
Recommending from Experience∗

Francisco J. Peña, Derek Bridge
Insight Centre for Data Analytics
Department of Computer Science
University College Cork, Ireland

francisco.pena@insight-centre.org, derek.bridge@insight-centre.org

Abstract

In this paper we present RC, a context-driven recom-
mender system that mines contextual information from user-
generated reviews and makes recommendations based on
the users’ experiences. RC mines the contextual information
from the user-generated reviews using a form of topic mod-
eling. This means that, unlike other context-aware recom-
mender systems, RC does not have a predefined set of con-
textual variables. After mining the contextual information,
RC makes top-n recommendations using a Factorization Ma-
chine with the contextual topics as side information. Our ex-
periments on two datasets of ratings and reviews show that
RC has higher recall than a conventional recommender.

Introduction

Context can have a great influence on how a user perceives
an item. For instance, a user may assign a 5-star rating to a
hotel after staying there on a business trip, but might have
given the same hotel just 2-stars if she visited that hotel on
a family holiday, complaining about the small room size or
the lack of a swimming pool for her children. Many rec-
ommender systems have focused on modeling user prefer-
ences, sometimes overlooking the influence that the context
in which the product or service is consumed has on those
preferences. In several domains, the growing availability of
user-generated reviews means that we now have access to
contextual information from the reviews themselves. In this
paper, we seek to mine this contextual information and ex-
ploit it in a recommender system.

User-generated reviews often describe experiences, a
business dinner or a honeymoon, for example. By definition,
there is no such thing as a context-less experience. We either
go to a hotel during Spring, Summer, Autumn or Winter, and
we go alone or as a couple or with the whole family, etc. The
context has an especial influence when we are evaluating
products or services, such as hotel visits or restaurant meals,
in which the most important thing is the experience and not
the product itself. In this case, a user is likely to include a lot
of the contextual information in the review, to qualify their
opinion of the product or service.

∗This work is supported by the Science Foundation Ireland(SFI)
under Grant Number SFI/12/RC/2289.
Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Of course, we are not alone in seeking to use contex-
tual information in recommender systems. There have been
many context-aware recommender systems (CARS) (Ado-
mavicius and Tuzhilin 2011). But, the majority of them, if
not all of them, use a predefined, and typically small, set of
contextual variables. They might have a temporal variable,
with values based on seasons, days of the week or times of
the day, or a variable for the purpose-of-visit, with values
such as business or pleasure, for example.

Inspection of the experiences described in user-generated
reviews shows that there is a much wider range of contex-
tual factors than those most commonly captured in exist-
ing CARS. Indeed, contextual factors are open-ended and
many of them are domain-specific. For example, a restau-
rant with no car parking may be evaluated differently by
someone who drives herself to the restaurant from some-
one who takes a taxi; a hotel whose rooms are inadequately
wheelchair accessible may be rated differently by someone
whose companions includes a person who uses a wheelchair
from someone whose companions do not. In these exam-
ples, other things being equal, differences in ratings occur
because the user is rating her whole experience of the restau-
rant meal or hotel visit, factoring in the contextual informa-
tion. Parking and wheelchair accessibility are just two of nu-
merous contextual factors, which may be revealed in user re-
views. Similarly, user reviews reveal that even well-known
contextual variables such as purpose-of-visit tend to have
a much wider range of values than is common in existing
CARS.

In fact, the kind of recommender we seek to build might
be better described as context-driven rather than context-
aware (Pagano et al. 2016). Currently, CARS tend to make
use of the user’s current situation and historic behaviours of
that user and similar users in similar situations. A context-
driven recommender has a concern too for what the user is
trying to accomplish (their intent), allowing them to move
beyond their past preferences. These are the kind of contex-
tual factors we expect to mine from user-generated reviews.
Our recommender system is trained on these contextual fac-
tors as well as user preferences (ratings). It is invoked by
supplying not just the active user and a candidate item or
items, but also by supplying a vector of these contextual fac-
tors, representing the intent of the user.

