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Abstract

We present a distributed model-based diag-
nostics architecture for embedded diagnos-
tics. We extend the traditional model-based
definition of diagnosis to a distributed diag-
nosis definition, in which we have a collec-
tion of distributed sub-systems whose inter-
connectivity is described by a directed graph.
Assuming that each sub-system can compute
a local minimal diagnosis based only on sen-
sors internal to that sub-system and knowl-
edge only of its own system description, we
describe an algorithm that guarantees a glob-
ally sound, complete and minimal diagnosis
for the complete system. By compiling di-
agnoses for groups of sub-systems based on
the interconnectivity graph, the algorithm ef-
ficiently synthesizes the local diagnoses into
a globally-sound system diagnosis.

1 INTRODUCTION

This article proposes a new technique for diagnos-
ing distributed systems using a model-based approach.
We assume that we have a system consisting of a set
of inter-connected sub-systems, each of which com-
putes a local (sub-system) diagnosis. Each sub-system
can consist of anything from a single component to a
large set of interconnected components. We extend
the structure-based diagnosis framework of Darwiche
(Darwiche, 1998) to a distributed approach for synthe-
sizing sub-system diagnoses into a globally-sound sys-
tem diagnosis. Unlike previous approaches that com-
pute diagnoses using the system observations and a
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component-level system description (Darwiche, 1998;
Deb et al., 1998; de Kleer and Williams, 1987), we can
take advantage of more abstract system descriptions
(e.g., descriptions of sub-systems based on a hierar-
chical specification), and adopt a diagnosis synthesis
process that operates in the space of minimal diag-
noses. Assuming that each sub-system can compute a
local minimal diagnosis based only on sensors internal
to that sub-system and knowledge only of the compo-
nent sub-system description, we describe an algorithm
that guarantees a globally sound, complete and mini-
mal diagnosis for the complete system.

This algorithm uses as input the directed graph (di-
graph) describing the connectivity of distributed sub-
systems, with arc directionality derived from the
causal relations between the sub-systems. Given that
such real-world graphs are either tree-structured or can
be converted to tree-structured graphs, we propose a
tree-based message-passing algorithm which passes di-
agnoses as messages and synthesizes local diagnoses
into a globally minimal diagnosis. This approach
can be applied to systems with arbitrary topologies
through transforming sub-system graphs with arbi-
trary topologies into directed trees. By compiling di-
agnoses for collections of components (as determined
by the graph’s topology), we can improve the perfor-
mance of distributed embedded systems.

One important point to stress is that this approach
synthesizes diagnoses computed locally, and places no
restriction on the technique used to compute each lo-
cal diagnosis (e.g., neural network, Bayesian network,
ATMS), provided that each local diagnosis is a least-
cost or most-likely diagnosis.

The approach presented in this article assumes that all
faults are diagnosable (i.e., can be isolated) through
a centralized algorithm. We examine whether a dis-
tributed approach can diagnose all faults, since a dis-
tributed algorithm can isolate faults no better than a



centralized algorithm. Issues relating to restricted di-
agnosability of both centralized and distributed algo-
rithms due to insufficient observable data (e.g., when
the suite of sensors is insufficient to guarantee com-
plete diagnosability) are examined in (Provan, 2002).

This article is organized as follows. Section 2 intro-
duces the application model that we use to demon-
strate our approach. Section 3 introduces our model-
ing formalism, and specifies our centralized and dis-
tributed model. Section 4 describes how we diagnose
distributed models, and Section 5 describes how to
convert directed graphs with arbitrary topologies into
directed trees. Section 6 surveys some related work on
this topic. Section 7 summarizes our conclusions.

2 IN-FLIGHT ENTERTAINMENT
EXAMPLE

Throughout this article we use a simplified example
of an In-Flight Entertainment (IFE) system. An IFE
system provides audio, video and game entertainment
on board passenger aircraft. This system has a main
module that accepts passenger requests and generates
audio/video/game signals, which are then transmitted
(via RF signals) to passengers through several interme-
diate components. Figure 1 shows the schematic for
an IFE system fragment where we have (1) a trans-
mitter module (Tx) that generates 10 movie channels
(consisting of both video and audio signals) and 10 au-
dio channels; (2) two area distribution boxes (ADB);
and (3) attached to each ADBi we have two passenger
units, Pi1 and Pi2. For ADB j, passenger i, i = 1, 2
has a controller Cji for selecting a video or audio chan-
nel, plus an audio unit αi and video display υi. Control
signal Cji is sent by passenger i to ADBj and then to
the transmitter, which in turn sends an RF signal (RF)
to each passenger.

We adopt a notion of causal influence for describing
how different components affect the value of a signal
as it propagates through the system. For example,
the RF signal causally influences the passenger audio
and video outputs. In this model the observables are
the control signals, plus for passenger i downstream
of ADBj sound (Sji) and video-display (V Dji). We
assign a fault-mode to the transmitter and to each
ADB and passenger unit.

Our modeling approach makes the following assump-
tions. First, we can specify a system using an object-
oriented approach. In other words, a system can be
defined as a collection of components, which are con-
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Figure 1: Schematic of IFE fragment, showing the
main modules and the directed arcs of data-flows.

nected together, e.g., physically, as in an HVAC sys-
tem, or in terms of data transmission/reception, as in
the IFE example. Our primary component consists of
a block, which has properties: input set, output set,
fault-mode, and equations. Given the fault-mode and
input set, the equations provide a mapping to the out-
put set. In other words, the inputs are the only nodes
with causal arcs into the block, and the outputs are
the only nodes with causal arcs out of the block. Typ-
ically, we have causal dependence of block outputs ωi

on inputs �i, i.e. ωi ∝ �i.1

This distributed model consists of a set of sub-models,
or blocks, which may be connected together. In our
IFE example, the transmitter block has inputs of con-
trol signals C1 and C2, and output an RF signal.

