
Models of Similarity for Case-Based Reasoning

Hugh Osborne Derek Bridge
School of Computing and Mathematics Department of Computer Science

University of Huddersfield University College, Cork
(h.r.osborne@hud.ac.uk) (d.bridge@cs.ucc.ie)

Abstract

Wemotivate and present similarity metrics, the similarity mea-
surement framework we have developed for use within Case-
Based Reasoning Systems. In this framework similarities are
values from any type on which a complete lattice is defined.
This gives us a wide range of intuitive ways of measuring sim-
ilarity and a large number of ways in which different metrics
can be combined. The paper concludes by showing how the
framework might be deployed in categorisation.

Context
Case-Based Reasoning
Case-Based Reasoning (CBR) may be used in domains for
which the following ‘slogan’ holds true:

Similar problems have similar solutions.

Past problem-solving experiences are encoded as cases and
stored in a case base. Each case typically includes a descrip-
tion of the problem and the solution found. A new problem is
used as a probe to interrogate the case base. The CBR system
retrieves cases that have problem descriptions that are similar
to that of the probe. The solutions from one or more of the
most similar cases retrieved might, after adaptation, be used
to solve the new problem (Aamodt & Plaza, 1994).
The focus of our work and of this paper is the similarity-

based retrieval part of the CBR process. We have been devel-
oping a general framework for measuring similarity that both
subsumes and extends many existing approaches (Osborne &
Bridge, 1996a; 1996b; 1997a; 1997b; 1997c). Before giving
an overview of the framework, we make explicit some of our
assumptions and factors that have motivated our approach.

Some assumptions
We assume that each case comprises a number of attributes,
or features, with values that may be numeric, symbolic or
structured (e.g. sets). While a case representation based on
attribute-value pairs may seem restrictive, in fact it imposes
no substantive restrictions at all. All that we assume is the
existence of suitable projection functions, for each attribute
, which, when applied to a case, deliver the value of attribute
. This allows our framework to accommodate a variety of
case-based work:

in some systems only a subset of the case information
might be stored as fields of a case record, the rest being,
e.g., part of an indexing structure (Barletta &Mark, 1988);

in other systems cases have a distributed representation,
e.g. the use of case ‘snippets’ (Redmond, 1990);

and in some systems, certain attributes of a case, e.g. the
so-called ‘deep features’ (Ashley & Rissland, 1988), might
not be stored at all but, rather, they would be inferred from
(stored) ‘surface features’ (Koton, 1988).

By assuming that projection functions can be implemented to
deliver the desired attribute-value pairs, no matter how and
where they are stored, our treatment of similarity is isolated
from these differences.
Note also that the use of attribute-value pairs does not pre-

clude the representation of recursive concepts. One particular
example is the use of feature structures as described by Jan-
tke (1994) and Plaza (1995). We are confident that our model
subsumes this approach.
Following fairly well-established practice (e.g. Tversky &

Krantz, 1970), we conceptualise computation of , the
similarity of cases and , as the combination of compar-
isons of the individual attribute-values in the two cases. The
similarity of each pair of corresponding attribute-values in the
two cases, and , is computed by a function .
Then, some function combines the individual similarities:

The application of a similarity measure can be realised in a
number of ways. Broadly, though, CBR systems take either a
representational or a computational approach (Porter, 1989).
In the representational approach, cases reside in a data

structure in which, e.g., proximity denotes similarity. Such
approaches can be efficient: they are effectively optimised to-
wards retrieval according to the ‘hard-coded’ similarity mea-
sure. This can be of especial value when similarity mea-
surement requires the application of large bodies of domain-
specific knowledge: the knowledge will be applied once per

We also assume that projection functions can deliver any of the
types of case information represented in case bases (e.g. facets of
the problem description, its wider situation or context, its solution,
the solution’s outcome, etc.); this allows similarity measures to be
sensitive to aspects of the case other than the problem description
(e.g. the adaptability of the solution (Smyth & Keane, 1996)).

