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Lecture 33:

NP-Hard and NP-Complete Problems

Aims:

• To describe SAT, a very important problem in complexity theory;

• To describe two more classes of problems: the NP-Hard and NP-
Complete problems.
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33.1. SAT

33.1.1. Descripton of SAT

• We start by looking at a decision problem that plays a major role in complexity
theory. The nice thing is that it gives us another example of a problem that is in
NP.

• Revision

– A wff in propositional logic comprises propositional symbols (e.g. p, p1, p2,. . . ,
q, q1, q2) combined using connectives (¬, ∧, ∨, ⇒, ⇔).

– An interpretation, I, stipulates the truth-values of propositional symbols (e.g.
p is true, q is false, etc.)

– A wff W is satisfiable iff there is at least one interpretation that makes W true.

• Now here is the important problem we mentioned above:

Problem 33.1. SAT
Parameters: A wff of propositional logic, W .
Returns: YES if W is satisfiable; NO otherwise.

• What would SAT return for these instances?

– p ∨ q

– p ∧ ¬p

– p ∨ ¬p
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– p1 ∨ (p1 ⇒ ((p2 ⇒ (p3 ∧ ¬p4) ⇔ p5))

– p

• (Textbook presentations of SAT are sometimes slightly different from this one. Some-
times they only allow a subset of the connectives, typically just ∧, ∨ and ¬. Often
they insist that the wff be in a special format called conjunctive normal form. This
can make some proofs easier because it gives fewer connectives to consider. But none
of it makes any difference to what we’re doing. )

• SAT is a problem for which we know no polynomial-time algorithm.

• Yet, we have no proof that it is intractable (i.e. no proof that there cannot be a
polynomial-time algorithm).

• The only algorithms we have take worst-case exponential time in n, where n is the
number of propositional symbols.

• Here is an outline of one obvious exponential-time algorithm:

while there are untried interpretations
{ generate the next interpretation, I;

if I satisfies W
{ return YES;
}

}
return NO;

• Class Exercise: Why does this take worst-case exponential-time?
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• We can also show that SAT is in NP.

• Assume we have a wff W containing n distinct propositional symbols. Then here’s
an ND-DECAFF algorithm:

// The guessing part
for each distinct propositional symbol in W
{ v := choose(0, 1);

if v = 0
{ Assign false to the propositional symbol;
}
else
{ Assign true to the propositional symbol;
}

}
// The checking part
Evaluate W using the truth-values from above and
the truth-tables for ¬, ∧, ∨, ⇒, ⇔;

• Both parts of the algorithm (the guessing and the checking) take polynomial time.

• This shows that SAT is in NP.
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33.2. NP-Hard and NP-Complete Problems

33.2.1. NP-Hard Problems

• We say that a decision problem Pi is NP-hard if every problem in NP is polynomial-
time reducible to Pi.

• In symbols,

Pi is NP-hard if, for every Pj ∈ NP, Pj
poly−→ Pi.

• Note that this doesn’t require Pi to be in NP.

• Highly informally, it means that Pi is ‘as hard as’ all the problems in NP.

– If Pi can be solved in polynomial-time, then so can all problems in NP.

– Equivalently, if any problem in NP is ever proved intractable, then Pi must also
be intractable.

33.2.2. NP-Complete Problems

• We say that a decision problem Pi is NP-complete if

– it is NP-hard and

– it is also in the class NP itself.

• In symbols, Pi is NP-complete if Pi is NP-hard and Pi ∈ NP

• Highly informally, it means that Pi is one of the hardest problems in NP.
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• So the NP-complete problems form a set of problems that may or may not be in-
tractable but, whether intractable or not, are all, in some sense, of equivalent com-
plexity.

• If anyone ever shows that an NP-complete problem is tractable, then

– every NP-complete problem is also tractable

– indeed, every problem in NP is tractable

and so P = NP.

• If anyone ever shows that an NP-complete problem is intractable, then

– every NP-complete problem is also intractable

and, of course, P 6= NP.

• So there are two possibilities:

P

NP−complete

NP P = NP

We don’t know which of these is the case.

• But this gives Computer Scientists a clear line of attack. It makes sense to focus
efforts on the NP-complete problems: they all stand or fall together.

• So these sound like very significant problems in our theory. But how would you show
that a decision problem is NP-complete?
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• How to show a problem Pi is NP-complete (Method 1, from the definition)

– First, confirm that Pi is a decision problem.

– Then show Pi is in NP.

– Then show that Pi is NP-hard by showing that every problem Pj in NP is
polynomial-time reducible to Pi.

∗ You wouldn’t do this one by one!
∗ You would try to make a general argument.

33.2.3. An NP-Complete Problem

• Definitions are all very well. But has anyone ever found an actual NP-complete
problem? Yes!

• SAT is NP-complete.

• How was this proved? By method 1.

• First, SAT is a decision problem.

• Second, SAT is in NP.

– We proved this earlier.

• Then it was shown SAT is NP-hard by showing that every problem in NP is
polynomial-time reducible to SAT

– This wasn’t done one by one.

– It was done by a general argument
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poly
SATAll problems in

NP

• The proof is beyond the scope of this course and the result goes by the name of the
Cook-Levin Theorem

33.2.4. How to Show Other Problems are NP-Complete

• We have one problem that is proven to be NP-complete, where the proof is done
generically and ‘from scratch’. Showing that other problems are NP-complete is
easier.

• How to show decision problem Pi is NP-complete (Method 2)

– First, confirm it is a decision problem.

– Then show Pi is in NP.

– Then show that Pi is NP-hard by taking just one problem Pj that is already

known to be NP-complete and showing that Pj
poly−→ Pi

• Why does the latter show Pi to be NP-hard?

If Pj is NP-complete, then we know that Pj is NP-hard (by the definition
of NP-complete), i.e. every problem in NP is polynomially-reducible to
Pj .
But, if every problem in NP is polynomially-reducible to Pj and Pj is
polynomially-reducible to Pi then, by transitivity, every problem in NP is
polynomially-reducible to Pi.
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• Starting with SAT and using Method 2, numerous problems have been shown to be
NP-complete.

• Without going into the details of the problems or the reductions themselves, here is
a picture that shows a few of the polynomial-time reductions that have been found.

poly poly

poly

poly

SAT 3SAT VertexCover

Clique

SetCover

SubsetSum

Hamiltonian Cycle Decision Problem

Knapsack

TSP DP

poly

poly

poly

poly

• Here’s a picture showing some actual decision problems.

ECDP
Membership of finite−lenght list
Non−membership of finite−length list

P

Graph−isomorphism

TSPDP
HCDP
SAT

NP

NP−complete
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