
AGENT-BASED, DISTRIBUTED DIAGNOSIS
FOR SHIPBOARD SYSTEMS

Gregory Provan, Yi-Liang Chen
Rockwell Scientific Company,1049 Camino dos Rios, Thousand Oaks, CA 91320, USA

{gprovan,ylchen}@rwsc.com

The ability to reconfigure a ship's engineering plant in response to changing
mission or equipment conditions can dramatically increase a ship's capability and
survivability. We describe the agent-based, distributed diagnostic aspects of a
distributed control architecture that integrates multiple ship systems and provides
resource- and diagnostic-driven reconfiguration at multiple system levels, such as
mission-level, process-level and component-level. We embed system- and sub-
system models in distributed, agent-based components to provide distributed
diagnostics. We demonstrate this architecture using a shipboard chilled water
system application.

1. INTRODUCTION

Improving the fight-through capability of future combat ships necessitates an
integrated ship control system that can monitor all shipboard engineering assets and
adaptively reconfigure these assets during battle conditions. For example, if a
chilled water supply unit is damaged during combat, a ship control system may
temporarily overload another chiller to provide the required cooling capacity or shed
non-combat heat loads to reduce cooling requirements. If the chilled water system
still cannot satisfy combat cooling demand, the ship control system may allow
certain combat systems to moderately overheat or selectively reduce the
performance of combat systems (e.g., reduce gun firing rate) to avoid complete
system shutdown. To achieve such intelligent ship responses, all the various
shipboard subsystems (e.g., chilled water system, fire-main, propulsion, generator,
combat system, etc.) must be tied together under an integrated control hardware and
software architecture. To maximize fault/damage tolerance, the integrated ship
control system must also be a physically distributed architecture with intelligent
autonomous behavior embedded in low-level system components.

We use an agent-based approach to guarantee global system properties, such as
mission achievement, while distributing inference for fault-tolerance and sub-system
autonomy. To this end, we have developed a hierarchical, distributed software
architecture based on agent technology. Agents are self-contained software entities
capable of communicating and making individual decisions (Wooldridge and
Jennings, 1995). They work autonomously, handle goals, maintain beliefs, and
cooperate through negotiation to create solutions.

An agent’s decision logic is usually implemented using rule-based reasoning similar
to an expert system. Rule-based reasoning has two main drawbacks: (1) difficulty of
ensuring the completeness of the rule set for handling all situations, and (2)

2 Agent-Based, Distributed Diagnosis for Shipboard Systems

difficulty of maintaining the rule set when the controlled system expands or
changes. To overcome these drawbacks, we use a model-based framework for the
agents’ decision logic. A model not only captures an expert’s knowledge, but is a
rigorous description of how a system works based on first principles. Given a model,
model-based diagnostics algorithms can guarantee soundness and completeness of
all diagnoses generated (Darwiche, 1998).

We embed within each agent system and sub-system models to provide diagnostics
and assist in system reconfiguration when problems are detected. In the following
sections, we describe the autonomous cooperative agent and model-based reasoning
methodology, and the integration of these two methodologies within a distributed,
reconfigurable control architecture. We use a chilled water system as a
demonstration test-bed of this agent-based architecture.

L

CW

CW

L L L L L

Zone #2

Zone #1

LL L

Supply
L

CW

CW

L L L L L

Zone #2

Zone #1

LL L

Supply

Return Return

(a) System Schematic (b) Partitioning system into regions

Figure 1: Figure (a) shows a simplified diagram of chilled water system test bed. L
= Load, CW = Chilled Water Production Unit. Individual valves for each load are
not shown. Figure (b) shows how we partition regions of the system into functional
units. The partitioning of segments of the return piping system are shown .

2. CHILLED-WATER SYSTEM APPLICATION DOMAIN

In this article we apply our agent-based diagnostics architecture to a chilled water
system testbed. This system provides multiple types of services across two physical
zones, and contains redundant pumps and valves to allow for control reconfiguration
in case of equipment failure. Figure 1(a) shows a highly simplified diagram of the
chilled water system. The heat loads (marked by “L”) are divided into three types:
non-vital, vital, and combat system heat exchanger. The non-vital loads have a
single path for supply water and a single path for return water; the vital loads have a
single supply path and dual (redundant) return paths, the combat system heat
exchangers (critical loads) have either a single or dual supply paths and dual return
paths. The loads are also located in two different physical zones. The key
objectives of control reconfiguration are to segregate the zones, shut down low-

Agent-Based, Distributed Diagnosis for Shipboard Systems 3

priority services in combat conditions, and to manage the loads upon detection of a
chiller machine failure.