The remainder of this paper is organized as follows. We

Proceedings of the Thirtieth International Florida Artificial Intelligence Research Society Conference

651

start with a discussion of related work. Then we present an
overview of our proposed RC system, and give details of
each of its components. Finally, we report the results of eval-
uating RC on two datasets.

Related Work
There are three main ways to build a CARS: using con-
textual information to pre-filter, to post-filter and includ-
ing it in the model (Adomavicius and Tuzhilin 2011). Our
work is a model-based CARS. Other examples of model-
based CARS include approaches based on matrix factoriza-
tion e.g. (Baltrunas, Ludwig, and Ricci 2011), tensor factor-
ization e.g. (Karatzoglou et al. 2010), k-nearest neighbours
e.g. (Zheng, Burke, and Mobasher 2013), and the SLIM al-
gorithm (Zheng, Mobasher, and Burke 2014). In all cases,
they use a small, predefined set of contextual variables each
with a small set of values. By contrast, in our work we take
a more open-ended view of context.

Equally, there has been a lot of work that has exploited
user-generated reviews in recommender systems (Chen,
Chen, and Wang 2015). Typically, it uses heuristics, e.g.,
for sentiment mining. But several use topic modeling, as we
do, e.g. (McAuley and Leskovec 2013; Ling, Lyu, and King
2014; Diao et al. 2014). Our work differs in its focus on min-
ing context from the specific review sentences.

Chen & Chen present work which, like ours, combines
CARS with review mining (Chen and Chen 2015). They
use heuristics to extract context-independent preferences
but also context-dependent preferences and fuse the two
in a linear-regression-based recommender. In a given re-
view, they identify product aspects, given by nouns; opin-
ions about those aspects, given by adjectives; and the con-
texts in which the opinions apply to the aspects. For hotels,
they use just three contextual variables (companion, occa-
sion, and time), each associated with a small set of prede-
fined keywords. A contextual value may relate to an opinion
about an aspect if the context appears in the same or a pre-
ceding sentence as the opinion. By contrast our work uses
topic modeling and takes a more open-ended view of con-
text.

Hariri et al. also present work that combines CARS with
review mining (Hariri et al. 2011). Like RC, their system as-
sumes that the user provides some sort of query. But instead
of applying a topic model to the query, they use a multi-
label text classifier to provide a probability distribution over
a set of class labels (e.g. trip types). The classifier that they
use is Labeled-LDA. In contrast to our work, this uses topic
modeling in a supervised way and over a predefined set of
topics (e.g. trip types). They use a nearest-neighbours classi-
fier, with an extended way of computing similarity that takes
the contextual class labels into account.

Finally, we have adopted the main ideas in (Bauman and
Tuzhilin 2014)’s approach to context mining: classification
into specific and generic; topic modeling on the specific text;
and then a filter to retain topics that are more associated with
specific text. But, following extensive experimentation, we
have many differences too including: for the classification,
we work at sentence-level rather than review-level, we use
different features, we use a balanced training set, and we

Reviews RCClassifier

Specific
Sentences

Generic
Sentences

RCMiner Contextual
Topics

RCRecommender

Recommendations

UserText

Figure 1: An overview of the RC system

use a different classifier; for the topic mining, again we are
working at sentence-level, we use NMF instead of LDA, we
have placed emphasis on topic model stability by using an
ensembled NMF approach, and in equations 1 and 2 we sum
weights whereas they compute cardinalities. But the biggest
difference is that Bauman & Tuzhiln do not ‘close the loop’:
they do not actually use the topic models in a recommender;
in their paper, it remains an aspiration. We have used the
contextual topic vectors as side information in a context-
driven recommender, implemented using FMs.

