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Abstract

We present a distributed diagnostics and control archi-
tecture for embedded distributed diagnostics. Using
this architecture, we (1) propose a distributed diag-
nostics framework for discrete-event systems based on
causal networks; (2) prove system diagnosability results
based on component diagnosability; and (3) discuss the
tradeoffs involving system diagnosability and commu-
nication requirements.

1 Introduction

The task of diagnosing Discrete Event Systems
(DESs)[1] has received much attention in the litera-
ture. The two dominant formalisms for such analyses
are the construction of a diagnoser from a Finite State
Machine (FSM) system model [12, 13, 15], and the use
of Petri net models [4]. Given the prevalence of many
applications best modeled and diagnosed as distributed
systems, attention has now shifted towards distributed
approaches, such as [3, 5, 14].

The article extends the causal network [2] approach
to diagnosing DESs [8, 9] to a decentralized approach.
Causal networks represent a promising new represen-
tation for DES control and diagnostics, and offer some
advantages over other approaches. In comparison to
distributed approaches based on constructing a diag-
noser from an FSM [3, 14], our approach provides two
major benefits: (1) more efficient diagnostic inference,
since the complexity of constructing the diagnoser and
testing the diagnosability is exponential in the number
of states and doubly exponential in the number of fail-
ure types [12], whereas the causal network approach
has complexity exponential in the graph-width of the
underlying graph [2], but not necessarily exponential
in either the number of states or of failure types; (2)
simpler and more compact modeling, especially for dis-
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tributed models.

In this article we address the conditions necessary to
ensure equivalence between diagnosability properties of
centralized and decentralized approaches (based purely
on local sensor data). Typically, distributed diagnos-
abilty is incomplete with respect to centralized diagnos-
ability, i.e., some sub-systems are not diagnosable given
purely local sensor data, but require data from other
sub-systems. When discrepancies exist between dis-
tributed and centralized diagnosability, approaches like
message-passing must be employed to enable complete
sub-system diagnosabilty within a distributed model.
Our contributions are as follows: (1) we propose a dis-
tributed diagnostics framework for discrete-event sys-
tems based on causal networks; (2) we prove system
diagnosability results based on component diagnosabil-
ity; and (3) we discuss different approaches for guar-
anteeing diagnosability for distributed systems, e.g.,
message-passing, local model strengthening and local
observability, as well as the tradeoffs of each approach.

This document is organized as follows. Section 2 com-
pares and contrasts our approach with related work
in the literature. Section 3 introduces our modeling
formalism, and specifies our notion of centralized and
distributed models. Section 4 describes how we diag-
nose distributed models, and the diagnosability prop-
erties entailed. Section 5 identifies issues with diag-
nostic incompleteness of distributed models, and out-
lines methods of circumventing such problems based on
message-passing and adding equations to local models.
We summarize our conclusions in Section 6.

2 Related Work

In past work we have used the causal network for-
malism for modeling, diagnosing and reconfiguring
discrete-event systems [8]. We model the underlying
system (plant) behavior as a causal network (plant
model), which specifies transitions among a set of dis-
crete variables. We have described in [8] how we can use
this approach for component-based systems modeling,



where large systems are composed from instances taken
from a library of component classes. We extended the
causal network model-based diagnostics approach [2]
to incorporate simulation, control/reconfiguration and
diagnosis using a single underlying representation [9].

Causal networks and FSMs have many similarities, but
also some differences in terms of representational capa-
bilities and semantics; see [10] for a more complete ex-
planation. For example, they represent different model
properties in an explicit fashion. An FSM represents
states and state transitions explicitly. However, the
system models and the diagnoser representations for
system diagnosis can be quite large, and it is difficult
to explicitly encode the physical topology of compo-
nent connectivity. In contrast, the causal network has a
compact representation, and can encode system struc-
ture explicitly. This approach has an implicit notion
of transition, and uses logical equations, which specify
constraints on allowable transitions rather than explic-
ity enumerating all transitions. It is this implicit repre-
sentation of states and transitions that, to some extent,
is responsible for the compactness of the represention.

The causal network approach provides a clear mech-
anism for mapping into models the physical system
schematics, and the hierarchical decomposition of a sys-
tem into sub-systems. Such a hierarchical decomposi-
tion is natural within engineering systems, which are
sub-divided into topologically distinct sub-systems. In
this article, we define a block to correspond to a sub-
system; as a consequence of this definition, the com-
ponents local to a block, such as sensors, actuators,
faultable components, are clearly defined. Given such
an engineering-based system decomposition, one im-
portant issue is the diagnosability of sub-systems based
purely on local sensor data, versus system diagnosabil-
ity given global sensor data (such as is present given a
centralized model). Our causal network approach pro-
vides a clear method for identifying local observability
criteria, as well as messages that must be passed be-
tween blocks, to guarantee diagnosability. In contrast,
using an FSM leads to more complicated criteria for
decentralized diagnosability [3, 14].