case at case base update time, rather than being applied afresh
on every retrieval (Porter, 1989). However, this form of
optimisation can lead to a loss of flexibility (McCartney &
Sanders, 1990) as it may be hard or inefficient to access the
case base in different ways.
The computational approach, on the other hand, will, in

its most extreme form, compute similarity ‘from scratch’ on
each retrieval. This can be a flexible approach as nothing is
hard-coded; it may be more amenable to user manipulation
of the similarity measure (see below) or even manipulation
through some learning process (e.g. Richter & Wess, 1991);
but there may be an efficiency price to be paid.
In other systems, the case base is indexed, and case base

interrogation is a two-stage process (Aamodt & Plaza, 1994):
a retrieval step exploits the indexes to retrieve a possibly use-
ful set of cases, then a similarity measure is applied to these
cases. This is clearly a compromise between pure representa-
tional and pure computational approaches.
Although our presentation has a computational flavour,

nothing in our framework precludes hard-coding of all or
parts of the similarity measures and so our framework is gen-
eral enough to cover representational approaches too.

Some motivation
We have been most concerned with interactive CBR systems.
A human user is responsible for describing the new prob-
lem situation and judging the quality of the cases retrieved.
For these systems (and possibly non-interactive CBR systems
too), our contention is that there is generally no fixed notion
of similarity: the user must be allowed to change not only
the probe but also the similarity measure. This can be vividly
illustrated by considering the use of CBR in on-line shop-
ping systems (Wilke, 1997) where, e.g., each case in the case
base is a product (the ‘description’ parts of the cases char-
acterise the products; the ‘solution’ parts simply identify the
products). The probe may give features of the customer’s
ideal product; cases in the case base (products) that are sim-
ilar to this ideal are recommended to the user. Similarity is
taken as a sign of substitutability: if a holiday on Crete is
similar enough to one on Rhodes, the customer might be pre-
pared to settle for either.
We may need different similarity measures for different

users (customers), for different goals and for different queries
within a dialogue. The way that individual attributes are com-
pared (the from above) may need to change; and the way
that attribute matches are combined (function from above)
may also need to change. Imagine that the probe is the same
in all the following examples. (Of course, in practice it too
may change). Specifically, suppose the probe mentions des-
tination Greece, price , travel by plane, duration one
week, a four-star hotel, and golf, swimming and windsurfing
as desired activities.

For the purposes of this illustration, we are ignoring the fact
that, for customisable products such as holidays, the final recom-
mendation might be an amalgam of information from several cases.

Different users (customers):

– different : one customer may rate destinations Turkey
and Greece as similar (substitutable); clearly, other cus-
tomers would not;

– different : one customer may rate price as the most
important attribute; another might not.

Different goals, e.g. selecting a winter holiday versus se-
lecting a summer holiday:

– different : for a summer holiday, combined plane and
ferry travel might be acceptable; but, for a winter holi-
day, it might not;

– different : for the winter holiday, matching well on the
desired holiday durationmay be important (e.g. to return
to work on time), but, in the summer, when there might
be more flexibility, it could be a less important factor.

Different queries within a dialogue (refinement of queries):

– different : perhaps over the course of the dialogue
the customer comes to rate three- and four-star hotels as
more similar than s/he did at the start of the dialogue;

– different : at different points in the dialogue, the cus-
tomermight want to experiment by seeing what different
holiday recommendations are made when s/he is insis-
tent and less insistent on good matches with the desired
set of sporting activities.

What emerges clearly from these examples is that similarity
measures need to be intuitive so that end-users can readily
formulate and revise their own similarity measures. This will
be the major criterion we use to judge the models of similarity
that we describe in the next part of this paper and it motivates
our own similarity framework.

Models of Similarity
In this section we will discuss two models of similarity, abso-
lute and relative similarity. We will give mathematical mod-
els for both types of similarity, and argue for a third, more
general model called metric similarity, which both subsumes
and extends absolute and relative similarity. We will continue
to use the symbol ‘ ’ to represent similarity measures.

