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The ability to reconfigure a ship's engineering plant in response to changing 
mission or equipment conditions can dramatically increase a ship's capability and 
survivability.  We describe the agent-based, distributed diagnostic aspects of a 
distributed control architecture that integrates multiple ship systems and provides 
resource- and diagnostic-driven reconfiguration at multiple system levels, such as 
mission-level, process-level and component-level. We embed system- and sub-
system models in distributed, agent-based components to provide distributed 
diagnostics.  We demonstrate this architecture using a shipboard chilled water 
system application. 

 
1.  INTRODUCTION 
 

Improving the fight-through capability of future combat ships necessitates an 
integrated ship control system that can monitor all shipboard engineering assets and 
adaptively reconfigure these assets during battle conditions.  For example, if a 
chilled water supply unit is damaged during combat, a ship control system may 
temporarily overload another chiller to provide the required cooling capacity or shed 
non-combat heat loads to reduce cooling requirements.  If the chilled water system 
still cannot satisfy combat cooling demand, the ship control system may allow 
certain combat systems to moderately overheat or selectively reduce the 
performance of combat systems (e.g., reduce gun firing rate) to avoid complete 
system shutdown.  To achieve such intelligent ship responses, all the various 
shipboard subsystems (e.g., chilled water system, fire-main, propulsion, generator, 
combat system, etc.) must be tied together under an integrated control hardware and 
software architecture.  To maximize fault/damage tolerance, the integrated ship 
control system must also be a physically distributed architecture with intelligent 
autonomous behavior embedded in low-level system components.   

 
We use an agent-based approach to guarantee global system properties, such as 
mission achievement, while distributing inference for fault-tolerance and sub-system 
autonomy. To this end, we have developed a hierarchical, distributed software 
architecture based on agent technology.  Agents are self-contained software entities 
capable of communicating and making individual decisions (Wooldridge and 
Jennings, 1995). They work autonomously, handle goals, maintain beliefs, and 
cooperate through negotiation to create solutions.  
 
An agent’s decision logic is usually implemented using rule-based reasoning similar 
to an expert system.  Rule-based reasoning has two main drawbacks: (1) difficulty of 
ensuring the completeness of the rule set for handling all situations, and (2) 
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difficulty of maintaining the rule set when the controlled system expands or 
changes.  To overcome these drawbacks, we use a model-based framework for the 
agents’ decision logic.  A model not only captures an expert’s knowledge, but is a 
rigorous description of how a system works based on first principles. Given a model, 
model-based diagnostics algorithms can guarantee soundness and completeness of 
all diagnoses generated (Darwiche, 1998).  
 
We embed within each agent system and sub-system models to provide diagnostics 
and assist in system reconfiguration when problems are detected.  In the following 
sections, we describe the autonomous cooperative agent and model-based reasoning 
methodology, and the integration of these two methodologies within a distributed, 
reconfigurable control architecture. We use a chilled water system as a 
demonstration test-bed of this agent-based architecture. 
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Figure 1: Figure (a) shows a simplified diagram of chilled water system test bed. L 
= Load, CW = Chilled Water Production Unit.  Individual valves for each load are 
not shown. Figure (b) shows how we partition regions of the system into functional 
units. The partitioning of segments of the return piping system are shown .  

 
2.  CHILLED-WATER SYSTEM APPLICATION DOMAIN 
 
In this article we apply our agent-based diagnostics architecture to a chilled water 
system testbed. This system provides multiple types of services across two physical 
zones, and contains redundant pumps and valves to allow for control reconfiguration 
in case of equipment failure.  Figure 1(a) shows a highly simplified diagram of the 
chilled water system.   The heat loads (marked by “L”) are divided into three types: 
non-vital, vital, and combat system heat exchanger.  The non-vital loads have a 
single path for supply water and a single path for return water; the vital loads have a 
single supply path and dual (redundant) return paths, the combat system heat 
exchangers (critical loads) have either a single or dual supply paths and dual return 
paths.  The loads are also located in two different physical zones.  The key 
objectives of control reconfiguration are to segregate the zones, shut down low-
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priority services in combat conditions, and to manage the loads upon detection of a 
chiller machine failure. 
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Figure 2: Control system hierarchy is composed of three levels. 

