

Lecture 38: Combining Turing Machines

Aims:

- To see more examples of Turing machines, and
- To see how more complex Turing machines can be built up from simpler ones.

Module Home Page Title Page •• Page 2 of 9 Back Full Screen

Close

Quit

38.1. Example Turing Machines

• **Example 1.** Consider a Turing machine where $\Sigma = \{a, b, ...\}$ and $Q = \{q_0, q_1, h\}$ and δ is as follows:

δ	a	b	
q_0	b, q_1	a, q_1	\neg, h
q_1	L, q_0	L, q_0	$_, h$

Class Exercise: What does this machine do?

• Here's a trace of a particular computation.

	<	∟aa,	b,	∟,	q_0	\rangle
\sim	<	∟aa,	a,	,	q_1	\rangle
\sim	<	$_a,$	a,	a,	q_0	\rangle
\sim	<	$\lrcorner a,$	b,	a,	q_1	\rangle
\sim	<	⊔,	a,	bau,	q_0	\rangle
\sim	<	∟,	b,	ba ,	q_1	\rangle
\sim	<	∟,	۔,	bba.,	q_0	\rangle
\sim	<	_,	,	bba,	h	\rangle

• Example 2. Consider a Turing machine where $\Sigma = \{a, Y, N, \bot\}$ and $Q = \{q_0, q_1, h\}$ and δ is as follows:

δ	a	Y	N	
q_0	L, q_1		—	Y,h
q_1	L, q_0		—	N,h

Class Exercise: What does this machine do?

• Homework: Trace it for yourself on a couple of examples.

Example Tu	iring Machines
Combining	Turing

Module Home Page
Title Page
•• ••
Page 3 of 9
Back
Full Screen
Close

Quit

38.2. Combining Turing Machines

- Our examples so far have been somewhat unimpressive. But Turing machines are of ultimate generality: we can design Turing machines for every computable computational problem.
- To make life easier, we will now show how to combine simple Turing machines into more complex ones.
- We'll develop a graphical notation for these complex Turing machines, so that we don't get bogged down in details of transition functions.

38.2.1. The Basic Turing Machines

• Symbol-writing machines: For each symbol in Σ , we can build a machine that writes that symbol and halts.

E.g. for a:

δ	a	b]
q_0	a, h	a, h	 a,h

Call this machine W_a (and, similarly, W_b, W_c, \ldots, W_{-})

• **Head-moving machines:** We can build a machine that moves one cell left or right and halts.

E.g. for left:

Example T	uring	Machines	1
Combining	Turii	ng	

Module Home Page					
Title Page					
•• ••					
Page 4 of 9					
Back					
Full Screen					
Close					

38.2.2. Rules for Combining Machines

- If TM_1 and TM_2 are Turing machines, we can create a Turing machine which will first behave like TM_1 and then like TM_2 .
- How?
 - 1. Change all state names in TM_2 so they don't clash with state names in TM_1 .
 - 2. Change all halts in TM_1 's transition table to the new name of the start state of TM_2 .
 - 3. Append TM_2 's transition table to the foot of TM_1 's transition table.
- E.g. For $\Sigma = \{a, b, \downarrow\}$, let's combine W_a (a machine for writing an a) with M_L (a machine that moves its head one cell to the left).

δ	a	b		
q_0	a, q_1	a, q_1	a, q_1	
q_1	L,h	L,h	L,h	

• In general, if TM_1 and TM_2 are combined in this way, we will write

$$TM_1 \longrightarrow TM_2$$

So this machine starts off in the initial state of TM_1 , operates as per TM_1 until TM_1 would halt, then it launches TM_2 and operates as TM_2 , until TM_2 would halt.

- We will also write > to highlight the start of this combined machine.
- E.g. $> W_a \longrightarrow M_L$
- E.g. $> W_a \longrightarrow M_R \longrightarrow W_b \longrightarrow M_R \longrightarrow W_b \longrightarrow M_R \longrightarrow W_a$
- The connection between two Turing machines may depend on the symbol that is under the read/write head at the point when the first machine halts.