Absolute Similarity
The simplest notion of similarity is one which classifies two
objects as being similar or not similar — e.g. Spanish beach
holidays and Greek beach holidays are similar, but Spanish
beach holidays and Alpine walking holidays are not. In this
model, similarity is a binary relation, i.e. Bool
(pronounced “the type of is to to Bool”, so that
takes two arguments of type and returns a boolean value).
This relation will be reflexive (— or, equivalently,

True) since any object is similar to itself, and sym-
metric (— which can also be stated as

), since if one object is similar to another then
the reverse holds as well. These properties are summarised in

table 1(i). (There are, of course, opposing views about this.
For example, Jantke (1994), citing the cognitive psychology
literature, questions the assumption of symmetry. However
Richter (1992) argues that similarity is symmetric and lin-
guistic evidence to the contrary is concerned with pragmat-
ics and not the truth or falsity of the similarity relation. In
our model symmetry is a direct consequence of the definition
of similarity in terms of excess (see below). It is a question
for further research whether symmetry is an essential prop-
erty in a purely similarity based approach. For the time being
we will assume symmetry.) Note, however, that the relation
is not transitive, since, for example, it may be that Spanish
beach holidays are considered to be similar to Greek beach
holidays, and Greek beach holidays similar to Greek island
cruises, but that Spanish beach holidays are not considered to
be similar to Greek island cruises.
Given two or more measures of similarity of this kind, e.g.,

for different attributes of a case, it is easy to combine them
to give new similarities with obvious intuitive meanings —
for example conjunction (is similar to only if it is similar
on both attributes) and disjunction (similarity on either one
of the attributes is sufficient to establish the similarity of two
cases as a whole). While this gives a simple model, it does
not correspond particularly well to people’s intuitive concept
of similarity in which there is a notion of relative similarity
— Greek beach holidays are more similar to Spanish beach
holidays than they are to Greek cruises. A common solution
to this problem is outlined in the next section.

Relative Similarity
A more complex concept of similarity assigns some score —
a numeric value — to the degree of similarity. This score is
often normalised to be in the interval . Similarity is then
a dyadic function to numeric values — .
Again this function must have certain properties. Firstly, any
object is totally similar to itself — . This corre-
sponds to reflexivity in our definition of absolute similarity.
Secondly, the similarity of to must equal the similarity of
to — (this corresponds to the symmetry

of absolute similarity). See table 1(ii-a).
Again, similarity measures, e.g. on different attributes, can

be easily combined. For example, one could take the average
similarity of two measures, the maximum, the minimum, the
product or numerically-weighted versions of these (to assign
different importances to matches on different attributes).
This model is actually a specific instance of a more gen-

eral model. In this more general model, a similarity is any
real number. We can also introduce the idea of varying de-
grees of similarity between different pairs of ‘identical’ ob-
jects. While at first this seems strange, it may have an intu-
itive motivation. Consider measuring the similarity not just of
instances (i.e. concrete objects such as two holidays) but also
of abstract concepts (e.g. two kinds of holiday), where these
are like concrete instances but are underspecified in some re-
spect (e.g. specifying the destination but not the activities on
offer). The degree of similarity of two identical abstract con-

cepts could depend on the degree of specification of the con-
cepts (e.g. ‘Greek beach holiday’ might be more similar to
‘Greek beach holiday’ than ‘beach holiday’ is to ‘beach hol-
iday’) and/or the variety of concrete instances they describe
(e.g. ‘beach holiday’ might be more similar to ‘beach hol-
iday’ than ‘alpine holiday’ is to ‘alpine holiday’ assuming
that there is a wider variety of alpine holidays than beach hol-
idays). We replace the requirement that the similarity of any
object to itself be (or some other fixed maximal value) with
the condition that an object is at least as similar to itself as
it is to any other object. The properties of general relative
similarities are given in table 1(ii-b). A good overview of dif-
ferent ways of building relative similarity measures is given
in Griffiths’ thesis (1997).
This model solves some of the problems of the model of