Mission Level

Process Level

Machine
 Level

Combat
Systems Propulsion Chilled

Water
Power

Generation

Chiller
#2

Zone
#1

Zone
#2

Zone
#3

Process: Chilled Water

Mission
Command & Control

Chiller
#1

Figure 2: Control system hierarchy is composed of three levels.

2. DISTRIBUTED AGENT FRAMEWORK

We break our architecture into three levels, based on the functional requirements and
control techniques which must be employed at each level. These levels are:

1. Mission Level – This is the highest level in the control architecture; the mission-
level controller sets priorities and performance objectives for all ship engineering
systems based on the overall mission goals. For example, in a damage control
situation, resources would be shifted from less critical services, such as drinking
water production, to fire-fighting systems. Similarly, control and use of the ship’s
resources for the various system functions can be optimized for dockside, normal
steaming, battle stations, and damage control conditions. Inference at this level
typically consists of tradeoff analysis of system requirements and optimization of
mission-level parameters, such as overall fuel usage.
2. Process Level – Each process-level controller provides a general ship service
(e.g., chilled water service, propulsion service, etc.), and will reconfigure its system
operation based on the performance objectives set by the higher level (i.e., mission-
level) controller. For example, the chilled water service may temporarily overload a
water chiller unit when it senses another unit is down, in order to maintain the
cooling rate objective set by the mission-level controller. This will result in
optimized machine and energy use, and automatic reconfiguration of resources to
maintain service availability in the event of faults or damage. Inference at this level
typically consists of optimization of process-level parameters, together with
discrete-event control.
3. Machine Level – Controllers at this level monitor and control individual machine
units (e.g., a chiller) to maintain machine availability and achieve the machine
setpoints requested by the process-level controller. For example, if excessive motor
vibration at a pump is detected, the machine-level controller may alter the motor
speed to avoid exciting a critical frequency and thus avoid damage. Inference at this

4 Agent-Based, Distributed Diagnosis for Shipboard Systems

level typically consists of optimization of process-level parameters, together with
discrete-event and/or continuous control.

In the agent-based control system, each agent (called an Autonomous Cooperative
Unit, or ACU) represents a physical process or equipment and coordinates its
operation with other agents. Control actions are the result of coordinated decisions
among all ACUs.

Figure 3 shows the control software architecture, composed of a collection of
mission-level ACU, process-level ACUs, and machine-level ACUs. Each ACU at
each level receives performance goals from a higher level ACU, and uses its internal
model (whether it be a mission-level, process-level, or machine-level model) to
diagnose problems and achieve the desired performance goal.

MACUMACU MACUMACU

Mission ACU
(MiACU)

PACU Process ACU
(PACU)

Sensor/ActuatorSensor/ActuatorSensor/Actuator Sensor/Actuator Sensor/ActuatorSensor/ActuatorSensor/Actuator Sensor/ActuatorSensor/Actuator Sensor/ActuatorSensor/Actuator Sensor/Actuator Sensor/Actuator Sensor/Actuator

Machine ACU
(MACU)

PACUPACU PACU PACUPACU

MACU

Figure 3: Hierarchical software architecture showing three ACU levels,

corresponding to Mission, Process and Machine. The machine level ACU interacts
with sensors and actuators.

When a requested performance goal cannot be achieved, ACUs initiate distributed
problem solving actions to find alternative solutions that best meet the system’s
goals. The technique is comprised of 2 steps. The first step consists of discovering
the physical relationships among Machine ACUs. The second step involves
developing feasible plans that satisfy both local and shared constraints.

Machine ACUs contain models that provide self-awareness and self-assessment
capabilities. The interaction of Machine ACUs is founded on the creation and
dissolution of virtual control clusters. Within these clusters, Machine ACUs
negotiate to obtain the near-optimal solutions, while considering both local and
system conditions. The sequence of communication is as follows: Machine ACUs
provide Process ACU with a number of solutions to be prioritized according to goals
and constraints. Process ACUs use local (process) goals to select the best settings.
In the same way, when a process-level goal cannot be achieved, Process ACUs also
negotiate and provide the Mission ACU with a number of possible solutions.

Agent-Based, Distributed Diagnosis for Shipboard Systems 5

Cooperative software agents permit the creation of highly flexible control systems
based on both autonomy and cooperation. The ACU framework is well suited for
solving resource allocation problems on distributed hardware. The resultant software
is easily scalable to large systems. When a new machine is added to a system, the
overall software is updated simply by adding a corresponding agent to represent the
new machine. Autonomous capability is directly designed into an agent so that it can
continue to operate in the event of failures in the other agents.

