceedings of American Association for Artificial Intelli-
gence Conference, 399–404.
Hamzaoglu, I., and Patel, J. H. 1998. Test set compaction
algorithms for combinational circuits. In ICCAD, 283–289.
Henrion, M. 1991. Search-based Methods to Bound Diag-
nostic Probabilities in Very Large Belief Nets. 142–150.
Kumar, U., and Desai, U. 1996. Image interpretation using
bayesian networks. IEEE Trans. PAMI 18(1):74–78.
Liberatore, P., and Schaerf, M. 2000. Compilability of ab-
duction. In Proceedings of the Seventeenth National Con-
ference on Artificial Intelligence (AAAI 2000).
Paul, G. 1993. Approaches to abductive reasoning—an
overview. Artificial Intelligence Review 7:109–152.
Poole, D., and Kanazawa, K. 1994. A Decision-Theoretic
Abductive Basis for Planning. In Proceedings of the AAAI
Spring Symposium on Decision-Theoretic Planning, 232–
239.
Poole, D. 1988. A Logical Framework for Default Reason-
ing. Artificial Intelligence 36:27–47.
Simpson, W., and Sheppard, J. 1994. System Test and
Diagnosis. Kluwer.
Stickel, M. 1990. Rationale and Methods for Abductive
Reasoning in Natural Language Reasoning and Interpre-
tation. In Studer, R., ed., Natural Language and Logic,
331–352. Springer-Verlag.

