
Growth Rates

Big-Oh Notation

Module Home Page

Title Page

JJ II

J I

Page 1 of 15

Back

Full Screen

Close

Quit

Lecture 27:

Asymptotic Analysis

Aims:

• To look at the idea of the growth rate of a function;

• To look at big-Oh notation.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Growth Rates

Big-Oh Notation

Module Home Page

Title Page

JJ II

J I

Page 2 of 15

Back

Full Screen

Close

Quit

27.1. Growth Rates

• Suppose algorithm A’s worst-case time complexity tA(n) =def n2 + 2n + 3 and
algorithm B’s worst-case time complexity tB(n) =def 20n + 1. Which is the faster
algorithm?

0

500

1000

1500

0 5 10 15 20 25 30 35 40

t(n
)

Input size, n

tA(n) = n^2 + 2n + 3
tB(n) = 20n + 1

For inputs of size 0, B is faster (1 step compared to 3 steps). Then for inputs whose
size is greater than 0 but less than 18, A is faster, and then for inputs of 18 or more
B is faster.

It all seems less than clear-cut.

• The software practitioner in industry would probably want to think about what size
of inputs the algorithm will typically face in practice. If the size of the inputs will

http://www.cs.ucc.ie/~dgb/courses/toc.html


Growth Rates

Big-Oh Notation

Module Home Page

Title Page

JJ II

J I

Page 3 of 15

Back

Full Screen

Close

Quit

usually be < 18, then s/he might choose to code up and use algorithm A; but if the
size of the inputs will often be ≥ 18, then s/he might choose to code up and use
algorithm B. (Of course, s/he needs to be aware of all the simplifications that our
analysis has made so far, e.g. we are considering worst-cases and we are counting
steps rather than using actual timings.)

• But the theorist often wants to talk in more general terms. Despite the fact that these
graphs cross twice, the theorist may want to say something about which algorithm
is better in general.

How can we make such a statement?

– Large input sizes are what matter most. If the problem you are trying to solve
is to sort someone’s personal address book of, say, 10–100 entries, then it hardly
matters which sorting algorithm you choose. But if the problem is to sort
national telephone directories of, say, between 4 and 60 million entries, then
it does matter which algorithm you choose (especially if you want to sort the
directories repeatedly at the request of on-line users).

– In the example, from n = 18 onwards, B is better and its advantage over A gets
ever bigger. The theorist ignores the fact that A is better for most small values.

• So, what matters is how well an algorithm ‘scales up’ to larger problem instances.

– To determine how well an algorithm ‘scales up’, we use the growth rate of the
time complexity function.

– If A’s growth rate is greater than B’s then B is a better algorithm than A.

– A may (or may not) be faster than B on ‘small’-sized inputs. But, for ‘sufficiently
large’-sized inputs, B will be more efficient, and its advantage will get bigger as
the input size grows.

– How do you find out the growth rate of a function?

http://www.cs.ucc.ie/~dgb/courses/toc.html


Growth Rates

Big-Oh Notation

Module Home Page

Title Page

JJ II

J I

Page 4 of 15

Back

Full Screen

Close

Quit

– Consider a function t(n) expressing, e.g., the worst-case time complexity of an
algorithm.

– As n grows large, some term in a function may begin to dominate the other
terms.

– For example, for tA(n) =def n2 +2n+3, as n grows larger, n2 grows very much
larger than 2n; the 2n and the 3 become ever more irrelevant.

– For example, for tB(n) =def 20n + 1, as n grows larger, the 20n dominates and
the 1 becomes ever more irrelevant.

– So we concentrate on the dominating term. For A this is n2; for B, this is 20n.

– Because we are considering what happens as n grows ever bigger, towards in-
finity, we call this the asymptotic behaviour of the function or algorithm.

– We go even further: we ignore the coefficient of the dominating term.

– So, we say A grows proportionally to n2 and B grows proportionally to n.

– Comparing these: B is the better algorithm.

– Of course, this has made our analysis even more rough-and-ready.

• Maybe a concrete example will help to convince you that ignoring coefficients and
lower-order terms makes quite reliable judgements.

– The complexity of linear search grows proportionally to n.

– The complexity of binary search grows proportionally to log n.

– log n is better than n.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Growth Rates

Big-Oh Notation

Module Home Page

Title Page

JJ II

J I

Page 5 of 15

Back

Full Screen

Close

Quit

n log n
10 3

100 6
1000 9

a million 19
a billion 29

a billion billions 59

– You can see that coefficients and lower-order terms are not really important to
the different growth rates!

http://www.cs.ucc.ie/~dgb/courses/toc.html


Growth Rates

Big-Oh Notation

Module Home Page

Title Page

JJ II

J I

Page 6 of 15

Back

Full Screen

Close

Quit

27.2. Big-Oh Notation

27.2.1. Informal Discussion

• To talk about growth rates, we often use “big-Oh” notation.