To ensure generality of our approach, we have developed a Job Description
Language, called JDL (Tichý et al., 2002), for inter-agent communication. This
language enables agents to communicate for all activities using a single, unified
framework.
3. DISTRIBUTED MODEL-BASED DIAGNOSTICS
This section summarizes our distributed framework for model-based diagnostics that
can generate a distributed system model, and then integrate the diagnostics
computed by each distributed component into a globally sound and complete
system-level diagnosis (Provan, 2002). We first show how we create a distributed
model, and then how we use agents to integrate the distributed diagnoses into a
system-level diagnosis.

3.1 Distributed Model-Based Diagnosis

A model-based diagnosis approach works as follows. The algorithm uses the system
model to simulate sensor values, and compare these with the actual sensor readings.
If there is a discrepancy, the diagnostic engine is invoked to determine the most
likely cause of this discrepancy.

We have extended the same causal-network diagnostics approach such that it can be
used for both diagnostics and for assisting control reconfiguration (Provan and
Chen, 1999). For diagnostics, the actual sensor values are propagated through the
causal-network model to determine the faulty component and the operational
mode(s) that would produce the abnormal sensor values. Conversely, for system
reconfiguration, the desired machine or process output values are propagated
through the causal network to determine the equipment settings necessary to achieve
the desired output (subject to the constraint that certain components are unavailable
or are in failure mode). When multiple diagnostic solutions or reconfiguration
solutions are found in the model, the best solution can be determined by evaluating
probabilities or costs associated with the various component modes or settings.

Our distributed diagnosis technique transforms a centralized model into a distributed
model, and then synthesizes the minimal diagnoses computed by the distributed
components into a global minimal diagnosis using formally sound principles. We
use the topology, both functional and physical, of the system to partition the model
into distributed components. For example, for the shipboard chilled-water system
shown in , we can create components for the major subsystems (e.g.,
chillers and loads) and piping segments (according to the physical connectivity of
pipes).

Figure 1

6 Agent-Based, Distributed Diagnosis for Shipboard Systems

For each distributed component, we also record the entities that are inputs and
outputs. For our chilled water application, for each distributed component we have
water (with properties like temperature, pressure and flow) as the inputs and outputs.
In addition, each component may have control entities, which include requirements
placed on the component, e.g., a chiller being required to provide x units of chilled
water, or requirements placed by a component, e.g., a load requesting y units of
chilled water. For this chilled-water application, we decompose the system into a set
of functional units, as shown in Fi (b). A functional unit is defined to be a load,
valve, chiller, and pipe segment; we then assign an agent to each unit.

gure 1

Unlike previous approaches, which compute diagnoses using the system
observations and a centralized system description (Darwiche, 1998; de Kleer and
Williams, 1987), we use a distributed approach. We build a causal network model
for the high-level component interactions. A causal-network model consists of
interconnected component models in which each component has various operational
modes; for example, a valve component may have the following operational modes:
normal, stuck open, and stuck closed. An input/output behavior is defined for each
mode of the component. For example, if a valve is in normal mode, then the output
pressure is equal to the input supply pressure when the valve is open.

We assume that each component can compute a local minimal diagnosis based only
on sensors internal to that component and knowledge only of the component system
description; note that we place no restriction on the technique used to compute that
local diagnosis, e.g., neural network, Bayesian network, etc. Given a set of least-cost
or most-likely local diagnoses, we can compute a globally sound, complete and
minimal diagnosis for the complete system (Provan, 2002). The algorithm uses a
graph-based message-passing algorithm that passes diagnoses as messages and
synthesizes local diagnoses into a globally minimal diagnosis. We employ agents to
handle the message-passing and diagnostic synthesis. By compiling diagnoses for
collections of components (as determined by the system topology), we can
significantly improve the performance of distributed embedded systems.

3.2 Agent-Based Diagnostic Synthesis

This section outlines how the agents facilitate the diagnostic synthesis process.
Figure 4 shows the internal functions within an ACU. The ACU entity consists of
three main components: a data table, middleware, and a set of application
components. The data table contains input/output data for sensing/controlling the
devices attached to the control hardware as well as data for the embedded
applications. The middleware supports the agent services, enabling inter-agent
communication across networked hardware. The application components are:

1. equipment simulator (Equip. Sim), which simulates the behavior of the

associated machine or process;
2. diagnostics engine (Diag), which computes the fault status of the associated

machine or process;

Agent-Based, Distributed Diagnosis for Shipboard Systems 7

3. coordinator (Coord), which computes optimal control reconfiguration plans
whenever a fault condition arises or system goals change;

4. execution control module (Exe. Ctrl), which controls the attached devices and
can execute the reconfiguration control plans.