absolute similarity. On occasion it may be a very natural way
to compute similarity (e.g. numeric-valued attributes may
be especially well-suited to numeric-valued similarity mea-
sures). However, in numerous other cases (e.g. especially for
attributes that take on symbolic or structured values) assign-
ing a numeric value to similarity is often arbitrary, and hard to
justify in an intuitively obvious way. For example, what num-
ber adequately characterises the similarity of Greek beach
and cruise holidays? It is also, arguably, too often the case
that these measures are used in ways that treat only the order-
ing of the numbers as significant, and this brings dangers. For
example, the designers of such a measure might assign a sim-
ilarity of 0.8 to Greek and Spanish beach holidays and one of
0.5 to Greek beach and cruise holidays. Their intention may
be that the user should understand Greek and Spanish beach
holidays to be more similar to each other than Greek beach
and cruise holidays are; they may not want the user to think
that they are more similar to degree 0.3 (i.e. the ordering is
significant but the actual quantities are not). But, while the
designers may know that the actual quantities are not mean-
ingful, if users in interactive CBR systems have access to the
numbers, they may well interpret them as meaningful (partic-
ularly if the numbers are not meaningful in some measures
but are meaningful in other measures). Finally, while the var-
ious ways of combining these measures (averages, maxima,
products, etc.) may at first sight appear to have some intu-
itive meaning (for example, the product is compounding the
degrees of similarity), when one considers the possible arbi-
trariness of the original values, these operators only seem to
be increasing the ad hoc nature of the model.
For the reasons given in the previous paragraph, relative

similarity measures may be hard to formulate and revise. This
led us to develop a new model of similarity.

Metric Similarity
We argue that, though relative similarity is an improvement
on absolute similarity, it is still not general enough. We have
mentioned its main problem: assigning a numeric score to
similarity is often arbitrary and non-intuitive. One simple
generalisation that circumvents this is to measure similarity
not only using reals but to allow similarity functions that re-

turn values from any total order. But this raises another prob-
lem: degrees of similarity (particularly once one allows simi-
larity measures that return values other than just booleans and
reals) need not be comparable. Consider, for example, the
problem of measuring the similarity of sets. Suppose holi-
days offer activities such as golf, swimming, windsurfing and
paragliding, henceforth , , and . The set is ob-
viously similar (to some degree) to the set ; it is also
similar to . However, is more or less simi-
lar to than it is to ? Requiring the value of
a similarity to be an element of a total order is too restrictive.
Degrees of similarity (as in the example) need not be compa-
rable. So the innovation in our similarity metrics framework
is to relax that restriction too. We use similarity functions that
return values from partial orders.
In fact, we are a bit more specific than previously stated.

We require complete lattices (here denoted), rather than ar-
bitrary partial orders: for us, a similarity measure is a dyadic
function to any type on which a complete lattice is defined.
We will not give details here of the definition of complete lat-
tices. Suffice it to say that they are partial orders that satisfy
certain additional properties. Proper definitions are given in,
e.g., (Birkhoff, 1967); see also (Osborne & Bridge, 1997b).
A good (and only slightly incomplete) understanding of this
paper is possible for those who do not know what a complete
lattice is, and we proceed on this basis.
The requirements for the similarity measure carry over

simply from the previous model, replacing the usual order-
ing on reals () with the ordering defined on the lattice
(). Compare the properties of metric similarites given in
table 1(iii) to those of relative similarities in table 1(ii-b).