The RC System

We have built a system which we call RC (standing for Rich
Context), which is our first attempt at a context-sensitive rec-
ommender that uses open-ended contextual information that
it mines from reviews that describe experiences. Our system
has three main components called RCClassifier, RCMiner
and RCRecommender. RCClassifier classifies review sen-
tences into specific and generic; RCMiner builds a contex-
tual topic model from the specific review sentences; and
RCRecommender uses the topic model as side information
in making context-driven recommendations. They are shown
in overview in Figure 1.

We assume a dataset of user opinions for training the sys-
tem. Each record in the dataset 〈〈u, i, Rui〉, rui〉 identifies a
user u ∈ U and an item (e.g. a hotel or restaurant) i ∈ I .
It contains the user’s review of the item, Rui, and the user’s
rating of the item, rui.

Since the system is context-driven, it is invoked by identi-
fying the active user u, a candidate item i or set of candidate
items, and a contextual query Q. The latter is a short phrase,
submitted by the user, which describes her intent, the context
in which she intends to consume the recommended item, e.g.
“birthday dinner”.

RCClassifier

The goal of the RCClassifier is to classify review sentences
as either specific or generic. (This is similar to the work in
(Bauman and Tuzhilin 2014), except that they classify whole
reviews instead of individual sentences.) Sentences in which
the author is describing (part of) an experience with a prod-
uct or service are specific; for instance the second, third and
fourth sentences of this review: “During the summer, we like
to take a mini staycation. This year it was extra special as
we also got engaged. Our stay at the Biltmore was just fan-
tastic. The service was exceptional, and the food was amaz-
ing”. Generic sentences just give general opinions and do
not describe an experience with the product or service; for

652

instance: “Nice hotel, all the amenities you need, great com-
plex of pools”. Our assumption is that, since there is no such
thing as a context-less experience, sentences that describe
experiences, i.e., specific ones, will tend to have more con-
textual information than generic sentences.

RCClassifier starts by performing part-of-speech tagging
on every sentence in every review in its training set. Each
tagged sentence is then represented by a vector of numeric-
valued features. We experimented with a wide set of features
and ultimately adopted the following four, which we found
to be predictive:

• LogWords: log of number of words in the sentence + 1

• Vsum: log of number of verbs in the sentence + 1

• VBDSum: log of number of verbs in the past tense in the
sentence + 1

• ProRatio: ratio of log of number of personal pronouns +
1 to LogWords

It makes intuitive sense that the more words there are in a
sentence the more likely it is that the sentence is specific:
an experience is likely to be more verbose than a summary
opinion. Similarly, it is intuitive that personal pronouns are
commonly-used when relating an experience. Experiences
are also more likely to use verbs in the past tense (e.g. “We
went to the hotel on my birthday”, “I ordered the cheese
burger”, “The service was amazing”), whereas generic sen-
tences are more likely to use verbs in the present tense (“The
hotel is very beautiful”, “They serve great food here” (Bau-
man and Tuzhilin 2014). Finally, experiences involve events
and actions and so are likely to contain more verbs.

Bauman & Tuzhilin use the first three of the above fea-
tures, although they are classifying whole reviews, instead
of individual sentences, so their features are computed per-
review (Bauman and Tuzhilin 2014). They also used two
other features: the log of the number of sentences in the re-
view plus 1 (which is not applicable to our sentence-level
classifier), and the ratio of VBDSum to Vsum, which we did
not find to be so predictive on our datasets. We also experi-
mented with features based on other parts of speech but did
not find anything as predictive as the four above.

We manually label the sentences in a set of reviews to give
a training set. We found that in our datasets there were more
generic sentences than specific ones, giving an unbalanced
training set. We trained classifiers on the unbalanced training
set and compared their classification accuracy against the
same classifiers trained on balanced versions of the training
sets. For balancing the training sets, we tried the methods
from the imbalanced-learn library (Lemaı̂tre, Nogueira, and
Aridas 2016). We found SMOTE+ENN (Batista, Prati, and
Monard 2004) to give the best results. As we will show later,
the best classifier was a Random Forest classifier trained on
a set that was balanced using SMOTE+ENN.

