

Lecture 26: Algorithms with Logarithmic Complexity

Aims:

- To discuss logarithms;
- To look at an algorithm with logarithmic complexity.

26.1. Logarithmic Functions

• Suppose you are told the following:

 $3^c = 81$

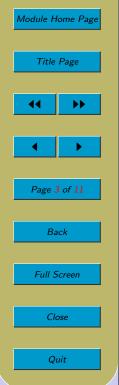
What is c? To what power must you raise 3 to get 81?

- Logarithmic functions are the inverse of exponential functions. If a is b to the power c, i.e. $b^c = a$, we also say that c is the logarithm of a to the base b (meaning c is the power to which we have to raise b in order to get a), and we write $\log_b a = c$.
- For example,

 $\begin{array}{rcrcrc} \log_{10} 100 & = & 2 & (\text{since } 10^2 = 100) \\ \log_2 8 & = & 3 & (\text{since } 2^3 = 8) \end{array}$

- Note that $\log_b a$ is defined only when a is a positive real number and b is a positive real number other than 1. (Note: a cannot be 0; b cannot be 0 or 1.) We'll only be dealing with positive integer values for a and integers > 1 for b anyway. And mostly, for us, b will be 2.
- Some laws:

 $\begin{array}{rcl} \log_b 1 & = & 0\\ \log_b b & = & 1\\ \log_b cd & = & \log_b c + \log_b d\\ \log_b c/d & = & \log_b c - \log_b d\\ \log_b a^c & = & c \log_b a\\ \log_b a & = & (\log_c a) / \log_c b\\ b^{\log_c a} & = & a^{\log_c b} \end{array}$



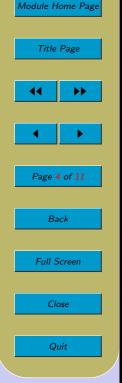
- E.g. simplify $\log_2 2^n$
- Outside Computer Science, it is common to compute logs to the base 10 and to compute so-called natural logs, which are logs to the base e (where e = 2.71828...). But, in Computer Science logs to the base 2 are the most common.
- If your calculator has a button labelled *log* on it, then this almost certainly computes logs to the base 10. If your calculator has a button labelled *ln*, then this computes natural logs.
- You may then be wondering: if my calculator only offers logs to the base 10 and natural logs, how do I use my calculator to compute logs to the base 2? Well, you can use this law:

$$\log_b a = \frac{\log_c a}{\log_c b}$$

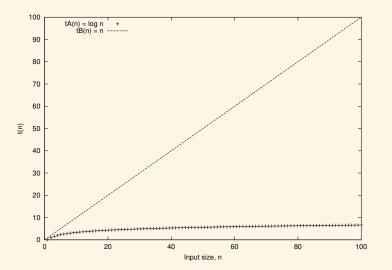
This law allows us to change base. In particular,

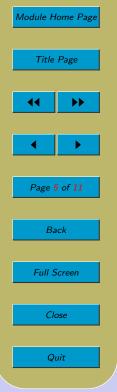
$$\log_2 a = \frac{\ln a}{\ln 2}$$

- E.g. what is $\log_2 12$?
- What are logs used for?
 - They help you solve equations that involve exponentiation.
 - They reduce multiplication/division of large numbers to addition/subtraction (log tables & slide rules!)
 - In complexity theory, they are used to measure input sizes, especially when the input is numeric and we want to count the number of digits.



- In complexity theory, the complexity functions for algorithms that repeatedly split their input into two halves involve logs to the base 2.
- Logarithmic scale helps us to fit plots onto graph paper.
- They are used in the Richter scale for measuring the seismic energy released by earthquakes!
- Suppose algorithm A's worst-case time complexity $t_A(n) =_{\text{def}} \log n$ and algorithm B's worst-case time complexity $t_B(n) =_{\text{def}} n$. \log_n grows much more slowly than n.





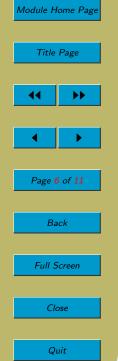
26.2. Binary Search

• Here is the binary search algorithm given in a previous lecture. Remember it assumes that the contents of *a* are stored in ascending order. Note also that here we have assumed that *a* contains distinct integers (no duplicates). This simplifies the analysis. But the algorithm works just as well when duplicates are allowed.

```
Algorithm: BINARYSEARCH(x, a, lower, upper)
```

