
Nested Control Structures

Procedures

Module Home Page

Title Page

JJ II

J I

Page 1 of 19

Back

Full Screen

Close

Quit

Lecture 4:

More Algorithmic Constructs

Aims:

• To investigate reductions from one construct to another; and

• To look at further aspects of the DECAFF language:

– nested control structures;

– dangling-else constructions; and

– procedures.

4.0.1. Loop Construct Reductions

• You may be worried that your programming language does not have all four un-
bounded iteration constructs. For example, Java has just two of them. But you
needn’t worry.
Given even just one of the four constructs, you can translate an algorithm that uses
the other three kinds of loop into an algorithm that uses just the one kind of loop
that you have plus sequencing and conditionals.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Nested Control Structures

Procedures

Module Home Page

Title Page

JJ II

J I

Page 2 of 19

Back

Full Screen

Close

Quit

• Here we assume we have pre-test, exit-when-true constructs (while loops). We show
how to translate the other three.

until B
{ C
}

becomes

while ¬B
{ C
}

do
{ C
}
until B

becomes

C;
while ¬B
{ C
}

do
{ C
}
while B

becomes

C;
while B
{ C
}

http://www.cs.ucc.ie/~dgb/courses/toc.html


Nested Control Structures

Procedures

Module Home Page

Title Page

JJ II

J I

Page 3 of 19

Back

Full Screen

Close

Quit

• Similarly, in the unlikely event that your programming language doesn’t offer any
bounded loop constructions (such as for -loops), again you needn’t worry. They can
be reduced to unbounded iteration.

• Here we look at how to reduce a simple for loop to a while loop.

for V := E1 upto E2

C;

becomes

V := E1;
HIGHEST := E2;
while V ≤ HIGHEST
{ C;

V := V + 1;
}

. . . provided C does not alter the contents of V in any way.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Nested Control Structures

Procedures

Module Home Page

Title Page

JJ II

J I

Page 4 of 19

Back

Full Screen

Close

Quit

4.1. Nested Control Structures

• We have already noted that the sequence, conditional and iteration constructs are
built out of other commands (e.g. the arms of conditionals and the body of loops are
commands). This gives the possibility of nesting one control structure inside another.

This makes reasoning about algorithms and programs harder and requires more care
on our part.

Let’s start by looking at the nesting of if commands within other if commands.

4.1.1. Nested if Commands

• Here is a problem that illustrates some of the issues.

Problem 4.1.
Parameters: An integer, ms, denoting marital status (0

for single, 1 for married); and a positive
integer s, denoting salary.

Returns: The income tax this person will pay.

Here are some fictitious and highly simplified rules for determining your tax.

If you are single

If your salary
is over But not over The tax rate is
e0 e20,000 15%

e20,000 e50,000 28%
e50,000 45%

http://www.cs.ucc.ie/~dgb/courses/toc.html


Nested Control Structures

Procedures

Module Home Page

Title Page

JJ II

J I

Page 5 of 19

Back

Full Screen

Close

Quit

If you are married

If your salary
is over But not over The tax rate is
e0 e35,000 15%

e35,000 e85,000 28%
e85,000 45%

• Here’s a fragment of pseudocode to compute your tax, t.

if ms = 0
{ if s ≤ 20000

{ t := s× 0.15
}
else if s ≤ 50000
{ t := s× 0.28
}
else
{ t := s× 0.45
}

}
else
{ . . .
}

We have a conditional that tests the marital status. Then in both the if and
else branches of that if command we have another conditional. These conditional
themselves contain further conditionals nested in their else branches.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Nested Control Structures

Procedures

Module Home Page

Title Page

JJ II

J I

Page 6 of 19

Back

Full Screen

Close

Quit

Class Exercise

• This looks the same, but is wrong. Why?

if ms = 0
{ if s ≤ 50000

{ t := s× 0.28
}
else if s ≤ 20000
{ t := s× 0.15
}
else
{ t := s× 0.45
}

}
else
{ . . .
}

• You really only have the freedom to change the order of tests if they are mutually

http://www.cs.ucc.ie/~dgb/courses/toc.html


Nested Control Structures

Procedures

Module Home Page

Title Page

JJ II

J I

Page 7 of 19

Back

Full Screen

Close

Quit

exclusive.

if s ≥ 0 ∧ s ≤ 20000
{ t := s× 0.15
}
else if s > 20000 ∧ s ≤ 50000
{ t := s× 0.28
}
else if s > 50000
{ t := s× 0.45
}

. . . is the same as. . .

if s > 20000 ∧ s ≤ 50000
{ t := s× 0.28
}
else if s ≥ 0 ∧ s ≤ 20000
{ t := s× 0.15
}
else if s > 50000
{ t := s× 0.45
}

http://www.cs.ucc.ie/~dgb/courses/toc.html


Nested Control Structures

Procedures

Module Home Page

Title Page

JJ II

J I

Page 8 of 19

Back

Full Screen

Close

Quit

. . . and even the same as. . .