RCMiner

RCMiner’s goal is to represent reviews by their contextual
topics. The methodology for determining the contextual top-
ics is inspired by (Bauman and Tuzhilin 2014):

• RCMiner builds a topic model from the specific review
sentences only, as identified by RCClassifier. A topic
model is essentially a set of K latent factors, each repre-
sented by a weighted list of terms. The way we build the
topic model is detailed in later parts of this section. Since
the topic model is built only from the specific review sen-
tences, we expect some of these topics to be contextual.
However, specific review sentences do not contain only
contextual information so some of the topics may still be
quite general. In the next three steps, the more general
topics are discarded.

• RCMiner applies the topic model to all review sentences,
so that each review sentence S is represented by a vector
of weights T across the K topics.

• We normalise each vector T so that the sum of its weights
equals 1.

• RCMiner next determines which topics appear more fre-
quently in specific review sentences than in generic re-
view sentences, on the assumption that these are more
likely to be the contextual topics. For each topic, tk, k ∈
[1 : K], we calculate the sum of the weights for that topic
in the specific review sentences, divided by the number of
specific review sentences:

ws(tk) =

∑
S∈specific T [k]

|S : S ∈ specific| (1)

We make a similar calculation for generic reviews:

wg(tk) =

∑
S∈generic T [k]

|S : S ∈ generic| (2)

Finally, the likely contextual topics, CT , are those where
the ratio of the two proportions exceeds a threshold β:

CT = {tk | w
s(tk)

wg(tk)
> β} (3)

What is left to describe is the topic modeling itself (the
first bullet point above). We build our topic models from
just the nouns in the specific review sentences, as these are
the parts of speech that most capture contextual information.
Furthermore, to reduce costs, we build the topic models from
just specific sentences that are the first sentence of their re-
view. This is justified later in the experimental evaluation
by noting that these sentences are the most likely to contain
contextual information. We leave it to future work to exploit
more of the sentences in building the topic models. (None
of this changes the three other bullet points above.) Let the
total number of nouns under consideration be N and let the
number of specific sentences that are the first in their review
be |Ss|.

In (Bauman and Tuzhilin 2014), Latent Dirichlet Alloca-
tion (LDA) (Blei, Ng, and Jordan 2003) is used for the topic
modeling. We choose instead to use Non-Negative Matrix
Factorization (NMF) (Lee and Seung 1999), which has been
applied to topic modeling in, e.g., (Arora, Ge, and Moitra
2012). When using NMF for topic modeling, the |Ss| × N
document-term matrix (in our case, |Ss| specific review sen-
tences and their N nouns) is approximated by two non-
negative matrices, W and H, where W is a |Ss| ×K topic

653

membership matrix and H is a N × K term membership
matrix for the K topics. As stated in (Belford, Namee, and
Greene 2016), one advantage of using NMF over LDA is
that it involves fewer parameter choices.

But, there is a significant instability problem with both
LDA and NMF: different runs of these algorithms (with dif-
ferent initial random weights) can result in very different
topic models (Belford, Namee, and Greene 2016). Belford et
al. have recently proposed an ensembling technique that can
much reduce the instability of NMF topic models, and we
adopt their methods in RCMiner. In overview, they propose
to produce a set of base topic models by multiple runs of
NMF on the same original document-term matrix with dif-
ferent random initialisations. Due to the instability of NMF,
this produces a diverse set of topic models. These diverse
topic models are combined. This is done by stacking each
of the H matrices: each row is a topic from one of the base
models and each column is a term. Then, NMF is run again
but on this combined matrix to produce the ensembled topic
model. This model can have K ′ factors, which need not be
the same as the K used in the base models. However, in their
experiments and in ours K ′ = K. Belford et al. give further
details and also demonstrate the improved stability of their
approach (Belford, Namee, and Greene 2016). As explained
in a later section, we have empirically verified that this pro-
duces much more stable models on our datasets.