Middleware

Diag Coord

Equip. Sim Exe. Ctrl
Data Table

Figure 4: Internal functions within an ACU

The equipment simulator and diagnostic engine are both implemented using a
causal-network model. The equipment simulator takes equipment settings (or
commands) as input, and simulates the machine or process behavior with all
components assumed healthy. The equipment simulator thus computes the values of
the expected sensor readings by propagating the equipment setting values through
the model. These simulated values are stored in the data table, and compared with
the actual sensor values retrieved by the agents (and also put into the data table). If
there is a discrepancy between the simulated and actual sensor values, the agent
invokes the diagnostic engine to update the local machine’s health state. Given any
local fault, the agents communicate appropriate health status data, and then invoke
the diagnosis synthesis algorithm to generate a global system health status. Finally,
if a fault prevents the mission from being achieved, the agents invoke the control
reconfiguration algorithm to reconfigure the system controls, and then the Execution
Control module (via agent messaging) modifies the equipment control settings.

4. DISTRIBUTED DIAGNOSIS OF A CHILLED-WATER
SYSTEM

ACU Type Number Description

Non-Vital Load 2 Provides low priority cooling that is shut off during
combat mode.

Vital Load 9 Provides high priority cooling that needs to be
maintained under any operation mode.

Combat Sys. Heat Exchanger 4 Provides high priority cooling during combat mode.
Chilled Water Producer 2 Provides cooling capacity.
Water Transport Pipe 1 Provides water transport path under open and

segregated zone conditions.
Chilled Water Service 1 Oversees the chilled water process.
Zone 2 Oversees the areas within a zone.

Table 1: Agent types for chilled-water testbed

We have developed parameterized component models for pump, motor, pipe, valve,
chiller, and heat load. We also identified 7 types of ACU associated with the chilled

8 Agent-Based, Distributed Diagnosis for Shipboard Systems

water test-bed; these ACU types are listed in Table 1 along with the number of
ACUs required for controlling the simplified chilled water system.

For this testbed, we can use this agent-based framework to demonstrate the
diagnostics and control reconfiguration capabilities for several scenarios, such as:
1. Mode changes: moving from one system mode to another, such as from cruise

to battle mode, requires readjustment of chilled water supply due to differences
in chilled-water demands, and to differences in system segregation between the
different modes.

2. Faults: we can simulate the incidence of a fault in the system, such as the failure
of a chiller unit, or a pipe fault (blockage or leakage). In such fault scenarios,
the fault is first identified by a distributed agent, which then must consult with
other agents to compute a global diagnosis.

3. Control Reconfiguration: Given a global diagnosis, the agents then must
reconfigure the control settings in order to see if the goals (both local goals and
chilled-water system goals) can still me met. The coordinator module of each
distributed entity then executes the control reconfiguration.

5. SUMMARY

We have described an architecture for using agents to compute diagnoses and
reconfigure control for a distributed system. Our approach uses a novel agent
language, called a Job Description Language, for the agent interactions, and a novel
model-based diagnostics technique for distributing diagnostics models and
computing system-level diagnoses. We have applied this approach to a chilled-water
test-bed, and have shown how our approach can handle a variety of mode changes
and faults within the test-bed.

6. REFERENCES

 (Darwiche, 1998) A. Darwiche Model-based diagnosis using structured system descriptions. J. of AI
Research, 8:165- 222, June 1998.
 (de Kleer and Williams, 1987) J. de Kleer and B. Williams. Diagnosis with Behavioral Modes. In
Proceedings of the International Joint Conference on Artificial Intelligence, pages 1324—1330, August
1989. Morgan-Kaufmann Publishers.
 (Provan and Chen, 1999) Provan, G. and Y.-L. Chen, “Model-Based Diagnosis and Control
Reconfiguration for Discrete Event Systems: An Integrated Approach,” Proc. 38th IEEE Conf. on
Decision and Control, pp. 1762-1768, December 1999.
 (Provan, 2002) G. Provan. A Model-based Framework for Distributed Embedded Diagnostics. In
Proc. Conf. on Principles of Knowledge Representation, Toulouse, France April 2002.
 (Tichý et al., 2002) Tichý P., Šlechta P., Maturana F., and Balasubramanian S.: Industrial MAS for
Planning and Control. In: Multi-Agent Systems and Applications II, LNAI 2322, Springer Verlag,
Heidelberg, 2002, pp. 280-295.
 (Wooldridge and Jennings, 1995) Wooldridge, M. and N.R., Jennings, “Intelligent Agents: Theory
and Practice,” Knowledge Engineering Review, 10(2), 115-152, 1995.