if s > 20000 ∧ s ≤ 50000
{ t := s× 0.28
}
if s ≥ 0 ∧ s ≤ 20000
{ t := s× 0.15
}
if s > 50000
{ t := s× 0.45
}

. . . which, if you look at it again carefully, you wlll see has no nesting. It’s just a
sequence of separate if commands. It too can be re-ordered as much as you like —
again because the conditions are strong enough to give mututal exclusion.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Nested Control Structures

Procedures

Module Home Page

Title Page

JJ II

J I

Page 9 of 19

Back

Full Screen

Close

Quit

4.1.2. The Dangling-else Problem

4.1.2.1. Class Exercise

• What is printed by the following DECAFF algorithm?

x := 1;
y := 1;
if x = 2

if y = 2
display“Both x and y are 2”;

else
display“x was not 2”;

• Confusion can arise when a command mixes one-armed and two-armed condition-
als. It can be unclear to which if an else belongs. This is called the dangling-
else problem.

• This is a source of numerous errors when programming in, e.g., Java. Students
often assume that their indentation will make things clear to the computer. But the
computer takes no note of indentation. It will have some simple rule for deciding
to which if each else should be associated. The most usual rule is: an else always
belongs to the closest if (unless braces are used to overrule this convention).

• A properly laid out version of the previous algorithm makes it clear why there was

http://www.cs.ucc.ie/~dgb/courses/toc.html


Nested Control Structures

Procedures

Module Home Page

Title Page

JJ II

J I

Page 10 of 19

Back

Full Screen

Close

Quit

no output:

x := 1;
y := 1;
if x = 2

if y = 2
display“Both x and y are 2”;

else
display“x was not 2”;

• The else belongs to the closest if , irrespective of the programmer’s indentation.

So the two versions are the same. The only difference is that first one had misleading
indentation.

• The solution is to use braces to properly start and end the parts of the different
branches.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Nested Control Structures

Procedures

Module Home Page

Title Page

JJ II

J I

Page 11 of 19

Back

Full Screen

Close

Quit

For example, this is what the programmer actually intended:

x := 1;
y := 1;
if x = 2
{ if y = 2

display“Both x and y are 2”;
}
else

display“x was not 2”;

• When you have mixed one-armed and two-armed conditionals, braces can disam-
biguate for you:

if B1

{ if B2

C1;
else

C2;
}

if B1

{ if B2

C1;
}
else

C2;

http://www.cs.ucc.ie/~dgb/courses/toc.html


Nested Control Structures

Procedures

Module Home Page

Title Page

JJ II

J I

Page 12 of 19

Back

Full Screen

Close

Quit

• As we have been discussing, only the right-hand one needs the braces. But it may
make you think harder and get things right more often if you include braces in both
cases.

• This is one of the reasons why I use braces very liberally. As you’ve seen, I even put
them round single commands. It is one of my defences against causing dangle-else
problems.

4.1.3. Nested Loops

• Equally common is the nested loop.

• Here’s an example that does matrix multiplication. You don’t need to understand
matrix multipication: this is just an example of nested loops.

However, for those of you who are interested, here’s a quick recap. Suppose a and b
are two matrices such that the number of columns of a is equal to the number of rows
of b. Say a is a m× p matrix and b is a p× n matrix. Then the result of multiplying
them, c, is a m×n matrix. In c, the ij-entry is obtained by multiplying the elements
of the ith row of a by the corresponding elements of the jth column of b and then
adding.

For example, (
1 2
3 4

)
×

(
5 6 7
8 9 10

)
=

(
21 24 27
47 54 61

)
The top left-hand corner of the answer is 21 because 1× 5 + 2× 8 = 21.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Nested Control Structures

Procedures

Module Home Page

Title Page

JJ II

J I

Page 13 of 19

Back

Full Screen

Close

Quit

• Here’s the algorithm:

Algorithm: MatrixMult(a, b)

Parameters: Two two-dimensional arrays of integers,

a[1 . . .m][1 . . . p] and b[1 . . . p][1 . . . n].
Returns: The product of a and b.

{ create array c[1 . . .m][1 . . . n] with 0 in each cell
for i := 1 upto m
{ for j := 1 upto n

{ for k := 1 upto p
{ c[i][j] := c[i][j] + a[i][k]× b[k][j];
}

}
}

}
return c;

How many times does the assignment to c[i][j] get executed?

• Although the example shows nested for loops, obviously any loop construct can be
nested within any other loop construct.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Nested Control Structures

Procedures

Module Home Page

Title Page

JJ II

J I

Page 14 of 19

Back

Full Screen

Close

Quit

4.2. Procedures

• In DECAFF, we allow ourselves modules of code that we will call procedures. In
programming languages, these are variously referred to as procedures, functions,
modules, subroutines and methods. They allow us to break up lengthy algorithms
into more manageable chunks. And they allow us to avoid duplication within an
algorithm.

