
Satisfiability as a Classification Problem?

David Devlin and Barry O’Sullivan

Cork Constraint Computation Centre
Department of Computer Science, University College Cork, Ireland

{d.devlin|b.osullivan}@4c.ucc.ie

Abstract. Given a Boolean formula, the classic satisfiability problem is
to decide whether there is a truth assignment to its variables such that
the formula evaluates to true. The satisfiability problem was the first de-
cision problem proven to be NP-Complete. Therefore, it is very unlikely
that there exists an algorithm for solving the satisfiability problem that
has good worst-case performance. However, the satisfiability problem is
ubiquitous in artificial intelligence. In this paper, we view the satisfiabil-
ity problem as a classification task. Based on easy to compute structural
features of instances of large satisfiability problems we use a variety of
standard classifier learners to classify previously unseen instances of the
satisfiability problem as either satisfiable or unsatisfiable. We show that
standard learning techniques can very reliably perform this task, with
accuracy in excess of 99% for hard 3-SAT problems, and usually in ex-
cess of 90% for large industrial benchmarks. These results are surprising,
and suggest that machine learning techniques can be very effective at
revealing the significant structural characteristics that are important in
satisfiability testing.

1 Introduction

The satisfiability problem (Sat) is, informally, defined as: given a Boolean for-
mula, decide whether there is a truth assignment to each of its variables such
that the formula evaluates to true. For example, consider the Boolean function
And over variables A and B:

φAnd(A,B) = A.B

This formula evaluates to true if both A and B are assigned true. We say that
this formula is, therefore, satisfiable.

Sat is important from both theoretical and practical perspectives. Sat was
the first problem proved to be NP-Complete. The proof, Cook’s Theorem, was
published in a 1971 paper by Stephen A. Cook [3]. That was a breakthrough
result in computational complexity. Leonid Levin independently discovered the
proof of Sat’s NP-Completeness, although he did not formally publish it until
1973. For this reason the proof is usually referred to as the Cook-Levin Theorem.

? This work was supported by Science Foundation Ireland (Grant No. 05/IN/I886).

The following year Richard Karp proved that a further twenty-one intractable
problems were NP-Complete [5]. These key results provided the basis for the the-
ory of NP-Completeness that is so important in computer science. However, Sat
is not just of theoretical interest. Sat problems occur in a variety of domains such
as hardware verification, security protocol analysis, theorem proving, scheduling
problems, routing, planning, digital circuit design and artificial intelligence.

Deciding whether a Sat problem is satisfiable or not is usually performed
by either systematic search, based on backtracking or resolution, or local search.
Because the general problem is NP-Complete, systematic search algorithms have
exponential worst-case running times, which has the effect of limiting the scal-
ability of systematic search methods. If a Sat problem is unsatisfiable, local
search algorithms, while scalable, cannot prove that to be the case.

Recent advances in machine learning have provided the artificial intelligence
community with powerful techniques for classification problems. Sat can be seen
as a classification problem: given a Boolean formulae we are asked to classify it
as either satisfiable (true) or unsatisfiable (false).

The objective of the work reported in this paper is to apply a suite of stan-
dard classification algorithms to the problem of deciding Sat. Our methodology
involved considering large hard Sat instances from the International Sat Com-
petition1 and Satlib2 and implementations of classification algorithms through
the data-mining system WEKA3. Our results show that classification algorithms
perform extremely well on deciding Sat. We argue that an approach such as ours
can be useful for informing which techniques should be used to solve large com-
plex Sat problems. Also, this work represents the beginning of a research agenda
that will study how what structural features of Sat problems can be exploited
during search.

2 Background

The objective of the work reported in this paper was to evaluate the performance
of standard classification algorithms from the field of machine learning on the
task of deciding whether a satisfiability problem has as a solution or not. We,
therefore, provide an overview of relevant background concepts in the areas of
satisfiability and machine learning, in particular, classification algorithms.

2.1 The Satisfiability Problem

The satisfiability (Sat) problem is defined as follows: given a propositional for-
mula, φ = f(x1, . . . , xn), over a set of variables x1, . . . , xn, decide whether or not
there exists a truth assignment to the variables such that φ evaluates to true.