• E.g. we might say the worst-case time complexity of an algorithm is O(n2)

– “big-Oh of n squared”

– “Oh of n squared”

It just means that its growth rate is n2.

• If we say that an algorithm’s worst-case time complexity is O(n2), we mean that

there are positive constants c and n0 such that for all n ≥ n0, we have
t(n) ≤ cn2.

• In other words, t(n) is O(n2) means

– we can find two positive numbers, c and n0,

– we plot t(n)

– we plot cn2

– for values of n from n0 onwards, the line for cn2 will be higher than or the same
as that for t(n)

– it won’t necessarily be higher or equal for ‘small’ values of n (n < n0) but we
don’t worry about these cases.

• For example, suppose tA(n) =def n2 + 2n + 3. Then ta(n) is O(n2).

http://www.cs.ucc.ie/~dgb/courses/toc.html


Growth Rates

Big-Oh Notation

Module Home Page

Title Page

JJ II

J I

Page 7 of 15

Back

Full Screen

Close

Quit

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 5 10 15 20 25 30 35 40

t(n
)

Input size, n

tA(n) = n^2 + 2n + 3
6n^2

27.2.2. The Formal Definition

• More formally and more generally,

t(n) is O(f(n)) if there are positive constants n0 and c such that, for all
n ≥ n0, t(n) ≤ c× f(n)

• Examples

– n2 + 2n + 3 is O(n2) (e.g. n0 = 1 and c = 6)

– 3n3 + 2n2 is O(n3) (e.g. n0 = 1 and c = 5)

– n2 + 2n + 1 is O(n2) (e.g. n0 = 1 and c = 4)

http://www.cs.ucc.ie/~dgb/courses/toc.html


Growth Rates

Big-Oh Notation

Module Home Page

Title Page

JJ II

J I

Page 8 of 15

Back

Full Screen

Close

Quit

– 3n log n + n + 2 is O(n log n) (e.g. n0 = 1 and c = 6)

– 2n + n6 + 17 is O(2n) (e.g. n0 = 5 and c = 4)

27.2.3. Proofs

• To prove, e.g., that n2 + 2n + 3 is O(n2), you must come up with the two numbers
n0 and c and show that for all n ≥ n0, tA(n) ≤ cn2.

We can show that
n2 + 2n + 3 ≤ n2 + 2n2 + 3n2 = 6n2

We compare corresponding terms.

– Is n2 ≤ n2? Yes, for all n ≥ 0.

– Is 2n ≤ 2n2? Yes, for all n ≥ 0.

– Is 3 ≤ 3n2? Yes, for all n ≥ 1.

Therefore we have shown that n2+2n+3 ≤ cn2 for all n ≥ n0 with c = 6 and n0 = 1.

• We did not necessarily find the smallest value for c that would prove this, but at
least it was quite easy to come up with.

27.2.4. Disproof

• To prove, e.g., that 2n3 is not O(4n2).

Assume 2n3 is O(4n2). Then, from the definition, there must exist constants c and
n0 such that

2n3 ≤ c× 4n2 for all n ≥ n0.
2n3

4n2 ≤ c for all n ≥ n0.
n
2 ≤ c for all n ≥ n0.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Growth Rates

Big-Oh Notation

Module Home Page

Title Page

JJ II

J I

Page 9 of 15

Back

Full Screen

Close

Quit

Or, if you prefer, c ≥ n
2 for all n ≥ n0.

But, this is a contradiction: n
2 can get arbitrarily large as n gets larger, so no constant

can exceed n
2 for all n. Therefore 2n3 is not O(4n2).

27.2.5. Tightness

• The definition does not say how ‘tight’ the approximation should be.

• So, for example, 3n + 2 is O(n) but it is also O(n2), O(n2.5), O(n log n), O(2n), and
so on.

• If you are describing an algorithm’s complexity using only big-Oh notation, then you
are expected to choose a function that is as informative as possible.

• I.e. f(n) should be as small a function of n as you can reasonably come up with for
which t(n) ≤ c× f(n).

27.2.6. Simplifying Big-Oh Notation

• People would think it poor practice if you were to say that an algorithm’s complexity
is, e.g., O(3n) or O(3n + 2), even though there’s nothing in the formal definition to
disallow this. Instead, in this example, you would just say O(n).

• You can simplify big-Oh expressions using the following rules:

– Low order terms don’t matter, so strike them out. E.g.:

O(3n + 2) = O(3n)

http://www.cs.ucc.ie/~dgb/courses/toc.html


Growth Rates

Big-Oh Notation

Module Home Page

Title Page

JJ II

J I

Page 10 of 15

Back

Full Screen

Close

Quit

– Coefficients don’t matter, so strike them out. E.g.:

O(3n) = O(n)

• So people restrict themselves to some common, simple functions:

O(1) O(2n)
O(log n) O(n!)
O(n) O(nn)
O(n log n)
O(n2)
O(n3)

• There is an inclusion relationship:

O(1) ⊂ O(log n) ⊂ O(n) ⊂ O(n log n) ⊂ O(n2) ⊂ O(n3) ⊂ O(2n) ⊂ O(n!) ⊂ O(nn)

• And, to repeat the point about tightness, you are expected to describe your algorithm
using the tightest set possible.