• Here’s an example.

Problem 4.2.
Parameters: Two line segments. One line segment has

end-points (a1, b1) and (a2, b2). The other
has end-points (c1, d1) and (c2, d2).

Returns: YES if the two line segments intersect;
otherwise NO.

• In the left-hand example, the answer is YES; in the right-hand example, the answer
is NO:

(a1, b1)

(a2, b2)

(c1, d1)

(c2, d2)

(a1, b1) (c1, d1)

(c2, d2)

(a2, b2)

http://www.cs.ucc.ie/~dgb/courses/toc.html


Nested Control Structures

Procedures

Module Home Page

Title Page

JJ II

J I

Page 15 of 19

Back

Full Screen

Close

Quit

• The mathematics of how we determine this don’t matter. All we’re really interested
in here is illustrating the idea of a procedure.

Algorithm: SegmentIntersection(a1, b1, a2, b2, c1, d1, c2, d2)

{ if determinant(a1, b1, a2, b2, c1, d1) =
determinant(a1, b1, a2, b2, c2, d2) ∧

determinant(c1, d1, c2, d2, a1, b1) =
determinant(c1, d1, c2, d2, a2, b2)

{ return YES
}
else
{ return NO
}

}

procedure determinant(x1, y1, x2, y2, x3, y3)

{ return x1 × y2 − x2 × y1 + x3 × y1 − x1 × y3+
x2 × y3 − x3 × y2

}

(In fact, from a mathematical point of view, the algorithm isn’t the complete story.
Some extra tests are needed.)

• We’re not going to use procedures very much in this module. Our algorithms are
going to be short and sweet, so we won’t have much need for them. Therefore, I

http://www.cs.ucc.ie/~dgb/courses/toc.html


Nested Control Structures

Procedures

Module Home Page

Title Page

JJ II

J I

Page 16 of 19

Back

Full Screen

Close

Quit

don’t want to get bogged down in matters of detail.

• But those of you who have an interest in programming languages might like to think
about the following.

Here is a very simple (very inefficient) sorting algorithm. It uses a procedure called
swap. But if you coded this up in most programming languages, including Java, swap
would not actually do what you want it to do. The question is: why? To answer
the question, you need to find a book and read about parameter passing. The key

http://www.cs.ucc.ie/~dgb/courses/toc.html


Nested Control Structures

Procedures

Module Home Page

Title Page

JJ II

J I

Page 17 of 19

Back

Full Screen

Close

Quit

phrases to look for are pass-by-value and pass-by-reference.

Algorithm: BubbleSort(a, lower , upper)

Parameters: An array of integers, a[lower . . . upper ],

0 < lower ≤ upper .
Returns: The array sorted into ascending order.

{ for i := lower upto upper − 1
{ for j := lower upto upper − i

{ if a[j] > a[j + 1]
{ swap(a[i], a[j])
}

}
}

}
procedure swap(x, y)

{ temp := x;
x := y;
y := temp

}

• That concludes our overview of DECAFF.

You may realise that there are lots of features that real programming languages
have that DECAFF doesn’t. In particular, if you are comparing with Java, DECAFF

http://www.cs.ucc.ie/~dgb/courses/toc.html


Nested Control Structures

Procedures

Module Home Page

Title Page

JJ II

J I

Page 18 of 19

Back

Full Screen

Close

Quit

doesn’t have any of the features that make Java object-oriented (e.g. class definitions,
constructors, instance variables, inheritance, etc.).

If DECAFF were a real programming language, these omissions might be very serious.
The missing features are ones that enable us to structure large programs, to make
them more manageable. On large software engineering projects, such features are
essential.

But we don’t need them for our exploration of the theory of computation. We’re
only dealing with short algorithms and programs. Besides, while these extra features
may bring convenience, they bring no additional computational power.

Acknowledgements

The tax example is based on one in [Hor98]. If you want to find out more about line segment
intersection (e.g. to find out what is missing from my algorithm), look at Section 15.1.3 of
[GT98], which is where I took the idea from.

Clip Art (of head with bomb) licensed from the Clip Art Gallery on DiscoverySchool.com.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Nested Control Structures

Procedures

Module Home Page

Title Page

JJ II

J I

Page 19 of 19

Back

Full Screen

Close

Quit

References

[GT98] M. T. Goodrich and R. Tamassia. Data Structures and Algorithms in Java. Wiley,
1998.

[Hor98] C. Horstmann. Computing Concepts with Java Essentials. Wiley, 1998.

http://www.cs.ucc.ie/~dgb/courses/toc.html

	Loop Construct Reductions
	Nested Control Structures
	Nested if Commands
	The Dangling-else Problem
	Class Exercise

	Nested Loops

	Procedures