1 http://www.satcompetition.org/
2 http://www.satlib.org/
3 http://www.cs.waikato.ac.nz/ml/weka/

Sat problem instances are usually expressed in a standard form, called con-
junctive normal form (cnf). A Sat problem in this way is expressed as a con-
junction of clauses, where each clause is a disjunction of literals; a literal is either
a variable or its negation. The following Sat formula is in cnf:

φ = (x1 ∨ x3 ∨ ¬x4) ∧ (x4) ∧ (x2 ∨ ¬x3).

This formulae comprises three clauses: the first a disjunction of literals x1, x3

and ¬x4; the second involves a single literal x4; the third is a disjunction of
literals x2 and ¬x3. The Sat problem φ is satisfiable because we can set x1, x2

and x4 to true, satisfying the first, third and second clauses, respectively.
Sometimes one refers to instances of k-Sat, which simply means we restrict

ourselves to formulae in which each clauses involves at most k literals. All Sat
instances with k ≥ 3 can be transformed to 3-Sat in time polynomial in the
size of the k-Sat instance. Sat is NP-Complete for k = 3 and higher. Sat is
polynomial for k < 3. Of course, other polynomial classes of Sat are known, for
example Horn-Sat, in which each clause corresponds to an implication, i.e. they
are Horn clauses. Horn-Sat is an extremely important practical tractable class
of Sat since a large proportion of clauses in real-world Sat instances are Horn.

An important phenomenon that is important to understand in Sat is that
while one might believe that as the number of clauses increases, the probabil-
ity of a formula being satisfiable smoothly reduces from 1 to 0, the transition
is actually abrupt. For example, for randomly generated 3-Sat problems the
transition from under-constrained problems with very high probability of satis-
fiability to over-constrained problems with very low probability of satisfiability
is extremely abrupt, and occurs when the ratio of the number of clauses to the
number of variables is approximately 4.26. This abrupt change is called the phase
transition [2]. The hardest Sat instances are those that occur close to the phase
transition. This phenomenon is illustrated in Figure 1.

20 1. Satisfiability solvers

Algorithm 1.4: Walksat (F)

Input : A CNF formula F

Parameters : Integers MAX-FLIPS, MAX-TRIES; noise parameter p ∈ [0,1]
Output : A satisfying assignment for F , or FAIL

begin

for i← 1 to MAX-TRIES do
! ← a randomly generated truth assignment for F

for j← 1 to MAX-FLIPS do

if ! satisfies F then return ! // success

C← an unsatisfied clause of F chosen at random

if ∃ variable x ∈C with break-count = 0 then

v← x // the freebie move

else

With probability p: // the random walk move

v← a variable inC chosen at random

With probability 1− p: // the greedy move

v← a variable inC with the smallest break-count
Flip v in !

return FAIL // no satisfying assignment found

end

able with probability 0.5. When F is chosen from this distribution, Mitchell, Selman, and

Levesque [154] observed that the median hardness of the problems is very nicely character-

ized by a key parameter: the clause-to-variable ratio, m/n, typically denoted by " . They
observed that problem hardness peaks in a critically constrained region determined by "

alone. The left pane of Figure 1.3 depicts the now well-known “easy-hard-easy” pattern

of SAT and other combinatorial problems, as the key parameter (in this case ") is varied.

For random 3-SAT, this region has been experimentally shown to be around " ≈ 4.26 (see
[48, 121] for early results), and has provided challenging benchmarks as a test-bed for SAT

solvers.

0

500

1000

1500

2000

2500

3000

3500

4000

2 3 4 5 6 7 8

#

o
f

D
P

c
a
l
l
s

Ratio of clauses-to-variables

20--variable formulas
40--variable formulas
50--variable formulas

0

0.2

0.4

0.6

0.8

1

3 3.5 4 4.5 5 5.5 6 6.5 7

F
ra

c
ti
o
n
 o

f
u
n
s
a
ti
s
fi
a
b
le

 f
o
rm

u
la

e

M/N

Threshold for 3SAT

N = 12

N = 20

N = 24

N = 40

N = 50

N = 100

Figure 1.3: The phase transition phenomenon in random 3-SAT. Left: Computational hard-

ness peaks at " ≈ 4.26. Right: Problems change from being mostly satisfiable to mostly
unsatisfiable. The transitions sharpen as the number of variables grows.