27.2.7. Computing Big-Oh Expressions

• The impression given so far is

– first we compute t(n) as per previous lectures;

– then we work out the growth rate from t(n) as above.

• But we can short-cut this. We do not need to compute t(n). We can compute the
growth rate directly from the algorithm.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Growth Rates

Big-Oh Notation

Module Home Page

Title Page

JJ II

J I

Page 11 of 15

Back

Full Screen

Close

Quit

• This is one of the reasons why this is all worth doing. The growth rate can be much
more quickly and easily computed than can t(n).

• So, given an algorithm, here’s some guidance for quickly and directly obtaining the
growth rate in big-Oh notation.

Assignments: These are O(1) (similarly, return commands)

Sequences: If there are 2 commands in sequence and they are O(f1(n)) and O(f2(n)),
then the growth rate of the sequence is O(max(f1(n), f2(n))).
An advanced point is that this assumes that we can compare f(n) and g(n)
to select the maximum. Sometimes f(n) and g(n) will be incommensurate, in
which case the maximum cannot be given. There’s no need to worry about this
possibility in CS2205.

One-armed conditionals:

– The test is O(1).
– Suppose the branch is O(f(n)).

Then the one-armed conditional as a whole is also O(f(n)).

Two-armed conditionals:

– The test is O(1).
– Suppose the if branch is O(f1(n)).
– Suppose the else branch is O(f2(n)).

Then the two-armed conditional as a whole is O(max(f1(n), f2(n))).

Unbounded iterations:

– Let g(n) be an upper bound on the number of times we may go around the
loop.

– The test is O(1).
– Suppose the body is O(f(n)).

http://www.cs.ucc.ie/~dgb/courses/toc.html


Growth Rates

Big-Oh Notation

Module Home Page

Title Page

JJ II

J I

Page 12 of 15

Back

Full Screen

Close

Quit

Then the loop as a whole is O(g(n)× f(n)), which might then simplify.

Bounded iterations: The reasoning is the same: the loop as a whole is O(g(n) ×
f(n)). (Initialising the counter is O(1); incrementing the counter adds O(1) to
the body of the loop.)

• This looks nasty but it’s easy for simple algorithms. With experience you learn to
quickly ignore the bits that cost O(1) and concentrate on the loops.

• Here’s an example.

Algorithm: prefixAverages1(a)

create array b[1 . . . n]
for i := 1 upto n
{ sum := 0.0;

for j := 1 upto i
{ sum := sum + a[j];
}
b[i] := sum/i;

}
return b;

This has O(n2) worst-case time complexity.

– Creation and initialisation of the array is O(n).

– The inner loop:

∗ Loop body is O(1).
∗ Loop is executed i times, which in the worst case is n times.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Growth Rates

Big-Oh Notation

Module Home Page

Title Page

JJ II

J I

Page 13 of 15

Back

Full Screen

Close

Quit

∗ So the loop as a whole is O(n× 1) = O(n).
– The outer loop:

∗ The loop body comprises an assignment (O(1)), the inner loop (O(n)) and
another assignment (O(1)) in sequence. It is therefore O(max(1, n, 1)) =
O(n).

∗ Loop is executed n times.
∗ So the loop as a whole is O(n× n) = O(n2).

– The program as a whole comprises the array initialisation (O(n)) and the loop
(O(n2)) in sequence. So we have O(max(n, n2)) = O(n2).

Class Exercise

What is the worst-case time complexity of this one:

Algorithm: prefixAverages2(a)

create array b[1 . . . n]
sum := 0.0;
for i := 1 upto n
{ sum := sum + a[i];

b[i] := sum/i;
}
return b;

Acknowledgements

The idea of showing a comparison between linear search and binary search comes from
[Har92]. A lot of the material on big-Oh notation is based on [AU92].

http://www.cs.ucc.ie/~dgb/courses/toc.html


Growth Rates

Big-Oh Notation

Module Home Page

Title Page

JJ II

J I

Page 14 of 15

Back

Full Screen

Close

Quit

Clip Art (of head with bomb) licensed from the Clip Art Gallery on DiscoverySchool.com.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Growth Rates

Big-Oh Notation

Module Home Page

Title Page

JJ II

J I

Page 15 of 15

Back

Full Screen

Close

Quit

References

[AU92] A. V. Aho and J. D. Ullman. Foundations of Computer Science. W.H. Freeman,
1992.

[Har92] D. Harel. Algorithmics: The Spirit of Computing. Addison-Wesley, 2nd edition,
1992.

http://www.cs.ucc.ie/~dgb/courses/toc.html

	Growth Rates
	Big-Oh Notation
	Informal Discussion
	The Formal Definition
	Proofs
	Disproof
	Tightness
	Simplifying Big-Oh Notation
	Computing Big-Oh Expressions