 
2.  DISTRIBUTED AGENT FRAMEWORK 
 
We break our architecture into three levels, based on the functional requirements and 
control techniques which must be employed at each level. These levels are: 
 
1. Mission Level – This is the highest level in the control architecture; the mission-
level controller sets priorities and performance objectives for all ship engineering 
systems based on the overall mission goals.  For example, in a damage control 
situation, resources would be shifted from less critical services, such as drinking 
water production, to fire-fighting systems. Similarly, control and use of the ship’s 
resources for the various system functions can be optimized for dockside, normal 
steaming, battle stations, and damage control conditions. Inference at this level 
typically consists of tradeoff analysis of system requirements and optimization of 
mission-level parameters, such as overall fuel usage. 
2. Process Level – Each process-level controller provides a general ship service 
(e.g., chilled water service, propulsion service, etc.), and will reconfigure its system 
operation based on the performance objectives set by the higher level (i.e., mission-
level) controller. For example, the chilled water service may temporarily overload a 
water chiller unit when it senses another unit is down, in order to maintain the 
cooling rate objective set by the mission-level controller. This will result in 
optimized machine and energy use, and automatic reconfiguration of resources to 
maintain service availability in the event of faults or damage. Inference at this level 
typically consists of optimization of process-level parameters, together with 
discrete-event control. 
3. Machine Level – Controllers at this level monitor and control individual machine 
units (e.g., a chiller) to maintain machine availability and achieve the machine 
setpoints requested by the process-level controller.  For example, if excessive motor 
vibration at a pump is detected, the machine-level controller may alter the motor 
speed to avoid exciting a critical frequency and thus avoid damage. Inference at this 
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level typically consists of optimization of process-level parameters, together with 
discrete-event and/or continuous control. 
 
 
In the agent-based control system, each agent (called an Autonomous Cooperative 
Unit, or ACU) represents a physical process or equipment and coordinates its 
operation with other agents.  Control actions are the result of coordinated decisions 
among all ACUs. 
 
Figure 3 shows the control software architecture, composed of a collection of 
mission-level ACU, process-level ACUs, and machine-level ACUs. Each ACU at 
each level receives performance goals from a higher level ACU, and uses its internal 
model (whether it be a mission-level, process-level, or machine-level model) to 
diagnose problems and achieve the desired performance goal.  
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Figure 3: Hierarchical software architecture showing three ACU levels, 

corresponding to Mission, Process and Machine. The machine level ACU interacts 
with sensors and actuators. 

 
When a requested performance goal cannot be achieved, ACUs initiate distributed 
problem solving actions to find alternative solutions that best meet the system’s 
goals. The technique is comprised of 2 steps. The first step consists of discovering 
the physical relationships among Machine ACUs. The second step involves 
developing feasible plans that satisfy both local and shared constraints. 
 
Machine ACUs contain models that provide self-awareness and self-assessment 
capabilities.  The interaction of Machine ACUs is founded on the creation and 
dissolution of virtual control clusters.  Within these clusters, Machine ACUs 
negotiate to obtain the near-optimal solutions, while considering both local and 
system conditions.  The sequence of communication is as follows: Machine ACUs 
provide Process ACU with a number of solutions to be prioritized according to goals 
and constraints.  Process ACUs use local (process) goals to select the best settings.  
In the same way, when a process-level goal cannot be achieved, Process ACUs also 
negotiate and provide the Mission ACU with a number of possible solutions. 
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Cooperative software agents permit the creation of highly flexible control systems 
based on both autonomy and cooperation.  The ACU framework is well suited for 
solving resource allocation problems on distributed hardware. The resultant software 
is easily scalable to large systems. When a new machine is added to a system, the 
overall software is updated simply by adding a corresponding agent to represent the 
new machine. Autonomous capability is directly designed into an agent so that it can 
continue to operate in the event of failures in the other agents. 
 
