
Introduction

The Complexity Class P

The Complexity Class NP

Proving that a problem . . .

The P = NP Question

Module Home Page

Title Page

JJ II

J I

Page 1 of 12

Back

Full Screen

Close

Quit

Lecture 32:

P and NP Problems

Aims:

• To describe two classes of decision problems: P and NP;

• To pose the million dollar question: does P = NP?

http://www.cs.ucc.ie/~dgb/courses/toc.html


Introduction

The Complexity Class P

The Complexity Class NP

Proving that a problem . . .

The P = NP Question

Module Home Page

Title Page

JJ II

J I

Page 2 of 12

Back

Full Screen

Close

Quit

32.1. Introduction

32.1.1. Recap

• For some problems there are known polynomial-time algorithms;

• For others, we have proofs that no polynomial-time algorithm can exist;

• But for others, we have only exponential-time algorithms but no proof that no
polynomial-time algorithm can exist.

• Despite the holes in our knowledge, Computer Scientists have made some progress.

• Computer Scientists have been able to find relationships between some of the third
kind of problem.

– E.g. They have been able to show that some problems are, in some sense, equiv-
alent in complexity. (They do this using reductions.)

– This isn’t as good as closing the gap for these problems.

– But it is significant because all these problems will stand or fall together, which
makes them particularly worthy of further research effort.

– We’ll look at some of the results of this research.

32.1.2. Decision Problems Again

• Researchers who work in Complexity Theory often concentrate on decision problems.

• Reminder: a decision problem is one whose return values are either YES or NO (or
true or false, or 0 or 1).

http://www.cs.ucc.ie/~dgb/courses/toc.html


Introduction

The Complexity Class P

The Complexity Class NP

Proving that a problem . . .

The P = NP Question

Module Home Page

Title Page

JJ II

J I

Page 3 of 12

Back

Full Screen

Close

Quit

• Why concentrate on these?

– If a problem has an exponential amount of output, then no amount of cleverness
is going to find an algorithm that is polynomial. E.g. Towers of Hanoi, finding
all permutations of n numbers, enumerating all Hamiltonian cycles.

– For many non-decision problems, there are related decision problems. E.g. the
TSP Search and Decision Problems. A non-decision problem (such as the TSP
Search Problem) can often be turned into a decision problem by introducing a
parameter k and asking if there is an answer that costs at least or at most k. If
you can’t find a polynomial-time algorithm for a decision problem, then you’re
not likely to find one for the non-decision problems to which it is related.

• Suppose you’ve a decision problem and an algorithm A that solves that decision
problem.

• We’ll say that algorithm A accepts input x if it returns YES.

• We’ll say that algorithm A rejects input x if it returns NO.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Introduction

The Complexity Class P

The Complexity Class NP

Proving that a problem . . .

The P = NP Question

Module Home Page

Title Page

JJ II

J I

Page 4 of 12

Back

Full Screen

Close

Quit

32.2. The Complexity Class P

• Definition: The complexity class P is the set of all decision problems that can be
solved with worst-case polynomial time-complexity.

• In other words, a problem is in the class P if it is a decision problem and there exists
an algorithm that solves any instance of size n in O(nk) time, for some integer k.
(Strictly, n must be the number of bits needed for a ‘reasonable’ encoding of the
input. But we won’t get bogged down in such fine details.)

• So P is just the set of tractable decision problems: the decision problems for which
we have polynomial-time algorithms.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Introduction

The Complexity Class P

The Complexity Class NP

Proving that a problem . . .

The P = NP Question

Module Home Page

Title Page

JJ II

J I

Page 5 of 12

Back

Full Screen

Close

Quit

32.3. The Complexity Class NP

• The second class of decision problems that we look at is called NP, which stands for
non-deterministically polynomial.

• The definition of NP involves the idea of a non-deterministic algorithm.

• Suppose we introduce an extra primitive operation into DECAFF and we call the new
language ND-DECAFF:

– choose(m,n): this operation chooses an integer between m and n inclusive in a
non-deterministic way

But this does not work like a random number generator. It’s more like tossing a
magical coin or rolling a magical dice!

• The choose operation possesses magical insight: it always selects the possibility that
leads to a YES answer, if the problem instance has a YES answer.

• If the instance has a NO answer, choose returns an arbitrary number between m and
n inclusive.

• An algorithm that uses the choose operation zero, one or more times is referred to
as a non-deterministic algorithm. It follows that normal (deterministic) DECAFF

algorithms are trivial examples of ND-DECAFF algorithms. They use the choose
operator zero times.

• An algorithm A non-deterministically accepts an input x if there exists a sequence of
outcomes to the choose operation that A could make on input x such that A returns
YES.

• Definition: The complexity class NP is the set of all decision problems that can be
non-deterministically accepted in worst-case polynomial time.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Introduction

The Complexity Class P

The Complexity Class NP

Proving that a problem . . .

The P = NP Question

Module Home Page

Title Page

JJ II

J I

Page 6 of 12

Back

Full Screen

Close

Quit

• Notice that the definition of NP says nothing about the running time of producing
NO answers.

• Of course, there’s no computer than can toss magical coins or roll magical dice.

– No conventional computer can carry out the choose operation.

– No one has yet shown how even an unconventional computer (e.g. a quan-
tum computer) could simulate a non-deterministic polynomial-time algorithm
in polynomial time.

• So non-deterministic algorithms appear to be useless (we can’t code them up and
run them anywhere).

• The class NP may therefore seem pretty weird and pointless. Bare with it. It’s a
theoretical technicality in part of a broader argument that we will develop in the
next lecture: it’s part of a way of showing that some problems are related and so,
if we ever find something out about the complexity of one of them, we may learn
something about the complexity of all of them.