Fig. 1. The phase transition phenomenon in random 3-SAT. Left: Computational hard-
ness peaks at a clause-to-variable ratio of approximately 4.26. Right: Problems change
from being mostly satisfiable to mostly unsatisfiable. The transitions sharpen as the
number of variables grows.

2.2 Machine Learning and Classification

Machine learning “is concerned with the question of how to construct computer
programs that automatically improve with experience”. It is a broad field that
uses concepts from computer science, mathematics, statistics, information the-
ory, complexity theory, biology and cognitive science [6]. Machine learning can
be applied to well-defined problems, where there is both a source of training
examples and one or more metrics for measuring performance.

In this paper we are particularly interested in classification tasks. A classifier
is a function that maps an instance with one or more discrete or continuous
features to one of a finite number of classes [6]. A classifier is trained on a set
of instances whose class is already known, with the intention that the classifier
can transfer its training experiences to the task of classifying new instances.
We consider a supervised learning setting, where the instances in the training
set have been manually labeled with the correct class. In this paper we use the
following classifiers: random forests of decision trees, decision trees, multilayer
perceptron, nearest neighbour, and naive Bayes. A summary of each of these
algorithms is beyond the scope of this paper, largely due to space limitations,
but a detailed survey can be found in any standard machine learning textbooks,
such as [6].

3 Useful Features of SAT Instances

In this paper we employed the same set of Sat instance features as those used
in SATzilla4. SATzilla is a successful algorithm portfolio for Sat, i.e. a sys-
tem that uses machine learning techniques to select the faster Sat solver for a
given problem instance. That system uses a total of 48 features, summarised in
Figure 2 [8].

These features can be summarised under nine different categories: problem
size features; variable-clause graph features; variable graph features; balance
features; proximity to Horn formula; DPLL probing features; and local search
probing features. The first category of features are self explanatory, and simply
relate to the number of variables and clauses in the Sat instance. The next
two categories relate to two different graph representations of a Sat instance.
The variable-clause graph is a bipartite graph with a node for each variable, a
node for each clause, and an edge between them whenever a variable occurs in
a clause. The variable graph has a node for each variable and an edge between
variables that occur together in at least one clause. The balance features are self
explanatory and relate, primarily, to the distribution of positive and negative
literals within the Sat instance. The category related to the proximity to a
Horn formula captures how close the Sat instance is to an important polynomial
class of Sat that can be solved using the standard inference method used in all
systematic Sat solvers (i.e. unit propagation). The DPLL probing features are
related to statistics that a standard systematic search algorithm gathers while
4 http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/

Fig. 2. A summary of the features of the Sat instances in our data-set that were used
to build our classifiers. These are the same features used by SATzilla to build its
runtime prediction system (Figure taken from [8]).

testing the difficulty of the instance. The local search features are the non-
systematic analogue of the latter category.

4 Building Data-sets for SAT

We composed four different data-sets of Sat instances. These were Crafted,
Industrial, Random 3-SAT and Random. This is based on the categories used
in the International SAT Competition, but with an additional category that
contains only random 3-SAT instances, a subset of the Random category.

All instances were gathered from one of three sources: the International SAT
Competition problem-sets, Miroslav Velev’s Sat benchmark suite [7] and Satis-
fiability Library (Satlib)5. The instances we gathered are considered hard by the
satisfiability world, demonstrated by the fact that they were used in competitions
or as benchmarks. Many of these instances were large, with their specifications
being circulated in text files several hundred megabytes in size. All instances
were in the standard DIMACS cnf format, a standardised file format for Sat
instances. An advantage of using standard competition instances and bench-
marks is that they are pre-classified as either satisfiable or unsatisfiable, thus
saving us the effort of determining this by search.

5 http://www.satlib.org/

4.1 Descriptions of the Data-sets

We summarise the details of our data-sets below, and in Table 1.

Table 1. Number of Sat instances in each category of our data-set.