Second, we assume that each component computes di-
agnoses based on data local to the component. We
do not place any restrictions on the type of algorithm
used to compute the diagnosis, except that the diag-
nosis be a least-cost diagnosis. We will describe the
cost function used by our synthesis algorithm in the
following section.

3 MODEL-BASED DIAGNOSTICS
USING CAUSAL NETWORKS

This section formalizes our modeling and inference ap-
proach to diagnostics and control reconfiguration. We
first introduce the model-based formalism, and then
extend these notions to capture a distributed model-
based formalism.

1The causal function ∝ can be be generalized to include
propositions, relations, probabilistic functions, qualitative
differential equations, etc. We don’t address such a gener-
alization here.



3.1 FLAT (CENTRALIZED) MODELS

We adopt and extend the model-based diagnosis rep-
resentation of Darwiche (Darwiche, 1998). We model
the system using a causal network:

Definition 1 A system description is a four-tuple
Φ = (V ,G,Σ), where

• V is a set of variables comprising two variable
types: A is a set of variables (called assumables)
representing the failure modes of the components,
V is a set of non-assumable variables (V∩A = ∅)
representing system properties other than failure
modes;

• G is a directed acyclic graph (DAG) called a causal
structure whose nodes are members in V ∪A and
whose directed arcs represent causal relations be-
tween pairs of nodes;

• and Σ is a set of propositional sentences (called
the domain axioms) constructed from members in
V ∪ A based on the topological structure of G.

This definition of system description differs from the
standard definition (called SD in (Reiter, 1987)) only
in that we include a graph G to complement the do-
main axioms, a set of failure modes (commonly called
COMPS) and non-assumable variables. G imposes ad-
ditional restrictions on the system description as com-
pared to Reiter’s definition, such as that of directed
acyclic relations.

The set of non-assumable variables consists of two
exclusive subsets: Vobs (the set of observables) and
Vunobs (the set of unobservables).

We can capture structural properties of the system de-
scription using the directed acyclic graph, or DAG, G.2
For example, if an actuator determines if a motor is on
or not, we say that the actuator causally influences the
motor. More generally, A may directly causally influ-
ence B if A is a predecessor of B in G. We use B ∝ A
to denote the direct causal influence of the value of B
by the value of A.3 Through transitivity, we can de-
duce indirect causal influence. For example, if B ∝ A
and C ∝ B, then A indirectly influences C.

We capture and exploit the directionality of causal re-
lations during all phases of diagnostic inference. For

2In other system description specifications, e.g.
(Dressler and Struss, 1996), these structural relations are
captured using logical sentences.

3This notion of causal influence does not guarantee that
A influences B, but that A may influence B.

example, if we have an abstract hierarchical specifi-
cation of a system and compute diagnostics for each
abstract hierarchical block, we still preserve the direc-
tionality of causality among the abstract blocks. We
exploit this directionality using a diagnostic synthesis
algorithm operating on a directed tree.

We capture the notion of direct causal influence, i.e.,
a node N and those nodes that are directly causally
affected by N , using a clan. We define the notion of
the clan of a nodeN in terms of graphical relationships
as follows:

Definition 2 (Clan) : Given a DAG G, the clan
Y (Ni) of a node Ni ∈ G consists of the node Ni to-
gether with its children in G.

For simplicity of notation, we will denote the clan for
node Ni, Y (Ni), as Yi. We adopt the notion of clan
because it facilitates the process of synthesizing diag-
noses computed at a set of distributed nodes organized
in a tree structure. The intuition is as follows. Given
a tree of depth 14, e.g., a parent node N with child-
nodes C1, C2 and C3, a minimal diagnosis can be com-
puted trivially, based on the parent/children structure.
By decomposing an arbitrary tree into a collection of
depth-1 sub-trees, we can compute a global minimal
diagnosis by recursively computing the minimal diag-
nosis in each sub-tree. Each sub-tree has the structure
of a clan.

This approach bears some resemblance to techniques
that use clique-tree decompositions generated based
on graphical relations known as a family, e.g., (Fattah
and Dechter, 1995).5 We discuss these relationships in
Section 6.

It is also important to define instantations of subsets
of observables:

Definition 3 (Restriction) We denote by θi the re-
striction of an instantiation θ of variables V to the
instantiation of a subset Vi of V . We denote the re-
striction of variable set T to variables in sub-system
description Φi by TΦi .

One of the key elements of diagnosing a system is the
instantiation of observables, since a diagnosis is com-
puted for abnormal observable instantiations.

Definition 4 (Instantiation) θΦi is an instantia-
tion of observables Vobs

Φi for system description Φi.

4The depth of a tree is the length of longest path from
root to leaf of the tree.

5A family is defined as a node together with its parents
in G.



ΘΦi denotes the set of all instantiations of observables
Vobs

Φi .

We specify failure-mode instantiations and partition
the possible states into normal states and faulty states
as follows:

Definition 5 (Mode-Instantiation) A∗ is an in-
stantiation of behavior modes for mode-set A. Further,
we decompose A∗ such that A∗ = AF ∪ A∅, where A∅

denotes normal system behaviour, i.e. all modes are
normal, and AF denotes a system fault, which may
consist of simultaneous faults in multiple components.

An assumable (behavior-mode variable) specifies the
discrete set of behavior-states that a component can
have, e.g., an AND-gate can be either OK, stuck-at-
0, or stuck-at-1. Our IFE-system, with component-
set {Tx,ABD1, ADB2, P11, P12, P21, P22}, can have a
mode-instantiation in which all components are OK
except P11, which is in audio-fail mode. In this case
we have A∅ = {Tx − mode = OK,ABD1 −mode =
OK,ADB2 −mode = OK,P12 −mode = OK,P21 −
mode = OK,P22 − mode = OK} and AF = {P11 −
mode =audio-fail}.