In terms of the computational complexity for diagnostic
inference, causal networks make a different space-time
tradeoff to the automata-based Diagnoser-Approach of
[13]. Whereas the Diagnoser-Approach pre-constructs
from an FSM a diagnoser, which is a space-intensive
model of all possible system faults, and uses relatively
simple algorithms to enumerate diagnoses, the causal
network approach uses diagnosis algorithms operating
on the relatively compact plant model itself, but at the
expense of relatively more computationally intensive
diagnosis algorithms.

This article shows, similar to [14], the properties nec-

essary for centralized and distributed diagnosability to
be equivalent, and the message-passing necessary for
this to hold. On top of this, we show how adding sen-
sors or adding equations to local models can reduce
this message-passing traffic. Our future work includes a
more thorough comparison of our diagnosability results
with those of [3, 5, 14], in order to determine relative
strengths and weaknesses of the different approaches.

3 Centralized and Decentralized Causal
Network Models

This section summarizes our modeling and inference
approach to diagnostics and control reconfiguration.
We refer the reader to [8, 9] for a full description of
causal network modeling for DES applications. We first
introduce the model-based formalism, and then extend
these notions to capture a distributed model-based for-
malism. We adopt and extend the model-based repre-
sentation for diagnosis with behavioral modes of [2].

3.1 Centralized Models
For our discrete event applications, we use the causal
network approach for both plant and control model-
ing. We model the underlying system (plant) behavior
in terms of a causal network plant model Φ. The plant
model, which can be viewed as an actuator-to-sensor
map, describes the physics of the system, such as dis-
tances, speeds, and their relationships. Note that the
plant model Φ simulates the system behavior under
both normal and (multiple) abnormal operating modes
of the components. We base our model on a set V of
variables and an instantiation θ of those variables.

Definition 1 A system description (plant model) is a
tuple Φ = (V ,G,Σ, θ̆), where V is a set of variables,
G is a directed graph called a causal structure whose
nodes are members in V and whose directed arcs repre-
sent causal relations between pairs of nodes, Σ is a set
of propositional sentences (called the System Axioms)
constructed from members in V based on the topological
structure of G, and θ̆ is the initial state.

The set of variables consists of the following exclusive
subsets: VA, a set of variables (called assumables) rep-
resenting the failure modes of the components, Vobs

(the set of observables) and Vunobs (the set of unob-
servables). For control purposes, we usually partition
Vobs into the subset of sensors, Vsen, and the subset of
actuators, Vact.

The equations in Σ define a set of constraints over
the possible values of each variable. The literature
contains many specifications of equations, such as us-
ing First-Order logic [11], constraints, or multivalued



propositional sentences [2]. In this paper we define the
equations using a set of multi-valued propositional sen-
tences, although any of these specifications will work.

We make the following assumptions for the plant model
Φ.

1. Φ will not deadlock in any state.
2. Φ has no cycles.1
3. Faults persist once they occur.

We can capture structural properties of the model using
the directed graph G.2 For example, if an actuator
determines if a motor is on or not, we say that the
actuator causally influences the motor. More generally,
A may causally influence B if A is a predecessor of B
in G. We use B ∝ A to denote the causal influence of
the value of B by the value of A.3 L(V) denotes the
language generated by the symbols V in Φ.

We specify failure-mode instantiations and decompose
the possible states into normal states and faulty states
as follows:

Definition 2 (Mode-Instantiation) θV
A

is an in-
stantiation of behavior modes to mode-set VA. Fur-
ther, we partition θV

A
such that θV

A
= θÂ ∪ θĀ, where

θĀ denotes normal system behaviour, i.e. all modes are
normal, and θÂ denotes a system fault, which may con-
sist of simultaneous faults in multiple components.

We define the notion of diagnosis as follows:

Definition 3 (Diagnosis) Given a system descrip-
tion Σ and an instantiation θV

obs

of Vobs, a diagnosis
is an instantiation of behavior modes θV

A
= θÂ ∪ θĀ

such that Σ ∪ θVobs ∪ θVA �|= ⊥.

Definition 4 (Diagnosis Set) Given a model Φ, D
is defined as the corresponding diagnosis set, the set of
unique diagnoses possible given every instantiation of
observations in Vobs.