To ensure generality of our approach, we have developed a Job Description 
Language, called JDL (Tichý et al., 2002), for inter-agent communication. This 
language enables agents to communicate for all activities using a single, unified 
framework. 
3. DISTRIBUTED MODEL-BASED DIAGNOSTICS 
This section summarizes our distributed framework for model-based diagnostics that 
can generate a distributed system model, and then integrate the diagnostics 
computed by each distributed component into a globally sound and complete 
system-level diagnosis (Provan, 2002). We first show how we create a distributed 
model, and then how we use agents to integrate the distributed diagnoses into a 
system-level diagnosis. 
 
3.1 Distributed Model-Based Diagnosis 
 
A model-based diagnosis approach works as follows. The algorithm uses the system 
model to simulate sensor values, and compare these with the actual sensor readings. 
If there is a discrepancy, the diagnostic engine is invoked to determine the most 
likely cause of this discrepancy. 
 
We have extended the same causal-network diagnostics approach such that it can be 
used for both diagnostics and for assisting control reconfiguration (Provan and 
Chen, 1999). For diagnostics, the actual sensor values are propagated through the 
causal-network model to determine the faulty component and the operational 
mode(s) that would produce the abnormal sensor values.  Conversely, for system 
reconfiguration, the desired machine or process output values are propagated 
through the causal network to determine the equipment settings necessary to achieve 
the desired output (subject to the constraint that certain components are unavailable 
or are in failure mode).  When multiple diagnostic solutions or reconfiguration 
solutions are found in the model, the best solution can be determined by evaluating 
probabilities or costs associated with the various component modes or settings. 
 
Our distributed diagnosis technique transforms a centralized model into a distributed 
model, and then synthesizes the minimal diagnoses computed by the distributed 
components into a global minimal diagnosis using formally sound principles. We 
use the topology, both functional and physical, of the system to partition the model 
into distributed components. For example, for the shipboard chilled-water system 
shown in , we can create components for the major subsystems  (e.g., 
chillers and loads) and piping segments (according to the physical connectivity of 
pipes). 

Figure 1
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For each distributed component, we also record the entities that are inputs and 
outputs. For our chilled water application, for each distributed component we have 
water (with properties like temperature, pressure and flow) as the inputs and outputs. 
In addition, each component may have control entities, which include requirements 
placed on the component, e.g., a chiller being required to provide x units of chilled 
water, or requirements placed by a component, e.g., a load requesting y units of 
chilled water. For this chilled-water application, we decompose the system into a set 
of functional units, as shown in Fi (b). A functional unit is defined to be a load, 
valve, chiller, and pipe segment; we then assign an agent to each unit. 

gure 1

 
Unlike previous approaches, which compute diagnoses using the system 
observations and a centralized system description (Darwiche, 1998; de Kleer and 
Williams, 1987), we use a distributed approach. We build a causal network model 
for the high-level component interactions. A causal-network model consists of 
interconnected component models in which each component has various operational 
modes; for example, a valve component may have the following operational modes: 
normal, stuck open, and stuck closed.  An input/output behavior is defined for each 
mode of the component.  For example, if a valve is in normal mode, then the output 
pressure is equal to the input supply pressure when the valve is open. 
 
We assume that each component can compute a local minimal diagnosis based only 
on sensors internal to that component and knowledge only of the component system 
description; note that we place no restriction on the technique used to compute that 
local diagnosis, e.g., neural network, Bayesian network, etc. Given a set of least-cost 
or most-likely local diagnoses, we can compute a globally sound, complete and 
minimal diagnosis for the complete system (Provan, 2002). The algorithm uses a 
graph-based message-passing algorithm that passes diagnoses as messages and 
synthesizes local diagnoses into a globally minimal diagnosis. We employ agents to 
handle the message-passing and diagnostic synthesis. By compiling diagnoses for 
collections of components (as determined by the system topology), we can 
significantly improve the performance of distributed embedded systems. 
 