3.2 DISTRIBUTED SYSTEM
DESCRIPTIONS

This section describes our distributed formalism,
which applies to collections of interconnected compo-
nents, or blocks. We assume that a distributed sys-
tem description is provided either by the user or is de-
duced from the physical constraints of available local
diagnostic agents and physical connectivity. For ex-
ample, many engineering systems, such as commercial
aircraft, are subdivided into Line-Replaceable Units
(LRUs), based on factors such as fault-isolation capa-
bilities, physical constraints, and ease of repair. An
LRU typically consists of a number of connected sub-
systems, as in the Passenger Unit of the IFE example,
which consists of circuit-cards to select audio/video
channels and to drive the audio and video output de-
vices. It is standard practice in commercial aircraft to
isolate faults only to the LRU-level, and replace faulty
components only at the LRU-level.

Definition 6 (Decomposition Function) a de-
composition function is a mapping ψ(Φ) = Φdist that
decomposes a centralized system description Φ into a
distributed system description Φdist = {Φ1, ...,Φm}.
The distributed system description induced by a de-
composition function ψ is defined by a decomposi-
tion Π over the system variables V, i.e. a collection
X = {X1, ..., Xm} of nonempty subsets of V such that

(1) ∀i = 1, ...,m, Xi ∈ 2V ; (2) V = ∪i(Xi|Xi ∈ Π).
When ξij = Xi ∩ Xj �= ∅, we call ξij the separating
set, or common set, of variables between Φi and Φj.

We can describe a distributed system description
in terms of a decomposition graph. A decomposi-
tion graph is a graphical representation of the sys-
tem model, when viewed as a collection of connected
blocks. In this graph each vertex corresponds to a
block, and each directed edge corresponds to a directed
(causal) link between two blocks. Figure 2 shows the
decomposition graph for the extended IFE example.6

A decomposition graph is a directed tree, or D-tree,
which is defined as follows:

Definition 7 A D-tree TD is a directed graph with
vertices VTD and a vertex V0, called the root, with
the property that for every vertex V ∈ VTD there is
a unique directed walk from V0 to V .

Our approach uses two different D-trees, a system de-
composition graph and a clan graph.

Definition 8 A system decomposition graph GX is an
edge-labeled D-tree G(X , E , ξ) with (1) vertices X =
{X1, ..., Xm}, where each vertex consists of a collec-
tion of variables of G, (2) directed edges join pairs
of vertices with non-empty intersections, and arc di-
rection is specified by the causal direction of the arcs
between blocks in the decomposition graph, i.e., E =
{(Xj , Xk)|Xi ∩Xj �= ∅, Xk ∝ Xj}, and (3) edge la-
bels (or separators) defined by the edge intersections,
ξ = {ξij |Xi ∩Xj �= ∅}.

We assume that in a distributed system description,
for any block all sensor data is local, and all equations
describing distributed subsystems refer to local sensor
data and local conditions.

3.3 DIAGNOSIS SPECIFICATION

We adopt the standard notion of diagnosis (Reiter,
1987) as follows:

Definition 9 (Diagnosis) Given a system descrip-
tion Φ with system axioms Σ and an instantiation θ of
Vobs, a diagnosis D(θ) is an instantiation of behavior
modes AF ∪ A∅ such that Σ ∪ θ ∪ AF ∪ A∅ �|= ⊥.

This diagnostic framework provides the capability to
rank diagnoses using a likelihood weight κi assigned to

6We do not show the feedback loops of control requests
(C1, C2, C11..., C22) since all edges concerning observables
can be cut (Darwiche and Provan, 1996).
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Figure 2: Decomposition graph of extended IFE sys-
tem description. Here an oval corresponds to a vertex,
and a block corresponds to a sepset. We specify the
variables associated with each vertex in the graph.

each assumable Ai, i = 1, ...,m. Using the likelihood
algebra defined in (Darwiche, 1998), we can compute
the likelihood assigned to each diagnosis for observa-
tion θ. We refer to a (diagnosis, weight) pair using
(D(θ), κ). We use the weights to rank diagnoses, i.e.,
least-weight diagnoses are the most-likely. This pro-
vides a notion of minimal diagnosis, i.e. a diagnosis of
weight κ such that there exists no lesser-weight diag-
nosis.

3.4 LOCAL/GLOBAL DIAGNOSTICS

Our methodology rests on the determination of when
component diagnoses are independent, in which case
the global diagnosis is just the conjunction of the com-
ponent diagnoses. We apply the decomposition theo-
rem of (Darwiche, 1998) to this case of distributed
diagnostics:

Theorem 1 If we have a system description Φ con-
sisting of two component system descriptions Φ1 and
Φ2, and a system observation θ, if the variables shared
by Φ1 and Φ2 all appear in θ, then

DΦ(θ) ≡ DΦ1(θ1) ∧DΦ2(θ2).

This theorem states that a diagnosis is decomposable
provided that the system observation contains the vari-
ables shared between Φ1 and Φ2. However, what hap-
pens when the observation θ does not contain all vari-
ables shared between Φ1 and Φ2? One solution (Dar-
wiche, 1998) is to decompose the computation of DΦ

by performing a case-analysis of all shared variables
ξ12. However, this case-analysis approach is exponen-
tial in |ξ12|, the number of variables on which we do

case-analysis. Hence if we wanted to embed the diag-
nostics code, such a case-analysis might be too time-
consuming when performed on a system-level model.

In the following we assume that each component com-
putes a local diagnosis, i.e., a diagnosis based only
on local observables and on equations containing only
local variables. In contrast a global diagnosis is one
based on global observables and on equations describ-
ing all system variables. Our task is to integrate these
local component diagnoses into a globally sound, min-
imal and consistent diagnosis, since for many systems
the diagnostics generated locally are either incomplete
or not minimal.

