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Abstract. In this paper, we present similarity metrics, which pro-
vide a seamless integration of cardinal and non-cardinal similarity mea-
sures. We show that cardinal and non-cardinal ways of measuring sim-
ilarity in case bases are simply instances of the definition of similarity
metrics, and that a single definition of the maxima of a similarity met-
ric can be applied in both the cardinal and non-cardinal cases, to give
intuitively sensible maxima in both cases. We present a number of ways
of constructing new similarity metrics from existing similarity metrics.
A great strength of the framework is that similarity metrics of different
types (e.g. cardinal and non-cardinal) can be combined, and the result
will still be a similarity metric (to which the definition of maxima is still
applicable).

The paper is illustrated throughout by examples from a holiday case
base.

1 Introduction

Traditionally cases have been retrieved from case bases using weighted similarity mea-
sures, in which the similarity of a new problem to a case in the case base is given some
numeric value [3, 16, 5, 6]. In [9, 8, 10] we suggested an alternative approach, in which
a similarity measure would return a partial order on cases, in which a case ¢; is better
than case ¢y if ¢; is more similar to the given seed than c,. In order to contrast this
approach to the traditional approach — which we called the cardinal approach [15] —
we called this approach ordinal. In [9, 8, 10] we also discussed how the results from
our ordinal approach might also be applied to the more traditional cardinal approach.
While the ordinal approach is widely applicable, it does entail some loss of information.
The resulting partial order might tell us that ¢; is better than ¢, but will not inform
us how much better. Recently interest has also been shown in similarity measures that
are neither boolean- nor numeric-valued [4, 13, 12]. In this paper we will demonstrate a
new approach, called similarity metrics, which not only combines the wide applicability
of the ordinal approach with the greater informational content of the cardinal approach,
but also maintains and provides information from similarity measures of other types.

*Thanks to Cliff and the Shadows [14].
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The paper is intended to complement our paper at ICCBR [7]. In [7] we concentrate
more on the theoretical background of similarity metrics, while this paper demonstrates
more clearly how a case base retrieval system using similarity metrics might be imple-
mented. This paper also extends the work presented in [7]. In particular, the identity
metric (section 3.2.1), feature structure metrics (section 3.2.5), seeded similarity metrics
(section 3.3), and the use of left composition to obtain “deep” features from “surface”
features and of right composition to give “interval” metrics (both in section 3.4.4) are
not covered at all in [7].

This paper will be illustrated throughout by examples from the “travel agent’s” case
base [1] maintained at the AI-CBR web site [2] at the University of Salford. This is a
case base containing almost 1500 cases, each representing a possible holiday. We will
demonstrate how cases can be selected from the case base by comparison of (combina-
tions of) features, e.g. price, destination etc., and how retrieval will not only rank the
cases, but also provide information indicating the degree of similarity of cases. For the
sake of this paper we will use a small subset of this case base in our examples. This
subset is given in the appendix. The reader is referred to the appendix for details of
the structure of a typical case.

2 Approaches to Case Base Retrieval

2.1 Cardinal Measures

Obviously some of the features of the cases are amenable to the cardinal approach. For
example the similarity of the prices of two holidays can be measured by their absolute
difference. With slightly more difficulty, the similarity of months can be measured by
their proximity — e.g. the similarity of November and December is 1, while that of
August and November is 3. However, similarity of some of the features can only be
mapped to a cardinal measure with great difficulty, if at all. Assume, for example, that
the possible modes of transport are by car, plane, train or coach, and that the customer
prefers to drive, and hates flying. What is then a reasonable numeric measure of the
similarity of travel by train and by plane, and how does this relate to the similarity of
travel by car and by coach? Similarly, what would be a useful cardinal measure of the
similarity of a lakeside holiday in the mountains to an urban holiday at the seaside?