Category Sat UnSat Total Source

Crafted 169 246 415 SAT Competitions 2004, 2005, 2007
Industrial 117 84 201 SAT Competition, Miroslav Velev’s Benchmarks
Random 3-SAT 2073 2699 4772 SATLib
Random k-SAT 3148 2699 5587 SATLib

Crafted. The crafted instances were sourced from the published SAT Compe-
tition benchmarks, specifically from the 2004, 2005 and 2007 competitions. In
the SAT Competition this category contains all hard instances that are neither
random nor industrial. Some examples of instances that were included in this
category are [1]: LinvRinv benchmarks (by Armin Biere); 3-Regular Graphs (by
Matti Järvisalo); counting, ordering and pebbling problems (by Ashish Sabhar-
wal); social golfer problems (by Inês Lynce); algebraic benchmarks (by Volker
Sorge); Eulerian graphs (by Klas Markström). Many of these instances have
been specifically designed to be difficult to solve. There is usually a prize at the
International SAT Competition for the smallest crafted instance that cannot be
solved by any competing solver.

Industrial. The industrial instances were sourced from both the SAT Compe-
tition 2007 benchmarks, and from Miroslav Velev’s Sat Benchmarks. These
instances consist of formal hardware verification problems formulated as Sat.
Some of these instances are exceptionally large – over 400MB file size specifica-
tion for a single instance in one case.

Random 3-Sat and Random k-Sat. These instances were sourced from Satlib.
They can be divided into Uniform Random 3-Sat, and other random problems
such as [4]: graph colouring, planning, quasigroup problems, and bounded model
checking problems. The uniform random 3-Sat instances that make up our 3-
Sat data-set are taken from the phase transition region (Figure 1), and are
generated using an unforced filtered method. In forced generation, the satisfia-
bility of the instance generated is guaranteed by the way it constructed. It has
been found that such instances are solved more easily than unforced instances,
whose satisfiability was not guaranteed. Following unforced generation it is nec-
essary to use a solver to determine whether the generated instance is satisfiable
or unsatisfiable.

As Satlib contained only satisfiable instances of other random problems, it
was necessary to mix these instances with the Uniform Random 3-Sat instances
to build the final training set. A training set should contain a relatively balanced

distribution of satisfiable and unsatisfiable instances, and cannot be made from
instances that are all in the same class. It would be preferable to have unsat-
isfiable instances of graph colouring, planning, quasigroup and bounded model
checking problems in this data-set.

4.2 Building the Feature-based Data-sets

Based on the Sat instances we gathered, a feature-based description of each
instance must be built based on the features discussed earlier. We modified
SATzilla to extract features and populate an SQL database with the feature de-
scription of each instance. As well as the features mentioned earlier, we recorded
the time taken to extract each group of features. It is not possible to measure the
time taken to extract individual features, as several can be extracted by perform-
ing a single operation. For example, reading the instance description provides
both the number of clauses, number of variables and the clause to variable ratio.
Also, building a variable-clause graph is useful for up to 30 distinct features, so
the effort for this task is not easily aportionable to each of those features.

In Table 2 we present the times for extracting the full set of features from
each instance. It is worth noting that even the task of computing the features
we need from each instance can take a considerable amount of time, specifically
for the large industrial category, and, to a lesser extent, the crafted category. It
is also worth noting that the difficulty of extracting features from Sat versus
UnSat instances can also be asymmetric. For example, extracting features from
UnSat industrial instances takes much longer than from the Sat instances in
that class.

Table 2. Building the feature descriptions – feature extraction times in seconds.

Crafted Industrial Ran.3SAT Random
Sat UnSat Sat UnSat Sat UnSat Sat UnSat

Minimum 1.03 1.99 3.33 2.94 0.98 1.00 1.00 –
Average 4.43 3.92 87.04 214.35 1.23 2.31 1.84 –
Maximum 59.26 27.87 912.82 3660.64 3.04 3.06 3.06 –

5 Experiment – Classification of SAT Instances

We present the results of our main experiment. The objective of the experiment
was to evaluate the accuracy with which standard classification algorithms could
determine whether a Sat instance was satisfiable or not. Our results show that
the performance of classification algorithms is very convincing, with classification
accuracies typically in excess of 90%, and sometimes in excess of 99%.