Note that we can obtain global diagnostics for a mod-
ular system by composing local blocks and diagnosing
the entire system model. However, it is true in many
cases that global and local diagnostics may differ. We
now define a notion of correspondence between local
and global diagnoses.

The conjunction of the set of distributed system de-
scriptions is defined as Ddist(θ) =

∧
Φk∈B D

Φk(θ), and
we know that Ddist(θ) = D(θ) only when θ ≡

⋃
i,j ξij .

We can compute the diagnoses for this set of dis-
tributed system descriptions either using an on-line
algorithm, or by pre-computing the set of diagnoses
for Ddist(θ). In the following, we outline the compiled
method of diagnosis.

We define a table, called a clan table, to specify lo-
cal and global diagnoses for collections of blocks. This
table compiles the local case-analysis required by The-
orem 1. We will show later how to use this table for
our diagnosis synthesis algorithm.

Definition 10 A clan (or local/global diagnosis)
table for block-set B = {Φi, ...Φj} is a table consist-
ing of tuples (observable-intantiation, global diagnosis,
weight) for all abnormal instantiations of observables
θ in B.

Note that we can use the compositionality of blocks
to show that any time we compose a system descrip-
tion from multiple blocks, we obtain “global” diag-
nostics for that composed system description when we
compute diagnoses over the composed system descrip-
tion. Hence the “global” diagnosis for each collection
of blocks is computed from a system description gener-
ated from the composition of the system descriptions
of the blocks in B, using the observables from B.

Example 1 Table 1 contrasts the local and global di-
agnoses for a set of scenarios where the set B of blocks
is an ADB with downstream passenger units. In these



scenarios, we compute the (probabilistically) most-
likely diagnosis, assuming that all faults are equally
likely, i.e., have weight 1. Moreover, in defining a lo-
cal diagnosis in Table 1, we report the conjunction of
all local diagnoses, i.e. the local diagnosis is ADB-
diagnosis ∧ P1-diagnosis ∧ P1-diagnosis. In scenarios
1, 2 and 4, the local and global diagnoses are identi-
cal. However, in scenarios 3, 5 and 6, they differ: the
passenger units each assume a local fault, whereas the
transmitter unit is the faulty one (since a single trans-
mitter fault is much more likely the two simultaneous
faults, one in each passenger unit).7

Given this potential for discrepancy between local and
global diagnoses, we map the decomposition graph into
a representation, the clan graph, from which we can
synthesize globally sound and complete minimal diag-
noses from local minimal diagnoses. A clan graph has
as its nodes collections of blocks, where each collection
consists of a block and its children in GX . Figure 3
shows the clan graph for the extended IFE example.

X2 X4 X6

X1 X2 X3

RF
RF1
C1

ADB1-mode

X3 X5 X7

RF
RF2
C2

ADB2-mode

Y1
Y2

Y3

Figure 3: Clan graph of extended IFE system descrip-
tion.

Definition 11 (Clan graph) : A clan graph GY of
a DAG G(V,E) of vertices V and edges E is an edge-
labeled D-tree G(Y, E , ξ) defined as follows: (1) ver-
tices Y = {Y1, ..., Ym}, where each node Yi consists of a
clan of G; (2) edges defined by non-empty intersections
between pairs of vertices E = {(Yj , Yk)|Yi ∩ Yj �= ∅};
and (3) separators defined by the edge intersections
ξ = {ξij = Yi ∩ Yj}.

The following section shows how we use the clan graph
for distributed diagnosis.

7These differences arise due to different instantiations
of the RF signal in the local and global diagnosis. We
hide the details of the case-analysis of shared variables for
simplicity of presentation.

4 DISTRIBUTED MODEL-BASED
DIAGNOSIS

This section describes our distributed model-based di-
agnosis algorithm. This algorithm provides a pre-
compiled approach that is significantly faster for em-
bedded computation. Our approach uses the structure
of the component interconnections to map minimal di-
agnoses for components first to minimal clan diagnoses
and then to minimal system diagnoses. The decompo-
sition graph specifies the subsets of components that
share variables.

4.1 DIAGNOSIS OF TREE-STRUCTURED
SYSTEMS

We now describe an approach to diagnosing systems
with tree-structured decomposition graphs. We later
show how this can be generalized such that arbitrary
graph topologies can be converted to trees.

We assume that:

• We are provided with the component system de-
scriptions and their connectivity;

• There is a single root in the decomposition
graph (which is a component with no parent-
components), and each leaf is a component with
no child-component;

• Nodes have indices starting at the root (X1), in-
creasing based on a breadth-first expansion from
the root and ending at the s + 1 leaves, labeled
Xn−s, ..., Xn;

• Each component computes a local diagnosis based
on local observables.

We base our approach on synthesizing diagnoses, start-
ing from the leaf components and ending up at the
root of the tree. We first decompose the decomposi-
tion graph into a clan graph. Based on the clan graph
we construct a clan table for each node in the graph.

Under this scheme, we pre-compute clan tables for
each clan in GY . Given an observation θ for blocks
Xi, ..., Xk, where Xi, ..., Xk are members of a clan
Y ∈ GY , each block computes diagnostics locally. We
then compute the most likely fault-mode assignment
for Y through a process we call diagnostics synthe-
sis, which entails table-lookup in the clan table of the
minimal diagnosis given θ. The algorithm synthesizes
final diagnoses, going from the leaves to the root. This
guarantees a sound, complete and globally minimum
system diagnosis.