Example Turing Machines

Module Home Page
Title Page
(
Page 5 of 9
Back
Full Screen
Close
Quit

• We will depict this with a test alongside the arrow:

$$TM_1 \xrightarrow{test} TM_2$$

- E.g. $M_L \xrightarrow{=a} W_{-}$ This machine first moves left. Then, if there is an *a* under the read/write head, it overwrites it with a blank and then halts. If there had been any other symbol under the read/write head after moving left, it would have halted immediately.
- E.g. $M_L \stackrel{\in \{a,b\}}{\longrightarrow} W_{_}$
- E.g. $M_L \xrightarrow{\neq a} W_{_}$
- E.g. $M_L \xrightarrow{\not\in \{a,b\}} W_{_}$
- Multiple arrows are allowed, provided their tests are mutually exclusive.
- E.g.:

This machine first moves left. Then, if there is an a under the head, it writes a b and halts; if there is a b under the head, it writes an a and halts. If there were something else under the head, it would halt immediately after moving left.

- How is the transition table for this machine built?
 - Rename the states in W_b and W_a to avoid clashes.

Example Turing Machines Combining Turing... Module Home Page Title Page Page <mark>6</mark> of <mark>9</mark> Back Full Screen Close Quit

- Change halts in M_L . Any halts in the *a* column are changed to the renamed start state of W_b . Any halts in the *b* column are changed to the renamed start state of W_a .

- Append the tables together.

δ	a	b	
q_0	L, hq_1	L, hq_2	L,h
$q_{0}q_{1}$	b,h	b,h	b,h
$q_0 q_2$	a, h	a,h	a,h

• Loops are allowed

• E.g.:

TM is executed. When it would halt, if the test is true, it returns to state q_0 instead. In the example, the machine moves left repeatedly, for as long as there is an a, b or c under the read/write head. When the symbol under the read/write head is not one of a, b or c, it halts. It is usual to include a test, otherwise you have an infinite loop.

• How is the transition table for this machine built?

Module Home Page Title Page Page 7 of <mark>9</mark> Back Full Screen Close Quit

- Change halts in M_L . Any halts in the *a* column are changed to the start state of M_L . Similarly any halts in the *b* and *c* columns.

_	δ	a	b	с	-
-	q_0	L, hq_0	L, hq_0	L, hq_0	L,h

- Using this graphical notation, we can more easily specify more complex Turing machines.
- (Remember: this graphical notation is just a shorthand for specifying Turing machines properly. It saves us the tedious, pains-taking effort of writing down transition tables.)
- **Example 3.** Consider this Turing machine where $\Sigma = \{a, b, \downarrow\}$:

If the tape contains a string containing only a's and b's, this machine copies the string.

Consider initial configuration $\langle _ab, b, _ \rangle$ (showing only the tape, ignoring the state). First the head is moved left until it reaches a blank: $\langle _, _, abb_ \rangle$. Then it is moved

Example Turing Machines

right one, so we're now over the leftmost non-blank: $\langle _, a, bb_\rangle$. Since this is not a blank (of course), it is overwritten by a blank: $\langle _, _, bb_\rangle$. We scan right to the first blank, and then right again to the second blank: $\langle _bb_, _, _, _\rangle$. And we write an *a*: $\langle _bb_, a, _\rangle$. We then scan left until we reach a blank. And then we scan left again until we reach the next blank: $\langle _, _, bb_a_\rangle$. And the *a* is then rewritten: $\langle _, a, bb_a_\rangle$. Then we loop back to the machine that moves us right by one cell: $\langle _a, b, b_a_\rangle$. And now the process repeats: the *b* will be erased, written out at the second blank to the right, and rewritten in its original position. Then we move onto the next *b*. Ultimately, we move one cell right for the final time to obtain: $\langle _abb, _, abb_\rangle$. Since the symbol under the head is a blank, we do not take the transition from M_R . We halt.

• Example 4. Consider this Turing machine where $\Sigma = \{a, b, \bot\}$:

Homework: What does this machine do?

Acknowledgements

In preparing this material, I have used [Jun] and [LP81].

Clip Art (of head with bomb) licensed from the Clip Art Gallery on DiscoverySchool.com.

References

- [Jun] A. Jung. Models of Computation (Course Notes).
- [LP81] H.R. Lewis and C.H. Papadimitriou. Elements of the Theory of Computation. Prentice Hall, 1981.