3.2 Decentralized (Distributed) models
This section describes our distributed formalism, which
applies to collections of interconnected components,
which we call blocks. We characterize block i, Φi, us-
ing the tuple (Xi, �i,Θi,Σi, θ̆i). Here, �i is the set of
inputs (which contains control variables), Θi is the out-
put set, Σi is the system description for block i, and
θ̆i is the initial state. In other words, the inputs are

1This assumption is for the untimed model only; in the timed
model [7], we assume that no unobservable cycle is present in Φ,
as in [13, 14].

2In other model specifications, e.g. [11], these structural re-
lations are captured using logical sentences.

3This notion of causal influence does not guarantee that A
influences B, but that A may influence B.

the only nodes with causal arcs into the block, and the
outputs are the only nodes with causal arcs out of the
block. Typically, we have causal dependence of block
outputs on inputs, i.e.Θi ∝ �i.4 We say that block X is
a neighbor of block Y if the inputs of X are connected
to the outputs of Y, or vice versa.

We assume that the set of equations Σ is complete given
the initial state θ̆, meaning that the values for all vari-
ables are derivable from θ̆. Our notion of completeness
translates to a block being complete given knowledge
of the values of the block’s inputs and observables.

Lemma 1 A block (Xi, �i,Θi,Σi, θ̆i) is deductively
complete if θ̆i = �i ∪ Vobs

i .

We can derive this result based on the relation between
observability and independence in a directed graph,
such as G. We use an example to demonstrate this
property: given block k with two inputs (I1, I2) and
one output Ok, we may have equations denoting fault
conditions of the form:

[I1 = α] ∧ [I2 = β] ∧ [VA
k = fault] ⊃ [Ok = γ].

For every fault assignment to VA
k one can determine the

input/output variables that must be known to deter-
mine that fault assignment. We can use a topological
property known as D-separation to identify which pre-
decessor variable in graph G can influence a node in G.
A node N is D-separated from it causal predecessors
P in G by its direct parents in G, pa(N). Hence, if the
values of pa(N) are known, then node N is indepen-
dent of the values of P \ pa(N). For example, if pa(N)
consist of observables, then when pa(N) are observed
N is independent of the rest of the nodes in G, i.e., the
rest of the system.

We define a decomposition function to formalize how a
centralized model is split into a collection of intercon-
nected blocks.

Definition 5 (Decomposition Function) a decom-
position function is a mapping ψ(Φ) = Φδ that decom-
poses a centralized model Φ into a distributed model
Φδ = {Φ1, ...,Φm}. A distributed model is induced by a
decomposition function ψ into a decomposition Π over
the system variables V, i.e. a collection {X1, ..., Xm} of
nonempty subsets of V such that (1) ∀i = 1, ...,m, Xi ⊆
2V ; (2) V = ∪i(Xi|Xi ∈ Π). When ξij = Xi ∩Xj �= ∅,
we call ξij the separating set, or common set, of vari-
ables between Φi and Φj.

4The causal function ∝ can be be generalized to include
propositions, relations, probabilistic functions, qualitative dif-
ferential equations, etc. We don’t address such a generalization
here.



4 Diagnosing Distributed Systems

This section defines a notion of diagnosability for dis-
tributed systems. We first specify the notion of diag-
noses induced by a decomposition. Using our formal-
ism, we do not need to alter the notion of diagnosis;
rather, we decompose the model and define diagnoses
in the standard way.

Definition 6 (Diagnostic mapping) : Given a
model Φ with corresponding diagnosis set D, and a
distributed model Φδ such that ψ(Φ) = Φδ, ∃ a cor-
responding distributed diagnosis set Dδ induced by the
mapping ψ. Given diagnoses Dδ

i of block i, we have

Dδ =
m⋃

i=1

Dδ
i .

We are interested in characterizing the diagnosis set
resulting from the decomposition function ψ, and we
use the following notion of diagnosability to do so.

Definition 7 (Diagnosability) ∃ some O ⊆ θVobs

such that Σ ∪O ∪ θÂi �|= ⊥, for every θÂi ∈ θÂ.

This means that a system is diagnosable if every fault
mode in the system can be isolated with an appropriate
set of observables. If Φ does not contain appropriate
sensors/actuators such that any fault mode cannot be
so isolated, then it is termed non-diagnosable, and the
system as a whole is non-diagnosable (or partially di-
agnosable).

