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Lecture 29:

Tractable and Intractable Problems

Aims:

• To look at the ideas of

– polynomial and exponential functions and algorithms; and

– tractable and intractable problems.

• To look at ways of solving intractable problems.
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29.1. Tractable and Intractable Problems

• Let’s start by reminding ourselves of some common functions, ordered by how fast
they grow.

constant O(1)
logarithmic O(log n)
linear O(n)
n-log-n O(n× log n)
quadratic O(n2)
cubic O(n3)
exponential O(kn), e.g. O(2n)
factorial O(n!)
super-exponential e.g. O(nn)

• Computer Scientists divide these functions into two classes:

Polynomial functions: Any function that is O(nk), i.e. bounded from above by nk

for some constant k.
E.g. O(1), O(log n), O(n), O(n× log n), O(n2), O(n3)
This is really a different definition of the word ‘polynomial’ from the one we had
in a previous lecture. Previously, we defined ‘polynomial’ to be any function of
the form aknk + ak−1n

k−1 + . . . + a1n + a0.
But here the word ‘polynomial’ is used to lump together functions that are
bounded from above by polynomials. So, log n and n × log n, which are not
polynomials in our original sense, are polynomials by our alternative definition,
because they are bounded from above by, e.g., n and n2 respectively.

Exponential functions: The remaining functions.
E.g. O(2n), O(n!), O(nn)
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This is a real abuse of terminology. A function of the form kn is genuinely
exponential. But now some functions which are worse than polynomial but
not quite exponential, such as O(nlog n), are also (incorrectly) called exponen-
tial. And some functions which are worse than exponential, such as the super-
exponentials, e.g. O(nn), will also (incorrectly) be called exponential. A better
word than ‘exponential’ would be ‘super-polynomial’. But ‘exponential’ is what
everyone uses, so it’s what we’ll use.

• Why have we lumped functions together into these two broad classes? The next two
tables and the graph attempt to show you why.

10 50 100 300 1000
5n 50 250 500 1500 5000

n× 33 282 665 2469 9966
log n
n2 100 2500 10000 90000 1 million

(7 digits)
n3 1000 125000 1 million 27 million 1 billion

(7 digits) (8 digits) (10 digits)
2n 1024 a 16-digit a 31-digit a 91-digit a 302-digit

number number number number
n! 3.6 million a 65-digit a 161-digit a 623-digit unimaginably

(7 digits) number number number large
nn 10 billion an 85-digit a 201-digit a 744-digit unimaginably

(11 digits) number number number large

(The number of protons in the known universe has 79 digits.)
(The number of microseconds since the Big Bang has 24 digits.)
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10E40

10E35

10E30

10E25

10E20

10E15
a trillion
a billion
a million

1000

2 4 8 16 32 64 128 256 512 1024

2^nn^n

n^3

5n

n^5

(Note that this graph has logarithmic axes.)

• On the basis of this classification of functions into polynomial and exponential, we
can classify algorithms:

Polynomial-Time Algorithm: an algorithm whose order-of-magnitude time per-
formance is bounded from above by a polynomial function of n, where n is the
size of its inputs.
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Exponential Algorithm: an algorithm whose order-of-magnitude time performance
is not bounded from above by a polynomial function of n.

• Why do we divide algorithms into these two broad classes? The next table, which
assumes that one instruction can be executed every microsecond, attempt to show
you why.

10 20 50 100 300
n2 1

10000
1

2500
1

400
1

100
9

100
second second second second second

n5 1
10 3.2 5.2 2.8 28.1

second seconds minutes hours days
2n 1

1000 1 35.7 400 trillion a 75-digit number
second second years centuries of centuries

nn 2.8 3.3 trillion a 70-digit number a 185-digit number a 728-digit number
hours years of centuries of centuries of centuries

(The Big Bang was approximately 15 billion years ago.)

• And, in a similar way, we can classify problems into two broad classes:

Tractable Problem: a problem that is solvable by a polynomial-time algorithm.
The upper bound is polynomial.

Intractable Problem: a problem that cannot be solved by a polynomial-time al-
gorithm. The lower bound is exponential.

• Here are examples of tractable problems (ones with known polynomial-time algo-
rithms):

– Searching an unordered list
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– Searching an ordered list

– Sorting a list

– Multiplication of integers (even though there’s a gap)

– Finding a minimum spanning tree in a graph (even though there’s a gap)

• Here are examples of intractable problems (ones that have been proven to have no
polynomial-time algorithm).

– Some of them require a non-polynomial amount of output, so they clearly will
take a non-polynomial amount of time, e.g.:

∗ Towers of Hanoi: we can prove that any algorithm that solves this problem
must have a worst-case running time that is at least 2n − 1.

∗ List all permutations (all possible orderings) of n numbers.

– Others have polynomial amounts of output, but still cannot be solved in poly-
nomial time:

∗ For an n × n draughts board with an arrangement of pieces, determine
whether there is a winning strategy for White (i.e. a sequence of moves so
that, no matter what Black does, White is guaranteed to win). We can
prove that any algorithm that solves this problem must have a worst-case
running time that is at least 2n.

• So you might think that problems can be neatly divided into these two classes. But
this ignores ‘gaps’ between lower and upper bounds. Incredibly, there are problems
for which the state of our knowledge is such that the gap spans this coarse division
into tractable and intractable. So, in fact, there are three broad classes of problems:

– Problems with known polynomial-time algorithms.

– Problems that are provably intractable (proven to have no polynomial-time
algorithm).
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– Problems with no known polynomial-time algorithm but not yet proven to be
intractable.

We’ll see some examples of the third category (as well as further examples of the first
two categories) in the next lecture.
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29.2. Solving Intractable Problems

• None of this would matter much if the problems for which we do not have polynomial-
time algorithms were theoretical curiosities. Unfortunately, this is not the case. Many
real-world problems fall into this category. Unless your inputs are going to be very
small, you cannot simply use the known algorithms.

• So what do you do if your problem

– is provably intractable (proven to have no polynomial-time algorithm), or

– has no known polynomial-time algorithm even if it is not yet proven intractable?

• Here are the main possibilities:

– Seek to obtain as much improvement as possible and live hopefully! For exam-
ple, our backtracking solution to n-Queens was probably better than our first
solution. Eliminating symmetry in the problem may help further. Incorporating
rules-of-thumb (‘heuristics’) to dynamically decide what to try next may also
help. All of these ideas try to make the algorithm work well in practice, on
typical instances, while acknowledging that exponential cases are still possible.

– Solve simpler/restricted versions of the problem. Maybe a solution to a slight
variant of the problem would still be useful to you, while possibly avoiding
exponential complexity.

– Use a polynomial-time probabilistic algorithm: one which gives the right answer
only with very high probability. So you are giving up on program correctness,
in the interests of speed.

– For optimisation problems, use a polynomial-time approximation algorithm: one
which is not guaranteed to find the best answer.
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