
Introduction

The Totality Problem

The Negative Value . . .

Reductions Again

The Equivalence Problem

Rice’s Theorem

Concluding Remarks

Module Home Page

Title Page

JJ II

J I

Page 1 of 14

Back

Full Screen

Close

Quit

Lecture 36:

Other Non-computable Problems

Aims:

• To show how to prove that other problems are non-computable, which
involves reductions from, e.g., the Halting Problem; and

• To point out how few problems are, in fact, computable.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Introduction

The Totality Problem

The Negative Value . . .

Reductions Again

The Equivalence Problem

Rice’s Theorem

Concluding Remarks

Module Home Page

Title Page

JJ II

J I

Page 2 of 14

Back

Full Screen

Close

Quit

36.1. Introduction

• There are many problems for which there is no algorithm. In fact, the number of
things which can be computed is infinitesimal compared with the number of things
one might like to compute but which cannot be computed.

• To prove a problem P is non-computable,

– We could give a proof similar to the one we gave for the Halting Problem. This
would be a direct but tedious way of proving non-computability.

– But there is an indirect way of proving non-computability which is usually easier.
We exploit the fact that we already have one problem that has been proved to
be non-computable, i.e. the Halting Problem. The proof will still be a proof by
contradiction; it will also use a reduction.
We assume that P is computable. Then we show that, if this assumption is
true, then the Halting Problem would be computable. But we know the Halting
Problem is non-computable. Contradiction! So our assumption is false: P is
non-computable.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Introduction

The Totality Problem

The Negative Value . . .

Reductions Again

The Equivalence Problem

Rice’s Theorem

Concluding Remarks

Module Home Page

Title Page

JJ II

J I

Page 3 of 14

Back

Full Screen

Close

Quit

36.2. The Totality Problem

• We’ll prove the following is non-computable:

Problem 36.1. The Totality Problem
Parameters: A MOCCA program P .
Returns: YES if P would terminate for all its in-

puts; NO otherwise.

• Assume that the Totality Problem is computable.

• I.e. we have a MOCCA program TP that solves the Totality Problem.

• But in that case, we can write a MOCCA program HP to solve the Halting Problem.
It will use program TP as a procedure.

P’ TP output

This converts P & x

HP

solves the Totality Problem.

HP is an algorithm that solves the Halting Problem.

TP is an algorithm that
x
P

into P’.

f

• So, HP takes in two inputs P and x.

• Function f uses these two inputs to write a new program called P ′, which

http://www.cs.ucc.ie/~dgb/courses/toc.html


Introduction

The Totality Problem

The Negative Value . . .

Reductions Again

The Equivalence Problem

Rice’s Theorem

Concluding Remarks

Module Home Page

Title Page

JJ II

J I

Page 4 of 14

Back

Full Screen

Close

Quit

– takes in an input y but ignores it;

– runs P on x

In other words, f outputs the following program:

Algorithm: P’(y)

// Ignore y
P(x);

• P ′ is then the input to TP (the program that solves the Totality Problem).

• So we’re using TP to find out whether P ′ halts on all inputs.

• But what P ′ does is: ignore its input and simply run P on x.

• So asking whether P ′ halts on all inputs is the same as asking whether P halts on x.

• So we’ve managed to write a program that solves the Halting Problem!

• We know that no such program can exist, so there must be something wrong with
what we’ve done. There’s nothing wrong with f , so the only part that can be held
responsible is TP .

• We conclude that a program TP , solving the Totality Problem, cannot exist.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Introduction

The Totality Problem

The Negative Value . . .

Reductions Again

The Equivalence Problem

Rice’s Theorem

Concluding Remarks

Module Home Page

Title Page

JJ II

J I

Page 5 of 14

Back

Full Screen

Close

Quit

36.3. The Negative Value Problem

• We’ll prove the following is non-computable:

Problem 36.2. The Negative Value Problem
Parameters: A MOCCA program P that does not re-

quire any input and a variable v used in
P .

Returns: YES if v ever gets assigned a negative
value when P is executed; NO otherwise.

• Assume that the Negative Value Problem is computable.

• I.e. we have a MOCCA program NV P that solves the Negative Value Problem.