2.2  Ordinal Measures

In [9, 8, 10] we suggested how ordinal measures could be used to capture non-cardinal
information. For example, when comparing modes of transport a user-defined ordering
on these means could be defined as shown in Fig. 1. As discussed in [9, 8, 10], it is
also possible to model cardinal measures using ordinal measures by simply ignoring
the additional cardinal information — e.g. one price might be better than another if it
is lower, the amount by which it is lower being considered irrelevant. Note that this
entails some loss of information.
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Figure 1: A user-defined ordering for modes of transport.

2.3  Other Types of Similarity Measure

The ordinal approach could also be used for comparing the activities available on the
various holidays. The activities are given as a set-valued feature. These sets might then
be compared using the usual subset ordering. Again this similarity measure might tell
us that one holiday is better than another, i.e. it offers a superset of all the activities
of the inferior holiday, but not indicating what these additional activities are. A better
approach would, by analogy with the cardinal approach, not return simply a boolean
value, but the set difference of two sets of activities, thus conveying information about
the degree to which they differ.

3 Similarity Metrics: A Unified Approach

The three types of similarity measure discussed above all return some measure of sim-
ilarity — in the ordinal case, simply a truth value; in the cardinal case some numeric
indication of similarity; and in the set-valued case, a set of values by which one case
can be said to “exceed” another. We have defined the notion of similarity metrics to
provide a framework for integrating all of these types of measures, and many others
besides. This work is intended to provide a sound theoretical basis for an algebra of
case base retrieval, in a manner analogous to the role played by relational algebras in
database retrieval. It is beyond the scope of this paper to give a full formal presenta-
tion of similarity metrics. The reader is referred to [7, 11] for a discussion of the formal
aspects of similarity metrics.

Briefly, a similarity metric is a generalisation of a similarity measure. Where an
ordinal similarity measure will take two cases and return a boolean value, and a cardinal
measure will take two cases and return a numeric value, a similarity metric will take
two cases and return some value from some ordered set!. This provides a powerful
framework within which similarity metrics, possibly of differing types, can be combined
to give new similarity metrics — for example two boolean valued similarity metrics
can be combined to give a similarity metric returning pairs of boolean values, and an
ordinal metric can be combined with a cardinal metric to give a metric returning a
boolean-numeric pair. Similarity metrics can also be combined with other functions,
allowing tranformations on data structures before and after application of the similarity
metric. In such a way, for example, a cardinal similarity metric can be transformed to
an ordinal metric, a similarity metric applicable to some individual feature of a case may
be applied to complete cases, or disjunction or conjunction can be used to transform
a similarity metric returning pairs of boolean values to one returning single boolean
values.

We are now ready to define similarity metrics, and the maxima of a similarity metric.

L Actually we require this ordered set to be a complete lattice. See [7, 11] for the details.



This will be done in Sect. 3.1. We will then give examples of some simple similarity
metrics in Sect. 3.2, illustrating them with applications to the example case base. In
Sect. 3.3 we will introduce seeded similarity metrics, and again provide illustrations
from the case base. Section 3.4 will show how to construct more complex similarity
metrics, and illustrate this again in the example case base. All the illustrations are
taken from a prototype implementation of a similarity metric based case base retrieval
system implemented at the University of York.

3.1  Similarity Metrics and their Mazxima

Definition 1 A similarity metric is a pair (<, L), where L is a complete lattice, and
< is a function from pairs of values from some set A to L.

As mentioned above, the reader can understand this paper by remembering that a
complete lattice is an ordered set, the ordering being denoted T below; the other
properties of a complete lattice are not directly appealed to in this paper.

The function < measures the relative values of its arguments — if x <y = v then
y is said to exceed x by v, or, alternatively, v is the excess of y over x. Since L is a
lattice, excesses need not be comparable.

We can define the concept of maxima for similarity metrics. A first approximation,
by analogy with maxima for partial orders, would be to define the maxima to be those
elements that always exceed any other element more than that element exceeds the
“maximal” element — i.e. to define the maxima to be

Definition 2
max S={zx e SVye S:xdyC,yJx} . (1)

However, x < y need not be comparable to y < x, and this needs to captured in the
definition of the maxima.