Note that in this article, for clarity of exposition we
restrict ourselves to next-step control actions and next-
step transitions. There is a direct extension to timed
systems (see [7]), where we define arbitrary-step tran-
sitions. In this temporal model, the notion of diagnos-
ability is extended such that the observation O ∈ Vobs

in the next-step model to a sequence of observations
Ot, Ot+1, ..., Ot+k. In this case, the notion of diagnos-
ability has a clear relation to that defined by Sampath
et al. for the diagnoser approach [13]. Whereas Sam-
path et al. construct a diagnoser within which a trace
of transitions contains observable events that enable
the failure of a particular type within a finite delay,
in our timed representation we record a sequence of
observable variables such that instantiating those ob-
servables in the timed model allows us to compute the
particular failure mode.

To define distributed diagnosability, we need a notion
of local observables:

Definition 8 Given block k with variable set Xk, we
define observables local to block k, Vobs

k , as those con-
tained within that block, i.e.Vobs

k = {O|O ⊆ Xk∩Vobs}.

A strong requirement for diagnosability for every block
is deductive completeness:

Lemma 2 A block (Xi, �i,Θi,Σi, θ̆i) is diagnosable if
it is deductively complete, i.e., if θ̆i = �i ∪ θVobs

i .

This makes the assumption that every block knows its
inputs, and that all sensors and actuators are observ-
able. The following section examines methods for guar-
anteeing this.

We now distinguish two classes of object diagnosability
which do not require message-passing, strong and weak.
These classes are based on whether diagnosability can
be determined locally or not.

Definition 9 (Strong Object Diagnosability)
Given block k, for every θÂi ∈ θÂ, ∃ some O ⊆ θVobs

k

such that Σ ∪O ∪ θÂi �|= ⊥.

Strong Object Diagnosability captures the notion that
a distributed object can compute all internal failure
modes based only on local observable data (e.g. sensor
and actuator data). In contrast, under Weak Object
Diagnosability a distributed object cannot compute all
internal failure modes based only on local data (e.g.
sensor data), but can do so only with access to observ-
able data available from neighbouring objects.

Definition 10 (Weak Object Diagnosability)
Given block k, ∃ some θÂi ∈ θÂ, and some O ⊆ θV

obs

k

such that Σ ∪ O ∪ θÂi |= ⊥ but Σ ∪ O′ ∪ θÂi �|= ⊥ for
some O ⊂ O′ ⊂ {θVobs ∪ θVobs

k }.

We can also extend these notions to those of the dis-
tributed system (DS):

Definition 11 (Strong DS Diagnosability)
∀Xi ∈ Π, ∀θÂi ∈ θÂ, ∃ some O ⊆ θV

obs

k such that
Σ ∪O ∪ θÂi �|= ⊥.

In other words, a distributed system is strongly diag-
nosable if, for every object in the distributed system,
we can compute all internal failure modes based only
on local data (e.g. sensor data). The system is Weak
DS Diagnosable otherwise.

We can prove some important properties using these
definitions. First, if we decompose a centralized system
into a set of distributed components, the distributed
system is diagnosable only if the centralized system is
diagnosable.

Lemma 3 : Given a distributed model Φδ and its cor-
responding centralized version Φ, Φδ is DS Diagnosable
only if Φ is diagnosable.



A more important property is that a distributed model
has diagnosability properties no stronger than those of
the corresponding centralized model.

Lemma 4 : Given a distributed model Φδ and its cor-
responding centralized version Φ, � ∃ θÂi ∈ θÂ such that
θÂi is diagnosable in Φδ but undiagnosable in Φ.

5 Centralized and Decentralized
Diagnosability

This section examines how we can either satisfy or relax
the distributed diagnosability requirements of the pre-
vious section, i.e., knowing all inputs and observables
within each block. We will examine message-passing
and “strengthening” the equations in each block.

In the following, we assume diagnosability of the cen-
tralized model and explore notions of distributed sys-
tem diagnosability. Since the information processed
in each local block is (potentially) incomplete, the di-
agnosability of each local block is often incomplete,
and the system is not diagnosable. There are three
ways in which we can guarantee system diagnosability:
(1) message-passing between blocks; (2) adding extra
equations to particular blocks together with message-
passing; or (3) adding extra sensors to each block. The
second option will provide less inter-block message traf-
fic than the first, at the cost of more processing within
the blocks (given the extra equations). The third op-
tion removes the need for message-passing, but at the
cost of additional sensors. We now examine each ap-
proach in turn.

5.1 Message-Passing Approach
This section examines the use of message-passing to
achieve distributed system diagnosability. The ques-
tions that need to be addressed include: (1) what in-
formation needs to be exchanged; (2) between which
blocks does information need to be exchanged; and (3)
the timing and method of information exchange. In
this article we focus on the first two questions.

If we assume that all local sensors and actuators are
observable, we can guarantee Strong DS-Diagnosability
if we pass messages consisting of the set of variables
common between all blocks. This guarantees that every
block will receive data for its inputs.