(i)
Absolute Similarity

Type Properties

Bool True

(ii) a
Relative Similarity
(First Model)

Type Properties

(ii) b
Relative Similarity
(Second Model)

Type Properties

(iii)
Metric Similarity

Type Properties

Table 1: Type and properties of similarities

A metric similarity example is given in table 2. In this
example we are shown, for each case (holiday) in the case
base, the set of sporting activities offered. We are also given
a target set, i.e. the value from the probe — our ideal set of
activities. Note that no case offers exactly our ideal. The
metric similarity used in this example is the disjoint union,
i.e. the set of all elements that are in either of the two sets
being compared, but not in both. The lattice in which the
results of the similarity are to be compared is the inverse of
the power set lattice. So one would compute the disjoint
union of the probe value and the value in each of the cases and
judge which were most similar to the probe using the lattice.
The most similar sets are therefore those having the smallest
disjoint union with the target set as shown in table 2.

Values in cases:

Value in the probe:
Metric similarity:

Lattice: Inverse of power set lattice
Most similar:

Table 2: An example of metric similarity

One strength of our framework is the wide variety of mea-
sures that it covers. For example, relative similarities are
instances of the framework. One possibly useful definition
would be abs , the absolute value of their dif-
ference. The similarities so-computed would be compared
using the lattice defined on the reals by the ordering .
(Note that this is not quite the same as the relative similarities
defined earlier, since it rates low numbers more highly than
large numbers.) So, for example, if the probe specifies
as the ideal price of the holiday, holidays that cost are
similar to the ideal to degree (i.e. abs); hol-
idays that cost are similar to degree , which is
less similar than the holidays (because is higher in
the lattice than).
Other examples of metrics that we could define include:

Boolean-valued: By ordering the booleans, we get a lattice
that could be the result type of a metric that would subsume

The power set lattice is the lattice defined on all subsets of
and ordered by . So, e.g., is lower than ,

which is lower than . In the inverse of this lattice,
is lower than , which is lower than . and
are examples from these lattices that are incomparable (neither is a
subset of the other).

The way we deal with the more realistic scenario, where the
probe activities or any superset of them would be ideal, is beyond the
scope of this paper. The approach is based on excesses (see below)
and is covered in (Osborne & Bridge 1996b).

Of course, defines a total ordering, but these are always lat-
tices (whereas not all partial orders are lattices). To give a com-
plete lattice, we require a top and bottom element, and so, strictly
speaking, the result type of this metric would need to be, e.g.,

.

absolute similarity.

Linguistic-hedge-valued: A suitably ordered set of linguis-
tic hedges (“very”, “quite”, “fairly”, etc.) could be the
result type of another metric.

Feature-structure-valued: Where cases are represented by
first-order terms or feature structures, their anti-unification
gives a similarity metric with a result lattice based on sub-
sumption. (Jantke (1994) and Plaza (1995) describe sim-
ilarity measures of this kind. We are confident, although
we have not yet established it for certain, that their work is
subsumed by our framework.)

All these and more are part of the framework. Many will be
intuitive, which should make for easy formulation and revi-
sion.
In our framework we can also make use of the many oper-

ations on lattices that preserve the lattice property.
A lattice homomorphism, for example, is a function which,

when applied to a particular lattice, maps values in the lat-
tice to values from another type but ‘carries over’ the original
ordering. Two (of many) uses of these are:

Conversion between different types of metric. For ex-
ample, a numeric-valued metric can be converted into a
boolean-valued metric by mapping the lattice on the reals
to one on the booleans (e.g. using thresholding);

Capturing levels of indifference. For example, the price
metric described above treats holidays as more sim-
ilar to holidays than holidays are (because,
taking the absolute values of the differences,). A
user, however, would probably regard both prices as ‘just
about’ equally similar to . Integer division of sim-
ilarities by ‘collapses’ intervals of similarities to sin-
gle numbers. In particular, now, the and
holidays are equally similar to the holiday (i.e.

, where is integer division).