An element z of a set S is a maximum if, whenever the excess of z over y is
comparable to the excess of y over z, then the excess of x over y is greater than or
equal to the excess of y over z. An equivalent formulation is: if the excess of = over y
is less than or equal to the excess of y over x, then the two excesses are equal.

Definition 3 The mazima of a set S by a metric (Q, L) are defined to be:

max S={rxeSVyeS:ydaCraxdy=y<z=xy} . (2)

3.2 Some Simple Similarity Metrics

3.2.1 Identity.

If A is itself a lattice a trivial, but useful, similarity metric is given by x <y = y. The
maxima of this similarity metric will be the maxima under the ordering on A. This can
be shown by substituting the definition of this metric in (2):

max S = {zeSVyeS:ydarCLraxdy=y<z=x<Ly}
= {zeSVyeS:2Cry=z=y} .



For example, the accommodation available is one to five star hotels, or holiday flats.
The obvious lattice can be defined, with hotels being ranked according to the number of
stars, and holiday flats being incomparable to hotels, so that, for example, x C xx, but
* [Z Flat and Flat [Z x. The similarity metric defined above will then give x < k% = xx
— i.e. #x exceeds x by xx, and x* < % — i.e. x exceeds xx by x.

In the prototype implementation at the University of York the retrieval request?
id_m acc_1 will select holidays 188, 680 and 1088, since 680 and 1088 are at four star
hotels (there are no holidays in five star hotels available), and 188 is in a holiday flat
(and therefore incomparable to all other holidays, which are in hotels).

3.2.2 Orders.

An alternative metric for an ordered set (A4,C) is (C, Bool), where Bool is the usual
boolean lattice. Again, the maxima are those of the ordering.

max S = {zeSVyeS:(yCe=Cy)=(rCy=yLCux)}
= {reSVyeS:(yCe=2C)= (@CyeyCa)}
= {reSVyeS:(yCaz=2Cy) = (@Cy=yCa))}
= {zeSVyeS:2Cy=yLCa} .

Taking the user-defined order given in Fig. 1 to be transPO0, the holidays with preferred
modes of transport can be retrieved using order_m transPQ. In this case, the excess
of, for example, travel by car over travel by coach is True, while the excess of travel
by coach over travel by train is False®. The holidays selected are those with identifiers
188, 370, 952, 1088 and 1184, since these all use travel by car, the preferred means of
transport.

3.2.8 Numeric Values.

If x = y is the function on some numeric set N that returns the difference of x and y if

x is greater than y, and 0 otherwise, then (=~' N) is a similarity metric. The inverse,

~~1 is taken to give an intuitive reading to the metric, e.g. 3 —=~! 7 = 4 reads as “7
exceeds 3 by 4”7. The maxima of a set will again be the maxima given by the usual

numeric ordering.

max S = {reSWyeS:y-la<zTlysyitr=c"ly}
= {reSWweS:z-y<yzr=ry=y-=uz}
= {zeSWweS:z<y=zx=y}.

The holidays with the longest duration can be selected using num_m on the duration
feature, which will select (only) holiday 188, since this is the only three week holiday.

2Actually, this similarity metric, and all others in this section, will have to be composed with a
projection function to make it applicable to the whole case base. Composition of similarity metrics
with other functions will be discussed in Sect. 3.4.

3In the case of this (boolean) metric a simpler paraphrase is possible. If z exceeds y by True, we
simply say that x exceeds y.