Parameters: x is an integer; $a[lower \dots upper]$ is an array of distinct integers stored in non-decreasing order; $0 < lower \leq upper$. **Returns:** The position of x in a if found, otherwise fail.

```
{    lo := lower;
    hi := higher;
    while lo \le hi
    {        mid := (lo + hi) div 2;
        if a[mid] < x
        {        lo := mid + 1;
        }
        else if a[mid] = x
        {        return mid;
        }
        else
        {        hi := mid - 1;
        }
    }
    return fail;
}
```

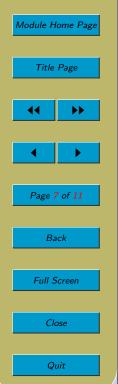



- To carry out our analysis, let's make some assumptions:
 - The algorithm performs comparisons, some arithmetic and some assignments. We count only *element comparisons*, i.e. comparisons between x and the elements in a. The frequency of the other operations would be similar to that of the element comparisons.
 - What we want to do in this algorithm is carry out a three-way comparison. We want to find out whether a[mid] is less than, equal to, or greater than x. But $D_{E}CAFF$, along with most programming languages, forces us to implement this as two two-way comparisons. For simplicity, in our frequency counts we will assume that only a single operation is needed to determine which of the three possibilities holds.
- Assume that a is an array of length 15 and that it is indexed from 1 to 15 (rather than 0 to 14 as it would be in Java). For concreteness, let's say that these are the values that a contains:

100	110	120	130	140	150	160	170	180	190	200	210	220	230	240
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

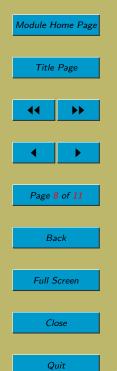
In the lecture, we will search for

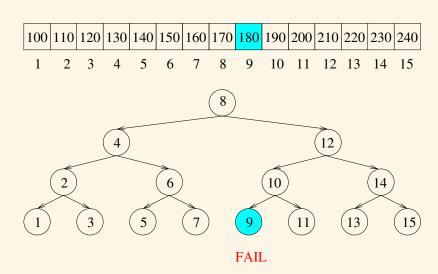
- -x = 170
- -x = 150
- -x = 180
- -x = 185



100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 10 11 12 13 14 15 (15)

• Searching for x = 185:



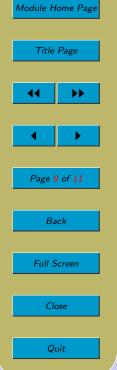


- Initially, the number of candidates is n.
- If you have executed the loop body once, the number of candidates is at most $n \operatorname{div} 2.$
- If you have executed the loop body twice, the number of candidates is at most $n \operatorname{div} 4.$
- In general, if you have executed the loop body k times, the number of candidates is at most $n \operatorname{div} 2^k.$
- The worst case is unsuccessful search where we reduce the candidates to 1 and then do one more test. We have reduced the candidates to 1 when

$$1 = n \operatorname{div} 2^k$$

i.e.

$$k = \log_2 n$$



- So, performing one more test, we get

$$t(n) =_{\operatorname{def}} 1 + \log_2 n$$

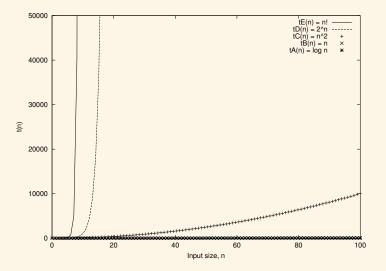
(For those of you who can handle a bit more precision, it is actually $1 + \lfloor \log_2 n \rfloor$.) - E.g. with n = 15, k = 4

• Closing remarks:

- Many algorithms involve repeatedly splitting a list or array into equal halves and then turning attention to one or both halves.
- Base 2 logarithms tell us how many times we can split into halves.
- Base 2 logarithms are therefore crucial in complexity analysis.
- They are so useful that, henceforth, if we write $\log n$ we mean $\log_2 n$.

26.3. Summary Graph

• Let's put several plots on the same graph: something logarithmic, linear, quadratic, exponential and factorial.



Acknowledgements

I based my explanation of the behaviour and complexity of binary search on the treatments given in [GT02] and [HSR96].

Clip Art (of head with bomb) licensed from the Clip Art Gallery on DiscoverySchool.com.

Module Home Page
Title Page
••
Page 11 of 11
Back
Full Screen
Close
Quit

References

- [GT02] M. T. Goodrich and R. Tamassia. Algorithm Design: Foundations, Analysis, and Internet Examples. Wiley, 2002.
- [HSR96] E. Horowitz, S. Sahni, and S. Rajasekaran. Computer Algorithms/C++. W.H. Freeman, 1996.