Lattice sums, products and prioritisations (Osborne &
Bridge, 1997b) allow combination of two (or more) lattices.
We use these as the basis of operations for combiningmetrics.
It is striking that we can combine metrics of different result
types, without inter-conversion. A set-valued metric, for ex-
ample, can be combined directly with a numeric-valued one.
There is no requirement to convert, e.g., the set-valued met-
ric to a numeric-valued metric prior to combining them. (Of
course, if conversion is desirable, this too is possible: a lat-
tice homomorphism can be used to carry out the conversion,
before use of the sum, product or prioritisation operator.)
By way of example, consider the similarity metrics we

have been using on prices and desired activities (the abso-
lute value of the numeric difference and the disjoint union,
respectively). Suppose the probe specifies a holiday
that offers activities , and , i.e. , and sup-
pose that the relevant values from the cases in the case base

Again, we spare the reader the mathematical details.

are: , and . It is obvi-
ously easy to compute the similarities for the two individual
attributes: , and , respectively.
And we can see that, as far as price is concerned, the first two
cases are equally similar to the probe and the third case is less
similar to the probe, while, as far as activities are concerned,
the third case is more similar than the first, which is more
similar than the second. But how would we combine these
judgements to determine which case is most similar overall?
It is dealing with this problem that leads others to inter-

convert (e.g. make both similarities numeric, so that they can
be combined using a weighted-average or the like; see (Wil-
son & Martinez, 1997) for a review of possible approaches).
But, in our framework, a metric may have as its result type
any type on which a complete lattice is defined. There is no
reason why we should not define a complete lattice on pairs
such as , and . And, indeed,
we have operators that can create such lattices from the indi-
vidual lattices. For example, the prioritisation of the original
price lattice over the original activities lattice would give a
new lattice in which ,
i.e. is the highest similarity, so the first case is the
most similar to the probe. (Obviously, other ways of comb-
ing the lattices will give other effects.)
Of course, having formed such a compound metric, noth-

ing now stops further application of lattice homomorphisms.
For example, if we have combined two boolean-valued met-
rics we could then use a lattice homomorphism to give us
their conjunction or disjunction.
The wide range of ways metrics can be combined (partic-

ularly given that inter-conversion is not necessary) is another
strength of our framework.

Excesses
As we have discussed, a major criterion in our work is easy
formulation and revision of similarity measures. We believe
that it is often easier for a user to ‘rank’ objects, and even to
say how much ‘better’ one object is compared with another,
than it is for a user to decide on the degrees of similarity of
objects. For this reason, we have also defined rankings (here
called excesses) (Osborne & Bridge, 1997b, 1997c), and then
define similarity measures in terms of these (see below).
The generalisations of similarities described in the previ-

ous section of this paper (from absolute to relative to metric)
can be charted in our specifications of excesses. There are
boolean excess functions, where an object exceeds another
or it does not; numerical excess functions, in which an ob-
ject may exceed another to some numeric degree; and lattice-

The prioritisation of over (where and are the or-
derings on and respectively), yields a new lattice ordered by
:

i.e. the ordering is determined by , with being used to resolve
‘ties’.

valued excesses, where excesses are drawn from any type on
which a complete lattice is defined, and so need not be com-
parable. Again, lattice-valued excesses subsume the boolean
and numeric valued ones.
These excess functions, and the papers in which they are

presented are summarised in table 3.

Excesses
Name Type Osborne & Bridge
Ordinal Bool 1996a
(i.e. absolute)
Cardinal 1996b, 1997a
(i.e. relative)
Metric 1997b, 1997c

Table 3: Names and types of excess relations

We will use ‘ ’ to represent excess relations. is
pronounced “ exceeds by ”; the value is also called the
“excess of over ”. The only property we require of excess
relations is a form of transitivity:

Forms of reflexivity and antisymmetry are not necessary from
a mathematical point of view (e.g. our definition of maxima
and the way we define similarity metrics from excess rela-
tions both give results that satisfy the properties we expect of
maxima and similarity relations without imposing reflexivity
and antisymmetry).
An excess relation for holiday prices, , might be defined

as:
if else

So, and , i.e. a
holiday exceeds —is better than— a holiday by ,
and a holiday exceeds a holiday by . The
excesses are, of course, compared using the ordering defined
on the result lattice, which in this case would be the usual
ordering on the reals, i.e. exceeding by is better than
exceeding by . (Note that for the similarity metric in the
previous section we used the ordering .)
An excess relation for sporting activities, , might be de-

fined as:

So, , i.e. a holiday offering ,
and exceeds one that offers only by . The order-
ing on the result lattice is , i.e. this excess relation has the
usual power set lattice as its result type (see footnote 3). So
exceeding by is better than exceeding by just but
incomparable with exceeding by .
The result lattices in excess relations may be operated on

by lattice homomorphisms and combined using sums, prod-
ucts and prioritisations, giving the same advantages as before.
A user who constructs an excess relation may apply the

relation to the case base and take the maxima. Perhaps more

usually a user will want to define a similarity metric that can
be used in CBR applications. We do this by first defining a
distance relation from the excess relation:

where is the least upper bound in the result lattice . In
the case of , the least upper bound operator is ‘max’ and
max simplifies to abs ; in the case of ,
the least upper bound operator is ‘union’ and
simplifies to the disjoint union. These are the similarity met-
rics we used in the previous section. The only other change
is to remember that the result lattice in excess relations ()
and distance functions () is the inverse of what is wanted
when measuring similarity (i.e. for the similarity metrics we
must use not and the inverse of the power set lattice).

Categorisation
Our work on similarities and excesses suggests a generalisa-
tion that could be used in work on categorisation: the use of
lattice-valued functions.
Suppose, for simplicity of exposition, that we know what

categories there are. Then, for each, we need a membership
function that will tell us whether (or to what degree) objects
belong to that category. Absolute and relative categorisation
is familiar (from classical and fuzzy set theory); the authors
are not aware of anywork that proposesmetric categorisation.

Categorisation
Name Type
Absolute Bool
Relative
Metric

Table 4: Names and types of categorisation functions

In absolute categorisation, an object is a member of a class
or it isn’t; in relative categorisation, there is numerically-
denoted fuzziness; and, in metric categorisation, membership
degrees are values whose relative strengths can be determined
from a lattice (although this means that they might be in-
comparable). Lattice homomorphisms, sums, products and
prioritisations may again give advantages to the metric ap-
proach (e.g. easy combination of several categorisation func-
tions even when they have different result-types). Table 4
gives the types of these three classes of categorisations.
Categorisation functions may be derived from similarity

functions. If we have a similarity function and an object
whose category is known (e.g. a prototypical instance, if such
exists), we can produce a categorisation function for that cat-
egory by partial application of the similarity function to the
object, i.e. by ‘freezing in’ the object as the first argument
of the similarity function, thus turning the binary similarity
function into a unary categorisation function. Obviously, ab-
solute, relative and metric categorisation functions will be de-

rived from absolute, relative and metric similarity functions,
respectively.
Given that we can derive categorisations from similarities,

the question obviously arises: is the reverse possible — given
a categorisation, is it possible, in a natural way, to derive a
similarity? The answer is, conditionally, yes — though it
is less general than deriving categorisations from similarities
and requires the introduction of an operator, , which will,
itself, turn out to be a similarity.
Given a categorisation, i.e. a function that returns de-

grees of membership, we can define a similarity
where, in order that this satisfy the properties of

similarities (table 1(iii)), must itself satisfy the same prop-
erties. In other words, must itself be a similarity of the
lattice concerned. (Again, as one might expect, from abso-
lute, relative and metric categorisations we would derive ab-
solute, relative and metric similarities and will need to be
an absolute, relative and metric similarity, respectively.)
There is much that needs investigation in this relationship

between categorisation and similarity, not least the question
of what to do when categories are not known in advance but
must be derived from the data. Metric similarity provides a
richer arena for such investigation.

Conclusions
We have presented absolute, relative and metric versions of
similarity, excess and categorisation functions. We have
shown some of the relationships between these different types
of function. Our generalisation to functions that return values
from any type on which a complete lattice is defined pro-
vides a wider range of intuitive functions and provides for
easy combination of different functions.

