

SAT NP-Hard and NP-...

Lecture 33: **NP**-Hard and **NP**-Complete Problems

Aims:

- To describe SAT, a very important problem in complexity theory;
- To describe two more classes of problems: the **NP**-Hard and **NP**-Complete problems.

SAT

NP-Hard and NP	
Module Home Page	
Title Page	
•• ••	
Page 2 of 11	
Back	
Full Screen	
Close	
Quit	

33.1. SAT

33.1.1. Descripton of SAT

- We start by looking at a decision problem that plays a major role in complexity theory. The nice thing is that it gives us another example of a problem that is in **NP**.
- Revision
 - A wff in propositional logic comprises propositional symbols (e.g. $p, p_1, p_2, \ldots, q, q_1, q_2$) combined using connectives $(\neg, \land, \lor, \Rightarrow, \Leftrightarrow)$.
 - An interpretation, \mathcal{I} , stipulates the truth-values of propositional symbols (e.g. p is **true**, q is **false**, etc.)
 - A wff W is satisfiable iff there is at least one interpretation that makes W ${\bf true}.$
- Now here is the important problem we mentioned above:

 Problem 33.1. SAT

 Parameters:
 A wff of propositional logic, W.

 Returns:
 YES if W is satisfiable; NO otherwise.

- What would SAT return for these instances?
 - $\begin{array}{c} p \lor q \\ p \land \neg p \end{array}$
 - $p \lor \neg p$

- $p_1 \lor (p_1 \Rightarrow ((p_2 \Rightarrow (p_3 \land \neg p_4) \Leftrightarrow p_5)))$ - p
- (Textbook presentations of SAT are sometimes slightly different from this one. Sometimes they only allow a subset of the connectives, typically just ∧, ∨ and ¬. Often they insist that the wff be in a special format called *conjunctive normal form*. This can make some proofs easier because it gives fewer connectives to consider. But none of it makes any difference to what we're doing.)
- SAT is a problem for which we know no polynomial-time algorithm.
- Yet, we have no proof that it is intractable (i.e. no proof that there cannot be a polynomial-time algorithm).
- The only algorithms we have take worst-case exponential time in n, where n is the number of propositional symbols.
- Here is an outline of one obvious exponential-time algorithm:

```
while there are untried interpretations
{ generate the next interpretation, I;
    if I satisfies W
    { return YES;
    }
}
return NO;
```

• Class Exercise: Why does this take worst-case exponential-time?

- We can also show that SAT is in **NP**.
- Assume we have a wff W containing n distinct propositional symbols. Then here's an ND-D_ECAFF algorithm:

```
// The guessing part
for each distinct propositional symbol in W
{ v := choose(0, 1);
    if v = 0
    { Assign false to the propositional symbol;
    }
    else
    { Assign true to the propositional symbol;
    }
}// The checking part
Evaluate W using the truth-values from above and
the truth-tables for \neg, \land, \lor, \Rightarrow, \Leftrightarrow;
```

- Both parts of the algorithm (the guessing and the checking) take polynomial time.
- This shows that SAT is in **NP**.

<i>c</i> •	-		
SA NE	P-Hard and	/ NP	
	Module H	lome Page	
	Title	Page	
	44	•••	
	•	•	
	Page	5 of 11	
	Ba	ack	
	Full S	Screen	
	CI	ose	
	Q	uit	

33.2. NP-Hard and NP-Complete Problems

33.2.1. NP-Hard Problems

- We say that a decision problem P_i is **NP**-hard if every problem in **NP** is polynomialtime reducible to P_i .
- In symbols,

 P_i is **NP**-hard if, for every $P_j \in \mathbf{NP}, P_j \xrightarrow{\text{poly}} P_i$.

- Note that this doesn't require P_i to be in **NP**.
- Highly informally, it means that P_i is 'as hard as' all the problems in **NP**.
 - If P_i can be solved in polynomial-time, then so can all problems in **NP**.
 - Equivalently, if any problem in ${\bf NP}$ is ever proved intractable, then P_i must also be intractable.

33.2.2. NP-Complete Problems

- We say that a decision problem P_i is **NP**-complete if
 - it is ${\bf NP}{\mbox{-hard}}$ and
 - it is also in the class ${\bf NP}$ itself.
- In symbols, P_i is **NP**-complete if P_i is **NP**-hard and $P_i \in \mathbf{NP}$
- Highly informally, it means that P_i is one of the hardest problems in **NP**.