Scenario ADB1 Unit Pass. Unit11 Pass. Unit12 Diagnosis

C11 C12 S11 V D11 S12 V D12 LOCAL GLOBAL
1 audio audio nom. none nom. none − −
2 audio audio none none nom. none P11-audio-fail P11-audio-fail
3 audio audio none none none none P11-audio-fail∧ P12-audio-fail Xaudio
4 video video nom. nom. nom. none P12-video-fail P12-video-fail
5 video video nom. none nom. none P11-video-fail∧ P12-video-fail Xvideo
6 audio video none none none. none P11-audio-fail∧ P12-video-fail ADB1-fail

Table 1: Diagnostic Scenarios. We denote a nominal passenger output of nominal using nom., and abnormal
observable data in bold-face. Xaudio denotes degraded audio, and Xvideo denotes degrated video.

In this approach we first need to pre-compute the clan
table, and then use that table for diagnostic synthesis.
We can pre-compute the clan table from a set of blocks
{Φ1, ...,Φk} as follows:

1. Generate the decomposition graph GX from
{Φ1, ...,Φk}, with indices increasing in a breadth-
first manner from the root.

2. Generate the clan graph GY of GX .
3. Compute the clan table for each clan Yi in GY .

Given an observation θ, the diagnostic synthesis algo-
rithm is as follows:

1. Given observation θ, each block Bi computes its
local diagnosis DΦi(θ) and likelihood κ(DΦi).

2. Mark all nodes Xi, i = 1, ..., n with flag=0;
3. Loop for j = n to 1:

• If flag=0 for Xj do:
For each node Xi in the clan Y (Xj), look
up corresponding clan diagnosis DΦY (θ) and
weight κ(DΦY (θ)) in the clan-table;

If κ(DΦY (θ)) <
∑

k:Φk∈Y

κ(DΦk),

– revise fault-mode assignment to nodes
in Y (Nj), by (a) setting the minimum-
weight diagnosis mode-variable; (b) if any
local diagnosis D′ is synthesized, update
D′.

– reassign values to variables in Y based on
D and θ

– if reassignment is sound pass message
with fault report DΦY (θ).

– Set flag for all Xi ∈ Y (Xj) to 1;

This algorithm has the following guarantees:

Theorem 2 Given a tree-structured decomposition
graph GX and local component diagnoses, diagnostics
synthesis will compute a sound and globally consistent
set of fault mode assignments for components X ∈ GX
within O(|Y|) message-passing steps, where GY is the
clan graph generated from GX .
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Figure 4: Diagnosis synthesis procedure, Step 1: (a)
local diagnoses synthesized at clans, and (b) clan di-
agnoses are passed between families, as noted by dark
arrows.

Example 2 Diagnosis Synthesis in a Clan: Con-
sider Scenario 3 of Table 1. For this observation θ, the
total set of possible clan diagnoses is: (P11, audio-fail)
∧ (P12, audio-fail) ∨ (ADB1, Xaudio). The weights of
the diagnoses are 2 and 1, respectively.

In computing diagnoses on a purely local basis, the
resulting diagnosis is (P11, audio-fail) ∧ (P12, audio-
fail), with weight 2. Note however there is a family
diagnosis of weight 1, (ADB1, Xaudio), which is se-
lected since it is of lower weight than the distributed
diagnosis. We now instantiate each local component
with θ, and set diagnoses as follows: (P11, ∅), (P12,
∅), (ADB1, Xaudio). There exists a consistent set of
local variable instantantiations for this assignment, so
no further message-passing is necessary.

Example 3 Message-Passing: Figure 4 shows the
first stage of this procedure. In the graph we show
nodes where the variables are restricted to fault mode
variables, to simplify the description of message-
passing of instantations of mode variables. First, the
local diagnoses are computed at each node in the de-
composition graph: all four passenger units register a
fault, and no other nodes in the decomposition graph
register faults. As a shorthand, we denote a fault-
weight pair using variable-names for faults, with ∅ de-
noting a nominal mode. Then, these faults are syn-
thesized at each clan using the clan-table: fault-weight



pair (P11 ∧P12, 2) is synthesized into (ADB1, 1), and
fault (P21∧P22, 2) is synthesized into (ADB2, 1). Sec-
ond, the synthesized faults (ADB1, 1) and (ADB2, 1)
are sent to the adjacent node in the clan graph, Y1.

ADB1-mode
P11-mode
P12-modeTx-mode

ADB1-mode
ADB2-mode

ADB1-mode

ADB1-mode
P21-mode
P22-mode

ADB2-mode

∅∅∅∅
Local Dx

Family Dx

Local Dx

Family Dx

Local DxADB1∧ ADB2

Tx Family Dx

∅∅∅∅

Y1 Y2

Y3

Figure 5: Diagnosis synthesis procedure, Step 2:
global diagnoses computed following family diagnosis
message-passing.

Figure 5 shows the second stage of this procedure.
Fault-weight pair (ADB1 ∧ ADB2, 2) is synthesized
into (Tx, 1) at clan Y1, and all other fault-modes are
set to nominal. This is the global minimum-weight
fault.

4.2 COMPLEXITY ISSUES

This approach is based on computing diagnoses for
the clans of G. Hence, it never needs to diagnose a
system description for the entire graph G, but only
for the clans of G. As noted in Theorem 2, once the
clan tables are computed, given any local component
diagnoses, the algorithm is linear in the number of
nodes in the clan-graph.

The worst-case complexity of computing a clan table
is exponential in the number of variables in the clan
table. The memory requirements for storing the clan
tables are defined as follows. In the worst case, for a
clan with mode variables A1, ...,Am, where each mode
variable has |ωAi | faulty values, a clan table stores
an entry for each of the ×i|ωAi | multiple-fault com-
binations. For single-fault scenarios, a clan table must
store only

∑
i |ωAi | entries.