3.2 Agent-Based Diagnostic Synthesis 
 
This section outlines how the agents facilitate the diagnostic synthesis process. 
Figure 4 shows the internal functions within an ACU.  The ACU entity consists of 
three main components: a data table, middleware, and a set of application 
components. The data table contains input/output data for sensing/controlling the 
devices attached to the control hardware as well as data for the embedded 
applications. The middleware supports the agent services, enabling inter-agent 
communication across networked hardware. The application components are: 
 
1. equipment simulator (Equip. Sim), which simulates the behavior of the 

associated machine or process; 
2. diagnostics engine (Diag), which computes the fault status of the associated 

machine or process; 
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3. coordinator (Coord), which computes optimal control reconfiguration plans 
whenever a fault condition arises or system goals change; 

4. execution control module (Exe. Ctrl), which controls the attached devices and 
can execute the reconfiguration control plans. 

Middleware

Diag Coord

Equip. Sim Exe. Ctrl
Data Table

 

Figure 4: Internal functions within an ACU 

 
The equipment simulator and diagnostic engine are both implemented using a 
causal-network model. The equipment simulator takes equipment settings (or 
commands) as input, and simulates the machine or process behavior with all 
components assumed healthy.  The equipment simulator thus computes the values of 
the expected sensor readings by propagating the equipment setting values through 
the model. These simulated values are stored in the data table, and compared with 
the actual sensor values retrieved by the agents (and also put into the data table). If 
there is a discrepancy between the simulated and actual sensor values, the agent 
invokes the diagnostic engine to update the local machine’s health state. Given any 
local fault, the agents communicate appropriate health status data, and then invoke 
the diagnosis synthesis algorithm to generate a global system health status. Finally, 
if a fault prevents the mission from being achieved, the agents invoke the control 
reconfiguration algorithm to reconfigure the system controls, and then the Execution 
Control module (via agent messaging) modifies the equipment control settings. 
 
4. DISTRIBUTED DIAGNOSIS OF A CHILLED-WATER 
SYSTEM 
 

ACU Type Number Description 

Non-Vital Load 2 Provides low priority cooling that is shut off during 
combat mode. 

Vital Load 9 Provides high priority cooling that needs to be 
maintained under any operation mode. 

Combat Sys. Heat Exchanger 4 Provides high priority cooling during combat mode. 
Chilled Water Producer 2 Provides cooling capacity. 
Water Transport Pipe 1 Provides water transport path under open and 

segregated zone conditions. 
Chilled Water Service 1 Oversees the chilled water process. 
Zone 2 Oversees the areas within a zone. 

Table 1: Agent types for chilled-water testbed 

We have developed parameterized component models for pump, motor, pipe, valve, 
chiller, and heat load.  We also identified 7 types of ACU associated with the chilled 
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water test-bed; these ACU types are listed in Table 1 along with the number of 
ACUs required for controlling the simplified chilled water system.   
 
For this testbed, we can use this agent-based framework to demonstrate the 
diagnostics and control reconfiguration capabilities for several scenarios, such as: 
1. Mode changes: moving from one system mode to another, such as from cruise 

to battle mode, requires readjustment of chilled water supply due to differences 
in chilled-water demands, and to differences in system segregation between the 
different modes. 

2. Faults: we can simulate the incidence of a fault in the system, such as the failure 
of a chiller unit, or a pipe fault (blockage or leakage). In such fault scenarios, 
the fault is first identified by a distributed agent, which then must consult with 
other agents to compute a global diagnosis.  

3. Control Reconfiguration: Given a global diagnosis, the agents then must 
reconfigure the control settings in order to see if the goals (both local goals and 
chilled-water system goals) can still me met. The coordinator module of each 
distributed entity then executes the control reconfiguration. 

 
5. SUMMARY 
 
We have described an architecture for using agents to compute diagnoses and 
reconfigure control for a distributed system. Our approach uses a novel agent 
language, called a Job Description Language, for the agent interactions, and a novel 
model-based diagnostics technique for distributing diagnostics models and 
computing system-level diagnoses. We have applied this approach to a chilled-water 
test-bed, and have shown how our approach can handle a variety of mode changes 
and faults within the test-bed. 
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