At the end of this process, the first sentence of every re-
view in the training set (irrespective of whether it is specific
or generic) has been associated with a vector of length |CT |,
c1 . . . , c|CT |, whose values designate the affinity of the sen-
tence to each of the |CT | contextual topics. The original
dataset of records 〈〈u, i, Rui〉, rui〉 is transformed to one in
which reviews are represented by their corresponding con-
textual topic vectors, 〈〈u, i, c1, . . . , c|CT |〉, rui〉.

RCRecommender

The contextual topic vector can be viewed as a form of
side information for a recommender system. There are many
ways to incorporate side information into a recommender
system (Shi, Larson, and Hanjalic 2014). We use Factor-
ization Machines (FM) (Rendle 2012). For this, we one-hot
encode the user and item ids, as is done in (Rendle 2012),
giving training examples 〈x, rui〉 where x ∈ R|U |+|I|+|CT |.
We use FMs of order 2, which attempt to model the inter-
actions between each variable xj ∈ x and the dependent
variable rui but also the interactions between pairs of vari-
ables xjxj′ and the dependent variable rui. However, the in-
teractions between pairs of variables is not modeled by one
parameter per pair but by a low rank approximation, which
makes the FM work well with the kind of sparse data we
have in these domains.

As mentioned earlier, at recommendation time, after the
FM has been trained, we assume we have an active user u, a
candidate item i and a contextual query Q, the latter being a
short phrase that expresses the context in which the user in-
tends to consume the recommended item. We apply the topic
model to Q, so that it too will be represented by a vector
of contextual topics, c1, . . . , c|CT |. For each candidate item,

Dataset Reviews Users Items Sparsity

Hotels 4098 3420 102 0.989
Restaurants 148721 35158 2557 0.998

Table 1: The datasets

we use the FM to predict u’s rating and we recommend the
n items with highest predicted ratings.

Evaluation

We evaluated RC and its components on two datasets: the
Yelp hotels dataset and Yelp restaurants dataset that were
provided for the RecSys 2013 Challenge1. Both datasets
contain records that identify a user, an item (i.e. hotel or
restaurant), the user’s review of the item and the user’s rating
of the item. We removed records that referred to items that
had fewer than 10 reviews. Table 1 describes the datasets af-
ter these records were removed. We proceeded to evaluate
RCClassifier for classification accuracy, RCMiner for topic
stability, and RCRecommender for top-n recall.

RCClassifier

To evaluate RCClassifier, we randomly selected 300 reviews
from each dataset. We manually labeled all sentences in
these 300 reviews as specific or generic, giving us a ground-
truth. For hotels, there were 3264 sentences, of which we la-
beled 1264 (39%) as specific and 2000 (61%) as generic; for
restaurants, there were 2772 sentences, 1084 (40%) specific
and 1645 (60%) generic. Training sets sampled from these
labeled datasets were thus likely to be unbalanced. Prelimi-
nary experiments with different balancing methods (includ-
ing none) and different classifiers found that balancing the
datasets using the SMOTE+ENN method gave the best re-
sults, so we adopted this.

We then used nested 10-fold cross-validation to train
and test different classification algorithms. The outer cross-
validation estimates accuracy using hyperparameter values
chosen by the inner cross-validation. In this way, we made
sure that, for example, a k-nearest neighbours classifier had
its accuracy estimated with a good value for k. We mea-
sured average classification accuracy, i.e. the proportion of
the records in the test sets whose labels were correctly pre-
dicted by the classifier.

We experimented with different feature sets with the dif-
ferent classifiers. We found highest accuracy using the four
features mentioned earlier (LogWords, Vsum, VBDSum and
ProRatio) and a Random Forest classifier. Accuracy on the
hotels dataset was 94%; for restaurants, it was 92%.

For evaluating RCMiner and RCClassifier, we trained a
final RandomForest classifier on all 300 of the manually la-
beled reviews.