For tree-structured systems the complexity of diagnos-
ing G is exponential in the clan size, and the com-
plexity is bounded by the largest clan of G. Hence
the complexity of initially computing diagnoses is the
same for the centralized and distributed approaches.
However, for embedded applications, the distributed
approach has a complexity advantage, since only clan-
table lookup and simple message-passing are required.
The major possible drawback is the space complexity
of the clan tables. The complexity of logical resolution

within a distributed framework have been discussed in
detail in (Amir and McIlraith, 2000). The complex-
ity properties are almost identical to those of our ap-
proach, even though our task is model-based diagnosis
within a directed tree.

5 EXTENSIONS TO
NON-TREE-STRUCTURED
GRAPHS

This section discusses the applicability of this theory
to non-tree-structured graphs, or when a decomposi-
tion tree is not provided by the user. We first show
the theoretical underpinnings of this applicability, and
then discuss experience with real-world system topolo-
gies.

5.1 THEORETICAL PERSPECTIVES

The proposed approach has been designed especially
for tree-structured systems, when the structure is spec-
ified at a fairly abstract (or LRU) level, and not at the
most detailed component level. This approach is ex-
tensible to arbitrary system topologies, by applying a
class of tree-decomposition algorithms that transform
arbitrary graphs into trees.

The work on tree-decomposition stems from work on
treewidth and graph minors (Robertson and Seymour,
1986). A good review of the literature can be found in
(Bodlander, 1997). We define the basic notions below.

Definition 12 A tree decomposition of an undirected
graph G = (V,E) is a pair (X , T ) with T = (I, F ) a
tree, and X = {Xi|i ∈ I} is a family of subsets of V ,
one for each node of T , such that

1.
⋃

i∈I Xi = V ;

2. for all edges {v, w} ∈ E there exists an i ∈ I with
v ∈ Xi and w ∈ Xi, and

3. for all i, j, k ∈ I if j is on the path from i to k in
T , then Xi ∩Xk ⊆ Xj.

The width of a tree decomposition is maxi∈I |Xi| − 1.
The treewidth of a graph G is the minimum width over
all tree decompositions of G.

The treewidth bears close relations to the maximal
vertex degree and maximal clique of a graph, so it
provides a measure of the complexity of diagnostic in-
ference, among other things. If a graph has a low
treewidth then inference on the graph is guaranteed
to be easy.



The task of computing treewidth is NP-hard (Arn-
borg et al., 1987). Many algorithms exist that, given
a graph with n variables, will compute an optimal
treewidth in time polynomial in n but exponential in
the treewidth k; see, for example, (Bodlaender, 1996).

The difference between the standard literature on tree-
decompositions and the task addressed here is that the
standard literature focuses on undirected graphs, and
we focus on directed graphs. The tree-decomposition
results have been generalized to directed graphs in
(Johnson et al., 2002), and we make use of some of
those results here. The key change is that we need
to preserve ordering of edges during the decompo-
sition process. To capture such properties, we first
need to define a notion of variable ordering, called Z-
normality.

Definition 13 Let G be a digraph and let Z ⊆ V.
A set S is Z-normal if and only if the vertex-sets
of the strong components of G \ Z can be numbered
S1, S2, ..., Sd such that

1. if 1 ≤ i ≤ j ≤ d, then no edge of G has a head in
Si and tail in Sj, and

2. either S = ∅ or S = Si ∪ Si+1 · · · ∪ Sj for some
integers i, j with 1 ≤ i ≤ j ≤ d.

Definition 14 A D-tree decomposition of a digraph
G = (V , E) is a pair (X , TD) with TD = (I,F) a D-
tree, and X = {Xi|i ∈ I} is a family of subsets of V,
one for each node of TD, and the edges are numbered
J = {1, ..., l} with F = {Fj : j ∈ J }, such that

1.
⋃

i∈I Xi = V;

2. for all edges {v, w} ∈ E there exists an i ∈ I with
v ∈ Xi and w ∈ Xi, and

3. for all i, j, k ∈ I if j is on the path from i to k in
TD, then Xi ∩Xk ⊆ Xj;

4. if j ∈ J , then
⋃

i{Xi : i ∈ I, i > j} is Xj-normal.

The width of a tree decomposition is the least integer
w such that for all i ∈ I, |Xi ∪

⋃
Xj| ≤ w+ 1, where

the union is taken over all edges j ∈ J incident with
i. maxi∈I |Xi| − 1. The treewidth of a graph G is the
least integer w such that G has a D-tree-decomposition
of width w.

For the class of applications addressed in this article,
the input graphs G for the system description are di-
graphs, and the decomposition graph and clan graph
are both D-tree decompositions of G. For more gen-
eral digraph topologies, by applying an algorithm for

generating D-tree decompositions, we can convert the
digraphs into a decomposition graph, and apply the
diagnostic synthesis approach. Many of the properties
of undirected tree-decompositions hold for the directed
case (Johnson et al., 2002).

5.2 PRACTICAL EXPERIENCE WITH
REAL-WORLD SYSTEMS

In our experience in building diagnostic models, many
real-world systems have tree-structured abstract sys-
tem descriptions (decomposition graphs). For exam-
ple, models from the class of fluid-flow systems (includ-
ing HVAC systems, pneumatic systems, fuel systems,
chemical processing systems, etc.) have either a sim-
ple tree or path structure, or they contain loops which
can be converted into paths given a sensor positioned
on the loop.8

For systems without a natural tree-structured de-
composition graph, it is possible to convert the sys-
tem digraph into a decomposition graph using D-tree-
decomposition algorithms; however, the treewidth of
the resulting decomposition graph would determine
the efficiency of the diagnostic synthesis approach.
Hence generating a low treewidth decomposition graph
for a particular system is topology-dependent. To
date, our experiments on simple real-world systems
have shown that the resultant decomposition graphs
have low treewidth. Further work is necessary to de-
termine how this scales up to large systems.

6 RELATED WORK

Our approach to distributed diagnosis has been pre-
ceded by many pieces of related work, and we review
several here. Note that is review examines the most
relevant work, and does not claim to be exhaustive.