SA	T	
NF	P-Hard and	NP
	Module H	ome Page
	Title	Page
	••	>>
	•	
	Page (5 of 11
	Pa	uck.
	Da	
	Full S	creen
	Clo	ose

Quit

- So the **NP**-complete problems form a set of problems that may or may not be intractable but, whether intractable or not, are all, in some sense, of equivalent complexity.
- If anyone ever shows that an NP-complete problem is tractable, then
 - every **NP**-complete problem is also tractable
 - indeed, every problem in ${\bf NP}$ is tractable

and so $\mathbf{P} = \mathbf{NP}$.

- If anyone ever shows that an **NP**-complete problem is intractable, then
 - every ${\bf NP}{\rm -complete}$ problem is also intractable

and, of course, $\mathbf{P} \neq \mathbf{NP}$.

• So there are two possibilities:

We don't know which of these is the case.

- But this gives Computer Scientists a clear line of attack. It makes sense to focus efforts on the **NP**-complete problems: they all stand or fall together.
- So these sound like very significant problems in our theory. But how would you show that a decision problem is **NP**-complete?

SA	т	
NF	P-Hard and	/ NP
	Module H	lome Page
	Title	Page
	••	••
	Page 7	7 of 11
	Ba	ack
	Full S	Screen
	Cle	ose

Quit

- How to show a problem P_i is **NP**-complete (Method 1, from the definition)
 - First, confirm that P_i is a decision problem.
 - Then show P_i is in **NP**.
 - Then show that P_i is **NP**-hard by showing that every problem P_j in **NP** is polynomial-time reducible to P_i .
 - * You wouldn't do this one by one!
 - * You would try to make a general argument.

33.2.3. An NP-Complete Problem

- Definitions are all very well. But has anyone ever found an actual **NP**-complete problem? Yes!
- SAT is **NP**-complete.
- How was this proved? By method 1.
- First, SAT is a decision problem.
- Second, SAT is in **NP**.
 - We proved this earlier.
- Then it was shown SAT is **NP**-hard by showing that every problem in **NP** is polynomial-time reducible to SAT
 - This wasn't done one by one.
 - It was done by a general argument

SAT		
NP-Hard and	NP	
Module He	ome Page	
Title	Page	
••	••	
	•	
Page 8	of 11	
Ba	ck	
Full S	creen	
Clo	ose	
Qu	ıit	
Full S Cla	creen vse	

All problems in poly > SAT NP

• The proof is beyond the scope of this course and the result goes by the name of the Cook-Levin Theorem

33.2.4. How to Show Other Problems are NP-Complete

- We have one problem that is proven to be **NP**-complete, where the proof is done generically and 'from scratch'. Showing that other problems are **NP**-complete is easier.
- How to show decision problem P_i is **NP**-complete (Method 2)
 - First, confirm it is a decision problem.
 - Then show P_i is in **NP**.
 - Then show that P_i is **NP**-hard by taking just one problem P_j that is already known to be **NP**-complete and showing that $P_j \xrightarrow{\text{poly}} P_i$
- Why does the latter show P_i to be **NP**-hard?

If P_j is **NP**-complete, then we know that P_j is **NP**-hard (by the definition of **NP**-complete), i.e. every problem in **NP** is polynomially-reducible to P_j .

But, if every problem in **NP** is polynomially-reducible to P_j and P_j is polynomially-reducible to P_i then, by transitivity, every problem in **NP** is polynomially-reducible to P_i .

SAT
NP-Hard and NP
Module Home Page
Title Page
Page 9 of 11
Back
Full Screen
Close
Quit

- Starting with SAT and using Method 2, numerous problems have been shown to be **NP**-complete.
- Without going into the details of the problems or the reductions themselves, here is a picture that shows a few of the polynomial-time reductions that have been found.

• Here's a picture showing some actual decision problems.

	NP
Graph-isomorphism	
	NP-complete
SAI	
HCDP	
TSPDP	
	Р
ECDP	-
Membership of finite	e–lenght list
Non-membership of	finite-length list
inon-membership of	innie-iengin iisi

SAT
NP-Hard and NP
Module Home Page
Title Page
•• ••
Dem 10 - 6 11
Page 10 of 11
Back
Full Screen
Close
Quit

Acknowledgements:

This material owes a little to [GJ79], [GT02] and [Man89]. Clip Art (of head with bomb) licensed from the Clip Art Gallery on DiscoverySchool.com.

SAT NP-Hard and NP-...

References

- [GJ79] M.R. Garey and D.S. Johnson. Computers and Intractability. W.H. Freeman, 1979.
- [GT02] M. T. Goodrich and R. Tamassia. Algorithm Design: Foundations, Analysis, and Internet Examples. Wiley, 2002.
- [Man89] U. Manber. Introduction to Algorithms: A Creative Approach. Addison Wesley, 1989.