RCMiner

To help with the evaluation of RCMiner, we manually con-
structed two vocabularies of contextual words, comprising

1https://www.kaggle.com/c/yelp-recsys-2013

654

147 words for hotels and 108 for restaurants. We emphasize
that these vocabularies are not used in building any of the
models; they are used only to help confirm that RCMiner
does build models that capture contextual information. We
are not claiming that the vocabularies are some kind of com-
plete ground truth; indeed, this would be at variance with
our belief that contextual factors are open-ended. We are us-
ing the vocabularies simply as an indicative evaluation of the
degree to which topics are contextual.

In these experiments, we need to build lots of topic mod-
els (on different splits of the datasets), but constructing topic
models is expensive. We are using the ensembled NMF topic
models described earlier. In each ensemble, we have 100
base models and each of these is trained over 200 iterations
of NMF. These are then stacked for a final run of NMF for
another 200 iterations. Because of the high costs, as men-
tioned earlier, these proof-of-concept experiments train the
topic models on just the first sentence of each review. This
is justified by noting that in the hotels dataset 28% of the
first sentences of reviews contain words from our manually-
constructed vocabulary of hotel contextual words, compared
with just 10% of other sentences. In the restaurants dataset,
the values are 19% and 10%, respectively. In future work,
we will endeavour to use all sentences in our experiments.

Using grid search, we found highest top-10 recommender
system recall using K = K ′ = 78 for hotels and K = K ′ =
30 for restaurants.

We scored different topic models according to the ex-
tent to which they included words from the manually-
constructed vocabularies using the topic score ts of a topic
tk relative to a manually-constructed vocabulary V :

ts(tk, V) =
∑

w∈V

p(w|tk) (4)

where p(w|tk) is given by the topic model: the affinity of
word w to topic tk. Computing ts for the highest-weighted
5 words, LDA topic models had topic scores of around 18%
for the hotels dataset and 11% for the restaurants dataset; en-
sembled NMF models had scores of 18% and 16% respec-
tively. Informally, we found we had topics among whose
top-ranked words were {weekend, getaway}, {summer, fam-
ily, kids} and {work, conference} for hotels, and {dinner,
girlfriend} and {friends, Saturday, evening} for restaurants.

We also measured topic model stability. We used the topic
model agreement score, defined in (Greene, O’Callaghan,
and Cunningham 2014), which rewards term overlap but
also agreement on term ranking. For the values we have
already given (78 topic for hotels, 30 topic for restaurants,
100 base models in the ensembles), the agreement scores
for LDA were 0.28 for hotels and 0.21 for restaurants; for
ensembled NMF, they were 0.95 and 0.74, respectively. This
justifies the use of the ensembled approach.

RCRecommender

We start by describing the part of the RCRecommender eval-
uation methodology that is common to both datasets. We use
the (now widely-accepted) methodology proposed in (Cre-
monesi, Koren, and Turrin 2010). We split the dataset ran-
domly into training and probe sets. We build the topic model

on the reviews from the training set and then prepare the
training set by putting it into the format required by the Fac-
torization Machine (see earlier section). From the probe set,
we select records that have 5-star ratings to create a test set.
For each of the test records, 〈〈u, i, Rui〉, 5〉, we find an addi-
tional C items that have not been rated by user u. This gives
us C + 1 candidates (the test item and the C unrated items).
We use the recommender system that we have built from the
training set to predict the ratings of these C + 1 items. As
mentioned previously, RC is a context-driven recommender,
requiring the user to supply a contextual query Q, to which
we also apply the topic model. In reality, a user will submit
this query (a few words that describes the context in which
she intends to consume the item). In these offline experi-
ments, we need a way of obtaining these contextual queries.
Hence, for Q, we simply use the nouns of the first sentence
of the test item’s review, Rui. The same query is used for
each of i’s additional candidate items. Once it has predicted
their ratings, RC recommends the top-n candidates with the
highest predicted ratings (n = 10). If i (the test item, which
the user had rated 5-stars) is among the top-10 recommen-
dations, we count this as a hit. We measure the recall (hit
rate): the proportion of items in the test set for which we get
a hit. (In future work, we plan other ways of obtaining these
queries, e.g. an ablation study and from human participants.)