3.2.4 Sets.

A similar approach can be taken with sets, using set difference. Again the inverse is
taken to match an intuitive reading. The metric is (\™', P(S5)), with P(S) the usual
lattice on the power set of S. In this metric, for example, {a,b,c} \ ! {a,c, d} = {d} is
pronounced “{a,c,d} exceeds {a,b,c} by {d}”. Similarly, {a,b,c} exceeds {a,c,d} by
{b}. This similarity metric will also give the usual maxima of the subset ordering.

max S = {zeSweS:y\ "zCx\ y=>y\ e=2\"y}
= {zesSyesS:z\yCy\a=a\y=y\uz}
= {zeSvyeS:z\y=0=y\z=0}
= {zeSVyeS:2Cy=yCuz}
= {zeSVWweS:aCy=z=y} .

For example, the similarity metric set_m applied to the activities feature will give the
excess of {bathing, walking, diving} over {walking, diving, surfing} as {bathing}, and
{walking, diving, surfing} will exceed {bathing, walking, diving} by {surfing}. This
request will select those holidays offering a set of activities not subsumed by any other
holiday. In the example case base, these will be holidays 132, 188, 370, 1184 and 1360.
Holiday 1184 is the only holiday to offer ski-ing. The other three provide both bathing
and walking, and subsume holidays 272 and 680, which only offer bathing, and holidays
711, 952 and 1088, which only offer walking.

3.2.5 Other Types.

Similarity metrics can also be defined for many other types — for example intervals,
feature structures, graphs etc. Recent work by Jantke [4] and Plaza [12, 13] has proposed
the use of feature structures as a case representation with the similarity between two

feature structures being computed as the anti-unification. For example [ga{)] and

[Ei] would receive [F a] , their anti-unification — the information they have in

common — as a similarity score. We can define a similarity metric that captures these
ideas too. We would use the inverse of the subsumption ordering on feature structures
as the lattice, and would defined a form of feature structure difference. Then, e.g.

[ga{)] < [Ei] = [H c¢] and this would be higher in the subsumption lattice than

[Ei]gwa]:[ )

3.3 Seeded Similarity Metrics

The similarity metrics above are all “fixed” — i.e. they compute the similarity of two
cases against some fixed metric, they cannot compute the relative similarity of two cases
to some third case. This is similar to the role played by the “underlying partial orders”
in our presentation of ordinal similarity measures [9, 8, 10].

As in ordinal similarity measures, we can generate new similarity metrics from ex-
isting similarity metrics, by means of standard constructions, in which the new metric
computes the relative similarity of cases to some fixed case, known as the seed. To define
these measures we introduce the concepts of lesser distance and greater distance. The



lesser distance between two cases, in some metric, is the common ground of the excesses
between the two cases — i.e. the greatest lower bound of the excesses. Similarly, the
greater distance is the least upper bound of the excesses. So, for example, the lesser
distance of two sets will be the intersection of the two sets, and the greater distance
will be the union. If there is also a similarity metric defined on the result type of the
(lesser or greater) distance a distance relative to some seed ¢ can be defined to be the
excess of the distances of the cases from the seed.

So, for example, if the customer is looking for a holiday for 3 people, the most
suitable holidays will be selected by* rel_g_dist num_m (m_inv num_m) 3. This sim-
ilarity metric will compute the greater distance of its two arguments to the seed (3) —
i.e. the absolute difference of the arguments to 3 — and then use the standard inverse
numeric metric to rank these results, ranking lower excesses as better than higher ex-
cesses. So, in this metric, 2 exceeds 4 by 0 (since the absolute difference of both 2 and
4 with 3 is 0), and 6 exceeds 1 by 1. Applying this similarity metric to the example
case base, there are two holidays that match the seed perfectly — 132 and 1360 — and
these will be selected by this query.

3.4 Constructing More Complex Similarity Metrics

3.4.1 Inverses.

There are various ways of constructing new similarity metrics. It is possible, as men-
tioned in Sect. 3.3, to take the inverse of a metric, defined by x <=! y = y < x. The
obvious example for an inverse is the price, since most people will, within the bounds of
other constraints, wish to minimise the cost of their holiday. The cheapest holiday will
be selected by m_inv num_m applied to the price of the holidays, and this will, indeed,
select holiday 1184.