• But in that case, we can write a MOCCA program HP to solve the Halting Problem.
It will use program NV P as a procedure.

NVP output

This converts P & x

HP

the Negative Value Problem.

HP is an algorithm that solves the Halting Problem.

NVP is an algorithm that solves
x
P

into P’ and v.

f
P’
v

• So, HP takes in two inputs P and x.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Introduction

The Totality Problem

The Negative Value . . .

Reductions Again

The Equivalence Problem

Rice’s Theorem

Concluding Remarks

Module Home Page

Title Page

JJ II

J I

Page 6 of 14

Back

Full Screen

Close

Quit

• Function f scans P to identify a variable v that is not used by P and then writes a
new program called P ′, which

– takes in an input y but ignores it;

– runs P on x;

– then assigns -1 to v.

In other words, f outputs the following program:

Algorithm: P’(y)

// Ignore y
P(x);
v := −1;

• P ′ and v are then the input to NV P (the program that solves the Negative Value
Problem).

• So we’re using NV P to find out whether P ′ assigns a negative value to v.

• But what P ′ does is: ignore its input, run P on x and assign -1 to v.

• So asking whether P ′ ever assigns a negative value to v is the same as asking whether
P halts on x. (Why? Because we’ll only get to the command in which -1 is assigned
into v if P halts on x.)

• So we’ve managed to write a program that solves the Halting Problem!

• We know that no such program can exist, so there must be something wrong with
what we’ve done. There’s nothing wrong with f , so the only part that can be held
responsible is NV P .

http://www.cs.ucc.ie/~dgb/courses/toc.html


Introduction

The Totality Problem

The Negative Value . . .

Reductions Again

The Equivalence Problem

Rice’s Theorem

Concluding Remarks

Module Home Page

Title Page

JJ II

J I

Page 7 of 14

Back

Full Screen

Close

Quit

• We conclude that a program NV P , solving the Negative Value Problem, cannot
exist.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Introduction

The Totality Problem

The Negative Value . . .

Reductions Again

The Equivalence Problem

Rice’s Theorem

Concluding Remarks

Module Home Page

Title Page

JJ II

J I

Page 8 of 14

Back

Full Screen

Close

Quit

36.4. Reductions Again

• You can see that, in these proofs, the non-computability of one problem is being
established by finding a reduction from a problem that is already known to be non-
computable.

• In the examples, we have shown

The Halting Problem reduces to The Totality problem
The Halting Problem reduces to The Negative Value Problem

• If P1 is known to be non-computable and P1 reduces to P2, then P2 must be non-
computable too. The reason is that, otherwise, we could solve P1 by an algorithm
that would transform P1’s inputs into a suitable form and ask P2 for the answer.

• This is like the reductions we were using to show that a problem is NP-hard. The
difference there was that we also required the reduction to have worst-case polynomial
time complexity, whereas here efficiency is not the issue so the reduction can use as
much resource as it needs.

• In both cases, once we have such a reduction, P1 cannot be worse than P2.

• It’s common to show reductions from the Halting Problem. But any problem that
has been proved to be non-computable can be used. E.g. now that we know that the
Totality Problem is non-computable, we can use that, if we wish, in future proofs. In-
deed, in the next section, we use the Totality Problem to prove the non-computability
of the Equivalence Problem. We do this by showing

The Totality Problem reduces to The Equivalence Problem

http://www.cs.ucc.ie/~dgb/courses/toc.html


Introduction

The Totality Problem

The Negative Value . . .

Reductions Again

The Equivalence Problem

Rice’s Theorem

Concluding Remarks

Module Home Page

Title Page

JJ II

J I

Page 9 of 14

Back

Full Screen

Close

Quit

36.5. The Equivalence Problem

• We’ll prove the following is non-computable:

Problem 36.3. The Equivalence Problem
Parameters: Two MOCCA programs P1 and P2.
Returns: YES if P1 and P2 solve the same prob-

lems (same outputs for same inputs); NO
otherwise.

• Assume that the Equivalence Problem is computable.

• I.e. we have a MOCCA program EP that solves the Equivalence Problem.

• But in that case, we can write a MOCCA program TP to solve the Totality Problem.
It will use program EP as a procedure.