We are using the LibFM implementation of FMs (Ren-
dle 2012) with order 2 (i.e. it considers interactions between
pairs of variables) but with different low rank approxima-
tions for the weights of the interactions.

Because of the very different sizes of the datasets, we have
different methodologies for obtaining our results. In the case
of the smaller hotels dataset, we use nested 10-fold cross-
validation. The inner cross-validation mines topic models
and builds FMs with different ranks (1, 2, 4, 8, 16, 32). It
supplies the best of these to the outer cross-validation for re-
call estimation using the method described above. Because
the dataset has a small number of hotels, the largest value of
C we can use is C = 90: every user has 90 unrated hotels.

For the larger restaurants dataset, it is too computation-
ally expensive to build so many topic models and to test so
many test items. So, we split the dataset into two equal-sized
parts and built an ensembled NMF topic model on the first
half. We then used nested 10-fold cross-validation on the
second half of the dataset to build FMs of different ranks (1,
2, 4, 8, 16, 32) and to compute recall, as described above.
In the cross-validation, in order to reduce the testing times,
we limit the size of the test set to 200 elements; these are
chosen randomly from the 5-star ratings in the probe set.
But in these experiments, the number of additional candi-
date items C for each test item is C = 1000, as proposed in
(Cremonesi, Koren, and Turrin 2010).

We compare RC with an FM without contextual side in-
formation (using equation (41) from (Rendle 2012)). Its top-
10 recall is computed using nested cross-validation, using 1,
2, 4, 8, 16 and 32 as different values for the number of latent
factors, designated FM in Table 2.

Results in Table 2 show that there is an improvement by
incorporating contextual information into the recommenda-
tion model in both datasets: an improvement of 3.5% for the

655

Dataset FM RC Improvement

Hotels 0.4286 0.4436 +3.5%
Restaurants 0.0465 0.0500 +7.5%

Table 2: Top-10 recall results

hotels dataset and of 7.5% for the restaurants dataset.

Conclusions

In this paper we have presented RC, a context-driven recom-
mender system that uses reviews and ratings to make recom-
mendations. We have shown that we can outperform conven-
tional systems by mining contextual information from the
reviews. Our contributions are: an improvement in the task
of classifying review sentences into specific and generic, the
use of a stable ensembled topic modeling method to extract
contextual information from user reviews without the need
to predefine contextual variables and their values, and the
use of this contextual information as side information in a
Factorization Machine for recommendation.

In the future we will look specifically at cold-start issues
since, as (Pagano et al. 2016) describes, these are significant
for context-driven systems. We will also look at hierarchical
topic modeling to give a better representation of contextual
information, along with the incorporation of other forms of
side information that we can mine from the reviews.

References

Adomavicius, G., and Tuzhilin, A. 2011. Context-aware
recommender systems. In Ricci, F.; Rokach, L.; Shapira, B.;
and Kantor, P. B., eds., Recommender Systems Handbook.
Springer. 217–253.
Arora, S.; Ge, R.; and Moitra, A. 2012. Learning topic mod-
els – going beyond SVD. In IEEE 53rd Annual Symposium
on Foundations of Computer Science, 1–10.
Baltrunas, L.; Ludwig, B.; and Ricci, F. 2011. Matrix fac-
torization techniques for context aware recommendation. In
5th ACM Conference on Recommender Systems, 301–304.
Batista, G. E. A. P. A.; Prati, R. C.; and Monard, M. C.
2004. A study of the behavior of several methods for balanc-
ing machine learning training data. SIGKDD Explor. Newsl.
6(1):20–29.
Bauman, K., and Tuzhilin, A. 2014. Discovering contex-
tual information from user reviews for recommendation pur-
poses. In 1st Workshop on New Trends in Content-based
Recommender Systems at the 8th ACM Conference on Rec-
ommender Systems, 2–9.
Belford, M.; Namee, B. M.; and Greene, D. 2016. Ensem-
ble topic modeling via matrix factorization. In 24th Irish
Conference on Artificial Intelligence and Cognitive Science.
Blei, D. M.; Ng, A. Y.; and Jordan, M. I. 2003. Latent
dirichlet allocation. J. Mach. Learn. Res. 3:993–1022.
Chen, G., and Chen, L. 2015. Augmenting service recom-
mender systems by incorporating contextual opinions from