References
Aamodt, A. & Plaza, E. (1994) Case-based reasoning: Foun-
dational issues, methodological variations, & systems ap-
proaches. AI Communications, vol.7(1), pp.39–59

Ashley, K. & Risland, E. (1988) Waiting on weightings:
A symbolic least commitment approach, Procs AAAI,
pp.239–244

Barletta, R. & Mark, W. (1988) Explanation-based indexing
of cases. Procs AAAI, pp.541–546

Birkhoff, G. (1967) Lattice Theory. American Mathematical
Society

Griffiths, A.D. (1997) Inductive Generalisation in Case-
Based Reasoning Systems. Technical Report YCST 97/02,
University of York Department of Computer Science

Jantke, J.P. (1994) Nonstandard concepts of similarity
in case-based reasoning. In H.H.Bock, W.Lenski &
M.M.Richter (eds.), Information Systems &Data Analysis:
Prospects, Foundations, Applications, pp.29–44, Springer

Koton, P. (1988) Reasoning about evidence in causal expla-
nations. Procs AAAI, pp.256–261

McCartney, R. & Sanders, K.E. (1990) The case for cases: A
call for purity in case-based reasoning. Procs AAAI Sym-
posium on CBR, pp.12–16

Osborne, H. & Bridge, D.G. (1996) Parallel Retrieval from
Case Bases. Procs Second UK Workshop on Case-Based
Reasoning, Salford

Osborne, H. & Bridge, D.G. (1996) A Case Base Similarity
Framework. In I.Smith & B.Faltings (eds.), Advances in
Case-Based Reasoning, LNAI 1168, pp.309–323, Springer

Osborne, H. & Bridge, D.G. (1997) A Formal Analysis of
Case Base Retrieval. Technical Report YCS 281, Univer-
sity of York Department of Computer Science

Osborne, H. & Bridge, D.G. (1997) Similarity Metrics: A
Formal Unification of Cardinal & Non-Cardinal Similarity
Measures. In D.B.Leake& E.Plaza (eds.) Case Based Rea-
soning Research & Development, pp.235–244, Springer

Osborne, H. & Bridge, D.G. (1997) We’re All Going on a
Summer Holiday: An Exercise in Non-Cardinal Case Base
Retrieval. Procs Sixth Scandinavian Conference on Artifi-
cial Intelligence, Helsinki

Plaza, E. (1995) Cases as terms: A feature term approach to
the structured representation of cases. Procs First Interna-
tional Conference on Case-Based Reasoning, Springer

Porter, B.W. (1989) Similarity assessment: computation vs.
representation. Procs DARPA Case Based Reasoning
Workshop, pp.82–84

Redmond, M.A. (1990) Distributed cases for case-based rea-
soning: facilitating use of multiple cases. Procs AAAI,
pp.304–309

Richter, M.M. (1992) Classification & learning of similar-
ity measures. Studies in Classification, Data Analysis &
Knowledge Organisation, Springer

Richter, M.M. & Wess, S. (1991) Similarity, uncertainty &
case-based reasoning in PATDEX. In R.S.Boyer (ed.), Au-
tomated Reasoning: Essays in Honour of Noody Bledsoe,
pp.249–265, Kluwer

Smyth, B. & Keane, M (1996) Adaptation-guided retrieval:
using adaptation knowledge to guide the retrieval of adapt-
able cases. Procs Second UK Workshop on Case-Based
Reasoning, Salford

Tversky, A. & Krantz, D.H. (1970) The dimensional repre-
sentation & the metric structure of similarity data. Journal
of Mathematical Psychology, vol.7, pp.572–596

Wilke, W. (1997) Case-Based Reasoning & Electronic
Commerce.
http://wwwagr.informatik.uni-kl.de/ lsa/CBR/ECommerce

Wilson, D.R. & Martinez, T.R. (1997) Improved Heteroge-
neous Distance Functions. Journal of Artificial Intelli-
gence Research, vol.6, pp.1–34