Class Exercise

P ⊆ NP. Why?

http://www.cs.ucc.ie/~dgb/courses/toc.html


Introduction

The Complexity Class P

The Complexity Class NP

Proving that a problem . . .

The P = NP Question

Module Home Page

Title Page

JJ II

J I

Page 7 of 12

Back

Full Screen

Close

Quit

32.4. Proving that a problem is in NP

• Let’s show that the Hamiltonian Cycle Decision Problem is in NP.

• We’ll come up with a non-deterministic algorithm

– It will use choose to guess, in polynomial-time, a possible cycle.

– Then, it will take polynomial-time to check whether this possible cycle is, in
fact, a cycle.

• Assume we have a graph G = 〈V,E〉. There are n vertices and they are numbered
from 1 to n.

Guess a possible cycle:

create an integer array a[1 . . . n];
for i := 1 upto n
{ a[i] := choose(1, n);
}

What was this doing? It used choose to select n vertices and put them in an array.
Remember, choose possesses magical insight. So, if there is a Hamiltonian cycle, it
will magically pick n vertices that do form a Hamiltonian cycle. And, if there isn’t
a Hamiltonian cycle, it just pick n vertices arbitrarily. So now we need to check
whether the array does or does not contain a Hamiltonian cycle.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Introduction

The Complexity Class P

The Complexity Class NP

Proving that a problem . . .

The P = NP Question

Module Home Page

Title Page

JJ II

J I

Page 8 of 12

Back

Full Screen

Close

Quit

Check the possible cycle:

// Create an array that will keep track of which vertices we have visited.
create a Boolean array b[1 . . . n];
// Record the fact that we have visited the vertex stored in a[1].
b[a[1]] := true;
// Now visit each vertex stored in a in turn.
for j := 2 upto n
{ If we have visited the vertex stored in a[j] before. . .

if b[a[j]] = true
{ return NO;
}
If there is no edge between a[j − 1] and a[j]. . .
if {a[j − 1], a[j]} 6∈ E
{ return NO;
}
Record the fact that we have visited the vertex stored in a[j].
b[a[j]] := true;

}
We’ve nearly completed the cycle!
If there is no edge from a[n] back to a[1]. . .
if {a[n], a[1]} 6∈ E
{ return NO;
}
else
{ return YES;
}

http://www.cs.ucc.ie/~dgb/courses/toc.html


Introduction

The Complexity Class P

The Complexity Class NP

Proving that a problem . . .

The P = NP Question

Module Home Page

Title Page

JJ II

J I

Page 9 of 12

Back

Full Screen

Close

Quit

What was this doing? It uses array b to make sure that every vertex is used exactly
once. It also checks that two consecutive vertices in a, a[j − 1] and a[j] do, in fact,
have an edge between them in the graph. And, finally, it makes sure that there is an
edge between the last and first vertices in a.

• Both parts of the algorithm (the choosing and the checking) take polynomial time.

• This shows that the Hamiltonian Cycle Decision Problem is in NP.

• Note, when writing ND-DECAFF algorithms to confirm a problem is in NP, it is
common for the algorithm to come in two parts like this.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Introduction

The Complexity Class P

The Complexity Class NP

Proving that a problem . . .

The P = NP Question

Module Home Page

Title Page

JJ II

J I

Page 10 of 12

Back

Full Screen

Close

Quit

32.5. The P = NP Question

• We know that P ⊆ NP.

• But much more than that we don’t know.

• The definition of NP allows for the inclusion of problems that may not be in P.

• But it may turn out that there are no such problems and that P = NP.

P

NP P = NP

We don’t know which of these is the case. We know P ⊆ NP. But we don’t know
whether P ⊂ NP (left-hand diagram) or P = NP (right-hand diagram).

• Let’s put some actual problems into our diagram:

ECDP
Membership of finite−length list
Non−membership of finite−length list

P

HCDP TSPDP SAT
NP

Graph−isomorphism

http://www.cs.ucc.ie/~dgb/courses/toc.html


Introduction

The Complexity Class P

The Complexity Class NP

Proving that a problem . . .

The P = NP Question

Module Home Page

Title Page

JJ II

J I

Page 11 of 12

Back

Full Screen

Close

Quit

• Key

EC/HC/TSP + DP: Eulerian Cycle/Hamiltonian Cycle/Trav. Salesperson +
Decision Problem

SAT: explained in the next lecture
Graph-isomorphism: (roughly) are two graphs structurally equivalent?
Membership of finite-length list: return YES if x is in list L; NO otherwise
Non-membership of finite-length list: return YES if x is not in list L; NO otherwise

• The problems in the picture that are in NP but not in P are ones that we’re not
sure about:

– there is no known polynomial-time algorithm;

– but no proof of intractability.

(All we’ve managed to do is to show is that they’re in NP.)

• So does P = NP? Or is P 6= NP (i.e. P ⊂ NP?).

• If you can resolve this issue, you can win a million dollars.
http://www.claymath.org/Millennium Prize Problems/

Acknowledgements:

The idea of explaining choose in terms of tossing a magical coin comes from [Har92].

Clip Art (of head with bomb) licensed from the Clip Art Gallery on DiscoverySchool.com.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Introduction

The Complexity Class P

The Complexity Class NP

Proving that a problem . . .

The P = NP Question

Module Home Page

Title Page

JJ II

J I

Page 12 of 12

Back

Full Screen

Close

Quit

References

[Har92] D. Harel. Algorithmics: The Spirit of Computing. Addison-Wesley, 2nd edition,
1992.

http://www.cs.ucc.ie/~dgb/courses/toc.html

	Introduction
	Recap
	Decision Problems Again

	The Complexity Class ¶
	The Complexity Class NP
	Proving that a problem is in NP
	The ¶= NP Question