user reviews. User Modeling and User-Adapted Interaction
25(3):295–329.
Chen, L.; Chen, G.; and Wang, F. 2015. Recommender
systems based on user reviews: The state of the art. User
Modeling and User-Adapted Interaction 25(2):99–154.
Cremonesi, P.; Koren, Y.; and Turrin, R. 2010. Performance
of recommender algorithms on top-n recommendation tasks.
In 4th ACM Conference on Recommender Systems, 39–46.
Diao, Q.; Qiu, M.; Wu, C.-Y.; Smola, A. J.; Jiang, J.; and
Wang, C. 2014. Jointly modeling aspects, ratings and
sentiments for movie recommendation (JMARS). In 20th
ACM International Conference on Knowledge Discovery
and Data Mining, 193–202.
Greene, D.; O’Callaghan, D.; and Cunningham, P. 2014.
How many topics? stability analysis for topic models. In
European Conference on Machine Learning and Knowledge
Discovery in Databases, 498–513.
Hariri, N.; Zheng, Y.; Mobasher, B.; and Burke, R. 2011.
Context-aware recommendation based on review mining. In
9th Workshop on Intelligent Techniques for Web Personal-
ization & Recommender Systems, 30–36.
Karatzoglou, A.; Amatriain, X.; Baltrunas, L.; and Oliver,
N. 2010. Multiverse recommendation: N-dimensional tensor
factorization for context-aware collaborative filtering. In 4th
ACM Conference on Recommender Systems, 79–86.
Lee, D. D., and Seung, S. 1999. Learning the parts of objects
by non-negative matrix factorization. Nature 401.
Lemaı̂tre, G.; Nogueira, F.; and Aridas, C. K. 2016.
Imbalanced-learn: A python toolbox to tackle the curse
of imbalanced datasets in machine learning. CoRR
abs/1609.06570.
Ling, G.; Lyu, M. R.; and King, I. 2014. Ratings meet
reviews, a combined approach to recommend. In 8th ACM
Conference on Recommender Systems, 105–112.
McAuley, J., and Leskovec, J. 2013. Hidden factors and
hidden topics: Understanding rating dimensions with review
text. In 7th ACM Conference on Recommender Systems,
165–172.
Pagano, R.; Cremonesi, P.; Larson, M.; Hidasi, B.; Tikk, D.;
Karatzoglou, A.; and Quadrana, M. 2016. The contextual
turn: From context-aware to context-driven recommender
systems. In 10th ACM Conference on Recommender Sys-
tems, 249–252.
Rendle, S. 2012. Factorization machines with libfm. ACM
Trans. Intell. Syst. Technol. 3(3):57:1–57:22.
Shi, Y.; Larson, M.; and Hanjalic, A. 2014. Collaborative fil-
tering beyond the user-item matrix: A survey of the state of
the art and future challenges. ACM Comput. Surv. 47(1):3:1–
3:45.
Zheng, Y.; Burke, R.; and Mobasher, B. 2013. Recommen-
dation with differential context weighting. In User Model-
ing, Adaptation, and Personalization. Springer. 152–164.
Zheng, Y.; Mobasher, B.; and Burke, R. 2014. Cslim: Con-
textual slim recommendation algorithms. In 8th ACM Con-
ference on Recommender Systems, 301–304.

656