EP output

TP

the Equivalence Problem.

TP is an algorithm that solves the Totality Problem.

EP is an algorithm that solves
P1 and P2.

fP

This converts P into

P2

P1

• So, TP takes in one input P .

http://www.cs.ucc.ie/~dgb/courses/toc.html


Introduction

The Totality Problem

The Negative Value . . .

Reductions Again

The Equivalence Problem

Rice’s Theorem

Concluding Remarks

Module Home Page

Title Page

JJ II

J I

Page 10 of 14

Back

Full Screen

Close

Quit

• Function f uses this input to write a new program called P1, which

– takes in an input x;

– runs P on x;

– returns “CS2205” (for example)

and it also writes a new program P2, which

– takes in an input x but ignores it;

– returns “CS2205”

In other words, f outputs the following programs:

Algorithm: P1(x)

P(x);
return “CS2205′′;

Algorithm: P2(x)

// Ignore x
return “CS2205′′;

• P1 and P2 are then the input to EP (the program that solves the Equivalence Prob-
lem).

• So we’re using EP to find out whether P1 and P2 are equivalent.

• But what P1 does is run P on x and return “CS2205”, and what P2 does is return
“CS2205”.

• So asking whether P1 and P2 are equivalent (same outputs for same inputs) is the
same as asking whether P halts on all inputs.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Introduction

The Totality Problem

The Negative Value . . .

Reductions Again

The Equivalence Problem

Rice’s Theorem

Concluding Remarks

Module Home Page

Title Page

JJ II

J I

Page 11 of 14

Back

Full Screen

Close

Quit

• So we’ve managed to write a program that solves the Totality Problem!

• We know that no such program can exist, so there must be something wrong with
what we’ve done. There’s nothing wrong with f , so the only part that can be held
responsible is EP .

• We conclude that a program EP , solving the Equivalence Problem, cannot exist.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Introduction

The Totality Problem

The Negative Value . . .

Reductions Again

The Equivalence Problem

Rice’s Theorem

Concluding Remarks

Module Home Page

Title Page

JJ II

J I

Page 12 of 14

Back

Full Screen

Close

Quit

36.6. Rice’s Theorem

• Maybe you’re feeling that almost any interesting question that we ask about algo-
rithms is not computable. You’d be basically right!

• Virtually all problems that involve writing a program that takes in another program
P and tries to answer a question about the behaviour of P are non-computable.

• Rice’s Theorem. Think of a task that some algorithms perform and others do not
(such as outputting 28, computing the square root of the input, always giving the
same output irrespective of the input, etc). There is no algorithm that can take in
an arbitrary program P , inspect P and tell whether P performs that task.

• This has consequences for compilers and virus checkers.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Introduction

The Totality Problem

The Negative Value . . .

Reductions Again

The Equivalence Problem

Rice’s Theorem

Concluding Remarks

Module Home Page

Title Page

JJ II

J I

Page 13 of 14

Back

Full Screen

Close

Quit

36.7. Concluding Remarks

• We’ve only grazed the surface of this topic!

• Some of the non-computable problems are less computable than others.

• E.g. the Halting Problem and the Totality Problem are both non-computable but
the Totality Problem is less computable than the Halting Problem!

• In fact, there is an infinite hierarchy of levels of (non-)computability!

Acknowledgements

I based some of this on [Har92] and [GL82].

Clip Art (of head with bomb) licensed from the Clip Art Gallery on DiscoverySchool.com.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Introduction

The Totality Problem

The Negative Value . . .

Reductions Again

The Equivalence Problem

Rice’s Theorem

Concluding Remarks

Module Home Page

Title Page

JJ II

J I

Page 14 of 14

Back

Full Screen

Close

Quit

References

[GL82] L. Goldschlager and A. Lister. Computer Science: A Modern Introduction.
Prentice-Hall, 1982.

[Har92] D. Harel. Algorithmics: The Spirit of Computing. Addison-Wesley, 2nd edition,
1992.

http://www.cs.ucc.ie/~dgb/courses/toc.html

	Introduction
	The Totality Problem
	The Negative Value Problem
	Reductions Again
	The Equivalence Problem
	Rice's Theorem
	Concluding Remarks