3.4.2  Products.

The product of two or more similarity metrics may also be taken. These metrics
are then applicable to tuples of values, and the result is an element of the product
of the lattices in the original metrics. Say, for example, that the customer would
like the best possible accommodation, at the lowest possible price. We can then use
the product of the accommodation similarity metric and the price similarity metric
(id_m acc_1l) m_prod (m_inv num_m). This metric selects holidays 188, 1088 and
1184. Holiday 188 is the cheapest (indeed the only) holiday flat holiday. Holiday 1088
is the cheaper of the two holidays in four star hotels, and holiday 1184 is not only the
cheapest holiday, but also in a three star hotel — in other words, there is no point in
presenting any of the two star hotels.

Note that the product of two similarity metrics, even when their result types are
different, is still a similarity metric.

4This example makes use of an inverse similarity metric, in order to find cases with a minimum
distance from the seed, rather than a maximum. Similarity metric inverses will be discussed in Sect. 3.4.



3.4.3 Prioritisations.

Inverses and products are the similarity metric counterparts to the standard lattice in-
verse and product operators. We have also defined prioritisation. The prioritisation of
one metric over another will, conceptually, apply the first metric to make a first selec-
tion, and only apply the second metric to distinguish between cases that are considered
equally acceptable by the first metric. For example, it may be that the customer does
not want to compare the cheapest holidays in each class of accommodation, but defi-
nitely wants the accommodation of as high a quality as possible, and only wants to use
the price to make a further selection. This can be achieved by taking the prioritisation
of accommodation over price (id_m acc_1) m_prio (m_inv num_m). In contrast to
the product similarity metric, this similarity metric will only select holidays 188 and
1088, and not holiday 1184. Holiday 1184 may be cheaper than holiday 1088, but the
accommodation is of an inferior quality.

3.4.4  Composition.

Similarity metrics can also be composed with other functions, allowing values to be
transformed into a format more suitable for further computation. Both left composition
(pre-processing) and right composition (post-processing) are possible.

Left Composition. In left composition the function being composed with the similarity
metric is applied to the arguments of the similarity metric before the similarity metric
is applied — i.e. it provides a pre-processing capability.

The most obvious form of pre-processing, which has been applied implicitly up to
now, is projection, which will select some particular feature(s) of a case for comparison.
So, for example, the cheapest holidays are actually selected by (m_inv num_m) 1_comp
proj_price. We will, in the remainder of this paper, again take the projections as
assumed.

More complex pre-processing is, of course, possible. As the case base stands, it is
difficult to generate a metric for selecting on grounds of the location. However, the case
base [1] defines not only the locations, but also certain (geographical) features of loca-
tions — e.g. that the location is in the mountains, a lake, at the seaside. Locations can
also be placed in a wider geographical context — e.g. that Holland is on the North Sea,
Harz is in Germany and Fang is in Denmark. Using this information, a function can be
defined that, given a location, returns a set of descriptors of that location — so that, for
example, a description of Lake Garda might be {Lake Garda, Alps, Countryside, Italy,
Lake, Mountains, Waters}. We can apply this function in pre-processing and then use
the standard set similarity metric in further selection. In this case, simply taking the
maxima is unlikely to be very selective, since few descriptions of locations are going to
be comparable. However the selection can be made more selective by applying seeded
similarity metrics, as described in Sect. 3.3, to try and match holidays to some descrip-
tion of an ideal holiday given by the customer. Assume, for example, that the customer
would ideally like a lakeside mountain holiday in Germany. A suitable query would
then be (rel_1_dist (id_m set_l) set_m {Germany,Lake,Mountains}) m_1_comp
desc. The second half of this expression, desc, will apply the description function to
give a description of this location. The first half will then attempt to find those descrip-
tions most closely matching the customer’s ideal of { Germany, Lake, Mountains}. As it
happens, there is no holiday perfectly matching the ideal, and the system recommends



holiday 370 — at Lake Garda, offering lakes and mountains — and holiday 952. Holiday
952 is at Harz, the description of which is {Harz, Countryside, Germany, Mountains},
and therefore offers both “Germany” and mountains. No other holidays come as close
to matching the customer’s wishes.