One of the most closely-related pieces of work describes
techniques for distributed logical inference (Amir and
McIlraith, 2000; McIlraith and Amir, 2001). This
work focuses on how to perform logical reasoning and
query answering, proposing sound and complete mes-
sage passing algorithms, by exploiting the tree struc-
ture of distributed theories. They examine the com-
plexity of computation, propose specialized algorithms
for first-order resolution and focused consequence find-
ing, and propose algorithms for optimally partitioning
a theory that is not already distributed. In some ways,
our task can be considered a speical case of the general
problem that Amir and McIlraith examine. Logical

8We showed in (Darwiche and Provan, 1996) that a loop
can be broken by the presence of an observable variable in
the loop.



inference computes a model, whereas diagnostic infer-
ence computes a minimal model in the assumables, a
subset of the language of the theory. We leverage many
aspects of the specific diagnosis problem in our work,
that serve to distinguish both our approach and our
results. These include the notion of causality, which
imposes a directionality on the tree structure and the
inference, and the notion of preference. In addition,
the task of diagnostic inference depends critically on
two classes of distinguished variables, assumables (the
literals of interest) and observables (the inputs), and
distributed diagnosability depends on how assumables
and observables are distributed among the collection of
blocks. In addition, if the variables common between
two blocks are observable, then from a distributed di-
agnostics point of view those blocks are independent
(Darwiche and Provan, 1996).

The approach presented here bears some relation to di-
agnostic approaches on trees. Stumptner and Wotawa
(Stumptner and Wotawa, 2001) have an algorithm for
diagnosing tree-structured systems. This approach as-
sumes a centralized system defined at the component
level whereas our approach deals with distributed sys-
tems that can be defined at any level of abstraction.
In addition, our assumption of sub-systems comput-
ing their own diagnoses means that our diagnostic
synthesis process is a single-pass algorithm from the
leaves of the tree to the root, whereas Stumptner and
Wotawa need a two-pass approach since they must first
enumerate all component diagnoses. A second major
tree-based method uses a clique-tree decomposition of
a system, e.g., the diagnostic method of (Fattah and
Dechter, 1995). A clique-tree is a representation that
is used for many kinds of inference in addition to diag-
nosis, including probabilistic inference and constraint
satisfaction. The tree we generate is a directed tree
with a fixed root, and the nodes of the tree are gener-
ated based on the clan property; a clique-tree is undi-
rected (with an arbitrary root), and the nodes of the
tree are generated based on the family property. One
can think of the D-tree as a directed variant of a clique-
tree, which is optimized for diagnostic inference. In
addition, our approach uses the ordering of the D-tree
to require message-passing in a single direction only;
in contrast, message propagation in clique trees is bi-
directional.

Deb et al. (Deb et al., 1998) describe an implemented
approach (based on the TEAMS-RT platform) for per-
forming decentralized diagnosis. This approach shares
several similarities to our own, such as the use of lo-
cal and global specifications for decentralized modules.
However, they make a strong assumption that we be-
lieve does not hold true in practice: they assume that

the outputs of each subsystem are observable. If we
make that assumption in our approach, then it is guar-
anteed that local diagnoses will always equal global
diagnoses.

Our work also bears some relation to papers describing
distributed solutions to Constraint Satisfaction Prob-
lems (CSPs) (Yokoo et al., 1998; Hirayama and Yokoo,
2000). As with the work on distributed logical in-
ference (Amir and McIlraith, 2000), the task of dis-
tributed CSPs is finding a satisfying assignment to the
variables, when constraints are distributed in a collec-
tion of subsets of constraints. Hence the underlying
tasks of distributed diagnosis and CSP satisfiability
are different. One issue in this work that is similar to
diagnostic reasoning is the recording of minimal sets of
unsatisfiable clauses as nogoods (Hirayama and Yokoo,
2000). The computation of nogoods is a key step to
computing diagnoses (de Kleer and Williams, 1987).

There have been several proposals for using the ATMS
(de Kleer, 1986) in a distributed manner, e.g., (Drag-
oni, 1993; Mason and Johnson, 1989; Malheiro and
Oliveira, 2000). Our approach differs from this work
in that our approach uses system topology explicitly,
whereas these other approaches do not make as exten-
sive a use of topology.

The compilation approach proposed in this article
bears some relation to prior work.9 (Simon and del
Val, 2001) presents an empirical comparison of cen-
tralized compilation techniques as applied to several
areas, of which diagnosis is one. Our future work in-
cludes examining the applicability of these compilation
techniques within our distributed framework. Compi-
lation is also examined in (McIlraith and Amir, 2001).

There has been some prior work on distributed model-
based diagnosis. For example, the approach in
(Frohlich et al., 1997) assumes that the diagnosis com-
puted by each distributed agent is globally correct,
and examine the case where agents must cooperate to
diagnose components whose status is unknown. Our
approach makes the more realistic assumption that di-
agnoses are not necessarily globally sound, and derives
a very different global synthesis algorithm.

7 SUMMARY AND CONCLUSIONS

This document has described a mechanism for comput-
ing distributed diagnoses using system topology and
observability properties. This algorithm takes as input
minimal diagnoses computed within distributed com-

9A review of compilation can be found in (Cadoli and
Donini, 1997).



ponents, and uses system topology to integrate these
diagnoses into a globally sound and minimal system
diagnosis. We are in the process of applying this ap-
proach to two real-world domains, that of In-Flight
Entertainment and diagnosis of HVAC systems.

The approach presented here provides a mechanism
for designing systems with predictable distributed di-
agnostics properties. A given decomposition graph
can be rated according to its diagnosability and ef-
ficiency. Additionally, given a system description, we
can apply D-tree decomposition algorithms to the sys-
tem DAG to assist in identifying small-treewidth de-
compositions, if any exist. Further, if a system has
no small treewidth decomposition, one can then rec-
ommend system re-design to help achieve an efficient
distributed diagnosis solution.
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A PROOFS OF THEOREMS

This section presents the proofs for the theorems con-
tained in the article.