The classifiers we considered here were: random forest of decision trees, de-
cision tree, multilayer perceptron, nearest neighbour, and naive Bayes. We used

implementations of these algorithms from the Waikato Environment for Knowl-
edge Analysis (WEKA) machine learning library, a machine learning tool re-
leased as free open-source software by the University of Waikato, New Zealand
under the GNU General Public Licence. We used WEKA version 3.4.12.

We randomly shuffled the instances (in fact, the feature-based description of
each instance) in our dataset to ensure a uniform distribution of instances. The
specific settings of WEKA used are as follows (default setting were used if not
stated otherwise):

◦ Random Forest – weka.classifiers.trees.RandomForest

20 trees, 10 attributes/tree;
◦ Best-First Decision Tree – weka.classifiers.trees.BFTree

All attributes, Post-Pruned;
◦ Multilayer Perceptron – weka.classifiers.functions.MultilayerPerceptron

500 epochs, 0.3 learning rate;
◦ 1-Nearest Neighbour with Generalization – weka.classifiers.rules.NNge;
◦ Naive Bayes – weka.classifiers.bayes.NaiveBayes.

Each classifier was trained on three different subsets of our features to eval-
uate the improvement in classification accuracy of the resultant classifiers. The
subsets we considered were:

1. The base set of features (Features 1–33 from Figure 2), i.e. excluding search
related features (Base);

2. All SATzilla features referred to in Figure 2, but excluding feature extrac-
tion time (All);

3. All SATzilla features including those related to feature extraction time (+t).

To evaluate each classifier we used 10-fold cross validation. The k-fold cross
validation procedure partitions the data-set into k equally sized disjoint subsets,
T1, T2, . . . , Tk. For i from 1 to k, Ti is used as the validation set, and the classifier
is trained on all other subsets. The accuracy when validating with Ti is recorded
for each i, and the final measure of accuracy is the mean of these values [6].
The accuracy of the classifier is defined as the number of correctly classified
instances divided by the total number of instances, by class and overall. The
results of these experiments are presented in Table 3.

The classification accuracies we obtain are extremely high. In every problem
category, except Crafted we have at least one classifier that has in excess of 90%
accuracy over all satisfiability classes. Random forests perform consistently well
across all categories and classes, followed closely by decision trees. Multi-layer
perceptrons do not tend to dominate, but do have competitive results in the
Industrial category. 1-nearest neighbour has, essentially, the best performance
for satisfiable instances in the Industrial category, while naive Bayes is best for
unsatisfiable Crafted instances and satisfiable Random instances. However, in the
latter category, because naive Bayes performs poorly on unsatisfiable instances,
it is questionable whether this is a useful classifier in this context.

Table 3. Detailed accuracy results for all classifiers over all problem categories. In the
case of the nearest neighbour classifier WEKA failed silently on the random instances (a
bug reported has been submitted to the developers of WEKA). These are marked with
a ‘–’. The best performing classifier for each problem category and each satisfiability
class is marked in bold.

Crafted Industrial Random 3SAT Random
Classifier Class Base All +t Base All +t Base All +t Base All +t

Forest
SAT 78.9 82.5 81.1 93.3 94.1 94.9 98.2 99.4 99.8 93.2 96.2 99.2
UNSAT 81.4 83.9 84.4 92.7 92.8 92.9 96.3 97.2 99.3 90.7 94.7 97.9
ALL 80.5 83.4 83.1 93.0 93.5 94.0 97.1 98.1 99.5 92.0 95.5 98.6

DT
SAT 82.2 84.5 83.4 87.8 89.7 93.3 98.0 97.3 98.0 96.0 95.3 98.5
UNSAT 78.0 83.5 85.3 97.1 94.7 93.8 96.6 96.8 99.5 88.6 93.4 97.5
ALL 79.3 83.9 84.6 91.0 91.5 93.5 97.2 97.1 99.6 92.3 94.4 98.0

MLP
SAT 71.8 72.4 71.5 92.6 92.5 95.0 88.4 93.9 88.4 90.9 92.1 99.2
UNSAT 79.4 81.2 79.6 94.9 92.6 96.3 90.8 92.4 99.4 82.7 86.7 97.8
ALL 76.4 77.6 76.4 93.5 92.5 95.6 89.8 93.0 99.4 86.8 89.5 98.5