Right Composition. In right composition the function being composed with the simi-
larity metric is applied to the result of the similarity metric — i.e. it provides a form
of post-processing.

As an example of post-processing, let us again consider the problem of selecting
by price. We have shown how to select the cheapest holiday by means of num_m.
However, a more likely scenario is that the customer says “I'm looking for a holi-
day at around DM 1400”. A first approximation is to use a seeded similarity metric
rel_g_dist num_m (m_inv num_m) 1400. However, this is going to be too selective,
returning the one holiday with its price closest to DM 1400 — in this case holiday 952,
at DM 1482. We can use right composition to make the second half of this similarity
metric less selective. By applying an integer divide, by, for example, 500, we can map
the distances computed to equivalence classes in multiples of 500, so that, if the dif-
ference in price of two holidays is less than DM 500 their relative distance is 0, and
if the difference is, for example, DM 1350 their relative distance is 2. This gives us
the similarity metric rel_g_dist num_m ((div 500) r_comp (m_inv num_m)) 1400.
This will, indeed, select holidays 132, 370, 952 and 1088, which are the only holidays
priced within DM 500 of DM 1400.

We would like to emphasise again that all these ways of combining similarity metrics
from existing metrics remain within the framework, so that, for example, the maxima
can still be taken. We consider this to be a great strength of the framework.

4 Conclusions

We have presented an integrated framework for computing many different types of
similarity. The framework not only subsumes many different types of similarity measure,
it also allows different types of similarity measure to be combined, while remaining
within the framework.

The framework also allows an elegant formulation of pre-processing of input and
post-processing of output, again while remaining within the framework.

We intend to investigate the combination of similarity metrics with relational alge-
bra, leading to a relational metric algebra — a framework in which both database and
case-base operations can be specified and reasoned about.
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Appendix: The Example Case Base

N of People
T

Id Type Price Location | Trans. | Days | Mon | Acc. Hotel
132 | {Bathing, 1147 3 | Baltic Train 7 | Sep 51 Hotel am
Walking} Sea Leuchtturm,
Warne-
munde
188 | {Bathing, 2187 2 | Atlantic Car 21 | Aug | Flat | Holiday Flat
Walking} Atlantik,
France
272 | {Bathing} 3198 2 | Corfu Plane 14 | Sep | ** | Hotel
Mirabell,
Corfu
370 | {Bathing, 1608 2 | Lake Car 14 | May | ** | Hotel
Walking} Garda Palme,
Lake Garda
680 | {Bathing} 3644 4 | Mallorca | Plane 7| Jul | ®FFF T Anlage Lago
Playa, Mall-
orca
711 | {Walking} 2274 4 | Giant Coach 14 [ Jun | ** [ Hotel Bedri-
Moun- chov, Giant
tains Mountains
952 | {Walking} 1482 4 | Harz Car 7 | Jan %] Hotel
Fiirstenhoh,
Harz
1088 | {Walking} 978 2 | Tyrol Car 7 | Jan | *FFF T Hotel
Alpenland,
Tyrol
1184 | {Ski-ing} 508 2 | Tyrol Car 7 | Jan | ** [ Hotel Adler,
South Tyrol
1360 | {Bathing, 4708 3 | Fuerte- Plane 14 | Mar | *** | Hotel Crys-
Walking} ventura tal Beach,
Fuerteven-
tura

This is a small subset of the case base [1] at the University of Salford. In the original
case base the second feature (the type of the holiday) is not, as here, a set-valued




feature. The set values here have been adapted from the original case base to simplify
the presentation of set-valued similarity metrics.
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