Theorem 1 If we have a system description Φ con-
sisting of two component system descriptions Φ1 and
Φ2, and a system observation θ, if the variables shared
by Φ1 and Φ2 all appear in θ, then

DΦ(θ) ≡ DΦ1(θ1) ∧DΦ2(θ2).



Proof: The original statement of this result was in
terms of a consequence, i.e.,

ConsΦ(θ) ≡ ConsΦ1(θ1) ∧ ConsΦ2(θ2),

where a consequence Cons is defined as

Definition Given a system observation θ and system
description SD, the consequence ConsΣA(θ) is a sen-
tence satisfying the following properties:

1. ConsΣA(θ) is an A-sentence;

2. Σ ∪ {θ} |= ConsΣA(θ);

3. For any A-sentence β, Σ ∪ {θ} |= β only if Σ ∪
{θ} |= ConsΣA(θ).

We have restated the theorem replacing consequence
with diagnosis. So to prove this result, we just need to
show that a diagnosis is a specialized instance of a con-
sequence. By using the third property of consequence,
we can write
For any diagnosis (A-sentence) D, Σ ∪ {θ} |= D only
if Σ ∪ {θ} |= ConsΣA(θ). Based on this property, the
theorem holds. ✷

To facilitate the proof of these results, we introduce
some notation. We assume, WLOG, that the vertices
of GX are numbered V1, ..., Vn, where V1 is the root,
and all other nodes are ordered based on a breadth-
first expansion from the root. We denote the chil-
dren of Vi as χ(Vi). The leaves of GX are denoted
by λ = {Vi|χ(Vi) = ∅}. In an analogous fashion, we
order the clans of a clan graph such that the root
is Y1, and all other nodes are ordered based on a
breadth-first expansion from the root. Recall that
the system description for Vi is Φi, and for the clan
Y (Vi), i.e. Vi ∪ χ(Vi), is Φî; further, the observable
instantiation for clan Y (Ni) is Vobs

Φî . We know that
Vobs

Φî =
⋂

j Vobs
Φj ∀Vj ∈ Y (Vj).

Lemma 1 If a sound, complete and minimal global
diagnosis exists, then no clan diagnosis will have a
contradictory diagnosis.

Proof: Given clan Yi with observation Vobs
Φî and sys-

tem description Φî, if

Φî ∪ Vobs
Φî |= ⊥, then

Φî ∪ Vobs
Φî ∪ α |= ⊥, for any sentence α.

Hence, it is not possible to assume that there is a con-
tradiction in a clan yet no contradiction in the com-
plete system, since Φî ⊆ Φ. ✷

Theorem 2 Given a tree-structured decomposition
graph GX and local component diagnoses, diagnostics
synthesis will compute a sound and globally consistent
set of fault mode assignments for components X ∈ GX
within O(|Y|) message-passing steps, where GY is the
clan graph generated from GX .

Proof: We can break this result up into two parts,
first the soundness and global consistency, and second
the time-complexity.

1. Soundness and global consistency

From Theorem 1, we know that DΦ(θ) ≡
∧

iD
Φi(θi).

Given a tree, each clan of the tree defines a collection of
component system descriptions that must satisfy this
theorem. In other words, given a node Vi in the tree,
the only variables with which Vi shares variables are
its children χ(Vi) and its parent π(Vi). Further, we
know that π(Vi) is independent of χ(Vi) given Vi, us-
ing a well-known property of (directed) graphs. Hence,
once Vi has a complete, sound and minimal (CSM) di-
agnosis, then the diagnosis for π(Vi) can be synthesized
independent of χ(Vi).

We now prove this result inductively for all nodes in
the decomposition graph GX , starting at the leaves of
GX . We assume at the outset that each local diagno-
sis is complete, sound and minimal (CSM): D(Φi) is
CSM, ∀Vi. Starting at the leaf clans corresponding to
GX , we synthesize the diagnoses for all leaf nodes λ of
GX , and for the parents of these leaf nodes, π(λ). We
know by Lemma 1 that no clan can ever produce an
unsound diagnosis; the issue here is guaranteeing min-
imality. At the next step, taking any synthesized node
Vj ∈ π(λ), we can now synthesize its parent in GX us-
ing the clan Y (π(Vj)). We know that this synthesis
will create a CSM diagnosis for this clan since π(Vj)
is independent of the values of the nodes in λ, and all
the children of Vj have been synthesized through the
first synthesis step. We now proceed inductively on the
nodes of GX or decreasing order to the root. After syn-
thesizing the root clan, we now know that every clan in
the clan graph contains globally CSM diagnoses, and
hence each node in GX has CSM diagnoses.

Finally we need to show that this process terminates
with a globally CSM diagnosis. Assume that we have
completed the process, yet there is some vertex Vi ∈
GX that does not have a globally CSM diagnosis. Since
we know that every node Vi ∈ GX is contained in at
least one clan, and every clan has been synthesized,
then every node must have been synthesized, and have
a CSM diagnosis at the termination of the process.
Hence, we have a contradiction, and this process must
terminate with a globally CSM diagnosis.

2. Time-complexity If the diagnosis of a child-node
Vj in a clan is modified through the synthesis process,
then we must perform diagnostic synthesis on Y (Vj).
Assume that we start from the leaves of GX . Given
that the clan graph has |Y| clans, we need to perform
|Y| synthesis steps to reach the root of the tree.

Hence, diagnostics synthesis will terminate and com-
pute a sound and globally consistent set of fault mode
assignments for components X ∈ GX within O(|Y|)
message-passing steps. ✷