Lemma 5 A system consisting of n blocks is Strong
DS-Diagnosable if the message-passing data M ⊆ V
is such that M = Ξ \ Vobs, and Ξ =

⋃
i,j{ξij |i, j =

1, ..., n, i �= j} is the set of common variables in the
system.

This result is easy to prove since our definition of de-

centralized model provides a clear specification of sys-
tem decomposition as well as the data shared between
blocks. Note that if an input is observable, then that
variable does not have to be included in the set of
data passed between blocks. Also, the information that
must be exchanged between any pair of blocks is de-
fined by the block connectivity: if Block Φi has some
input set �i, it must receive data from all parent blocks
in G. In other words, the set of variables common be-
tween two blocks identifies which data must be passed
between the blocks, and the direction of data transfer.

Definition 12 The information that must be sent
from sub-model Φi to Φj is ξij, where some outputs
of Φi are inputs for Φj.

One of the potential drawbacks to this message-passing
approach is that |M| can be quite large, leading to
heavy message-passing traffic.

5.2 Combined Equation Strengthening and
Message-Passing Approach
If guaranteeing diagnosability in a distributed model
would lead to heavy message-passing traffic, then we
can reduce that traffic by adding extra equations to
the local models.

How can one determine what extra equations need
to be added to distributed models, and what data
needs to be passed to distributed models? In the case
of extra equations, the language generated in a dis-
tributed model can be is typically a strict subset of the
language of the diagnosable centralized model, given
our scheme of using only local observables in the dis-
tributed model. In other words, incompleteness occurs
if L(Φ) ⊃ ⋃

i L(Φi). Hence, enumerating the sentences
in Σ′ = L(Φ) \ ⋃

i L(Φi) defines the necessary extra
sentences Σ′ for the entire model.

We can use results from [6] to identify the equations
needed to strengthen a local model. These equations
are determined from the interconnection topology of
the collection of blocks in the distributed system. In
other words, the extra equations for block Φi need to
contain only variables from blocks directly connected to
Φi. The nature of these equations is model-dependent,
although at worst these equations would consist of the
equations from the sub-system consisting of Φi and its
neighbors.

The data required for message-passing is bounded by
the observable data contained in Σ′.

Lemma 6 Given an incomplete distributed version Φδ

of a diagnosable centralized model Φ, we can extend
Φδ to be Weak-DS diagnosable by generating sentences



given by Σ′ = L(Φ)\⋃
i L(Φi), and passing observables

O′ given by O′ = {O|O ⊆ L(Φ) \ ⋃
i L(Φi)}.

The benefit of this approach is that it reduces message-
passing traffic. The drawbacks include: (1) in the worst
case, the complexity of diagnosing local models can ap-
proach that of the centralized model; and (2) it is hard
to define local equations in a domain-independent man-
ner.

5.3 Improved Observability Approach
It is possible to use observability criteria to determine
what must be known to guarantee diagnosability. A
system is strongly DS diagnosable if every block has
observable inputs.

Lemma 7
Given a distributed system Φ = {Φ1, ...,Φm}, if ∀Φi,
we have �i ⊆ θV

obs

i , then ∀Φi ∈ Φ, ∀θÂk ∈ θÂ, ∃ some
O ∈ θV

obs

i such that Σ ∪O ∪ θÂk �|= ⊥.

This can be guaranteed by placing sensors at all in-
puts to every block. This will eliminate all message-
passing traffic, but at the expense of many sensors
and/or actuators. In the real world, it is unlikely that
the necessary number of sensors will be made avail-
able. However, we have identified three complemen-
tary approaches for guaranteeing distributed system
diagnosability: message-passing, local model strength-
ening, and increased local observability. Our future
work includes examining the tradeoffs among these ap-
proaches, both theoretically and empirically.

6 Summary and Conclusions

This document has described some fundamental issues
in diagnosing distributed systems. In particular, we
identified criteria for observability and message-passing
amongst distributed models that will guarantee com-
plete diagnosability of a distributed system. We ex-
amined three ways in which we can guarantee com-
plete system diagnosability for a distributed system:
(1) message-passing between blocks; (2) adding extra
equations to particular blocks together with message-
passing; or (3) adding extra sensors to each block. We
discussed the strong and weak points of each approach.

We describe in [6] a mechanism for computing dis-
tributed diagnoses using system topology and observ-
ability properties that avoids the message-passing over-
head of passing data for variables, but instead passes
diagnoses. The tradeoff in this approach is that we need
to pre-compile diagnoses for groups of blocks. Hence,
it decreases the message-passing overhead at the ex-
pense of increasing the memory requirements at each
distributed block.
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