1-NN
SAT 74.7 79.1 78.1 95.7 94.7 94.6 – – – – – –
UNSAT 80.2 81.7 80.7 94.0 88.6 87.6 – – – – – –
ALL 78.1 80.7 79.8 95.0 92.0 91.5 – – – – – –

Bayes
SAT 58.6 65.3 69.0 80.2 86.5 87.3 64.2 64.3 87.6 99.9 99.1 99.2
UNSAT 84.8 85.9 85.6 75.0 76.7 76.9 94.1 93.8 96.9 57.6 56.5 91.7
ALL 69.4 75.2 69.4 78.1 82.1 82.6 74.9 74.9 92.4 66.0 64.4 95.4

In Table 4 we summarise the best performing classifiers in each category/class
combination. It is clear that random forest is very versatile, performing well in
almost every region of the data-set.

These results are very convincing. They show that a simple classification
approach to Sat can give very good results. While one needs to know with cer-
tainty whether a Sat instance is satisfiable or not, having an accurate classifier,
while not perfect, is useful in practice. Firstly, performing classification during
search can be very helpful in guiding heuristics decisions. For example, if one
wishes to decide whether to assign a variable true or false one would prefer to
make the assignment that we believe to lead to a satisfiable instance. Of course,
this is only practical if the features associated with the current state of search
can be quickly computed. Secondly, before search, one may wish to determine
whether a Sat instance should be solved using local search or systematic search.
If an instance is likely to be unsatisfiable, it might be futile to use a local search
approach, since local search will never be able to prove unsatisfiability. Thirdly,
for population-based algorithms, one can use the classifier to generate a set of
assignments to variables that are likely to be solutions/non-solutions to a Sat
instance. This can be very useful in approaches such as genetic algorithm or
solution-guided approaches to satisfiability testing.

Table 4. The best classifier(s) for each category/class combination.

Class Crafted Industrial Random 3SAT Random

SAT
Decision Tree Random Forest Random Forest Naive Bayes

Nearest Neighbour

UNSAT
Naive Bayes Decision Tree Random Forest Random Forest

Multi-layer Per. Decision Tree

ALL
Random Forest Random Forest Random Forest Random Forest
Decision Trees Multi-layer Per. Decision Tree Decision Tree

Nearest Neighbour

6 Conclusions

In this paper, we viewed the Sat problem as a classification task. Based on
structural features of instances of large satisfiability problems we built and eval-
uated a suite of classifiers on challenging problems from a variety of problem
categories, including hand-crafted, industrial and random settings. We showed
that standard learning techniques can very reliably perform this task, with ac-
curacy in excess of 99% for hard 3-SAT problems, and usually in excess of 90%
for large industrial benchmarks. We plan to explore the utility of these results
in improving the performance of Sat solvers.

References

1. Daniel Le Berre and Laurent Simon. Preface to the special volume on the sat
2005 competitions and evaluations. Journal on Satisfiability, Boolean Modeling and
Computation, Volume 2, 2005.

2. Peter Cheeseman, Bob Kanefsky, and William M. Taylor. Where the really hard
problems are. In Proceedings of the Twelfth International Joint Conference on Ar-
tificial Intelligence, IJCAI-91, Sidney, Australia, pages 331–337, 1991.

3. Stephen A. Cook. The complexity of theorem-proving procedures. In STOC ’71:
Proceedings of the third annual ACM symposium on Theory of computing, pages
151–158, New York, NY, USA, 1971. ACM.

4. Holger H. Hoos and Thomas Stützle. Satlib: An online resource for research on sat.
pages 283–292.

5. Richard M. Karp. Reducibility among combinatorial problems. In Complexity of
Computer Computations, pages 85–103. 1972.

6. Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.
7. Miroslav N. Velev. Exploiting signal unobservability for efficient translation to cnf

in formal verification of microprocessors. In Proc of DATE ’04, page 10266. IEEE
Computer Society, 2004.

8. Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Satzilla-07: The
design and analysis of an algorithm portfolio for sat. In Principles and Practice of
Constraint Programming (CP-07), Lecture Notes in Computer Science 4741, pages
712–727. Springer Berlin, 2007.

