
Exponentiation

Factorial

The n-Queens Problem

Module Home Page

Title Page

JJ II

J I

Page 1 of 15

Back

Full Screen

Close

Quit

Lecture 25:

Algorithms with Exponential Complexity

Aims:

• To discuss exponential functions;

• To look at a problem whose algorithms have exponential and factorial
complexity.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Exponentiation

Factorial

The n-Queens Problem

Module Home Page

Title Page

JJ II

J I

Page 2 of 15

Back

Full Screen

Close

Quit

25.1. Exponentiation

• We are used to the idea that multiplication is a process of repeated addition. Simi-
larly, exponentiation is a process of repeated multiplication.

For example,
20 = 1

21 = 2

22 = 2× 2 = 4

23 = 2× 2× 2 = 8

24 = 2× 2× 2× 2 = 16

In, for example, 24, 2 is the base and 4 is the exponent and we say “2 raised to the
power 4 is 16” or “2 raised to the 4th power is 16”.

• In general, where c is a positive integer

bc =def b× b× . . .× b︸ ︷︷ ︸
c times

b0 =def 1
b−c =def 1/bc

• Some laws:

bc+d = bc × bd

bc−d = bc/bd

bcd = (bc)d

• E.g. simplify 4n/2n

http://www.cs.ucc.ie/~dgb/courses/toc.html


Exponentiation

Factorial

The n-Queens Problem

Module Home Page

Title Page

JJ II

J I

Page 3 of 15

Back

Full Screen

Close

Quit

• Suppose algorithm A’s worst-case time complexity tA(n) =def n2, and algorithm B’s
worst-case time complexity tB(n) =def 2n. 2n grows much much more quickly than
n2.

0

50000

100000

150000

200000

0 20 40 60 80 100

t(n
)

Input size, n

tA(n) = n^2
tB(n) = 2^n

• Multiplying and adding constants and other terms shifts and stretches the graphs.
And this may make the curves cross in different places. But the exponential functions
will still grow much faster than the polynomial ones.

For example, suppose algorithm A’s worst-case time complexity tA(n) =def 10n2 +
1000 and algorithm B’s worst-case time complexity tB(n) =def

2n

10 .

http://www.cs.ucc.ie/~dgb/courses/toc.html


Exponentiation

Factorial

The n-Queens Problem

Module Home Page

Title Page

JJ II

J I

Page 4 of 15

Back

Full Screen

Close

Quit

0

50000

100000

150000

200000

0 20 40 60 80 100

t(n
)

Input size, n

tA(n) = 10n^2 + 1000
tB(n) = 2^n/10

For small inputs, algorithm A, whose time complexity is quadratic, takes more time
than algorithm B, whose time complexity is exponential. But when input sizes exceed
15, algorithm A becomes the faster and, from that point on, the larger the input, the
bigger the advantage A has over B.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Exponentiation

Factorial

The n-Queens Problem

Module Home Page

Title Page

JJ II

J I

Page 5 of 15

Back

Full Screen

Close

Quit

25.2. Factorial

• Factorial is another important function that can crop up when we look at the com-
plexity of algorithms.

0! =def 1
n! =def n× (n− 1)× . . .× 3× 2× 1

• Suppose A’s worst-case time complexity tA(n) =def n2 and algorithm B’s worst-case
time complexity tB(n) =def n!.

0

50000

100000

150000

200000

0 20 40 60 80 100

t(n
)

Input size, n

tA(n) = n*n
tB(n) = n!

http://www.cs.ucc.ie/~dgb/courses/toc.html


Exponentiation

Factorial

The n-Queens Problem

Module Home Page

Title Page

JJ II

J I

Page 6 of 15

Back

Full Screen

Close

Quit

25.3. The n-Queens Problem

• Can you place 4 Queens on a 4× 4 chessboard so that no two can ‘take’ each other,
i.e. no two are on the same row, column or diagonal?

• Here’s an answer in the case of 4-Queens:

• Can you find an answer for the 8-Queens Problem?

This is not an answer:

http://www.cs.ucc.ie/~dgb/courses/toc.html


Exponentiation

Factorial

The n-Queens Problem

Module Home Page

Title Page

JJ II

J I

Page 7 of 15

Back

Full Screen

Close

Quit

• As they stand, the 4-Queens Problem and the 8-Queens Problems have only one in-
stance (there’s no parameters). So, to make matters more interesting, let’s generalise
the problem.

Problem 25.1. The n-Queens Problem
Parameters: An integer n, n ≥ 4.
Returns: All ways to place n Queens on a n × n

chessboard so that no two can ‘take’ each
other.

• Some observations about solutions:

– Each Queen must be on a different row.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Exponentiation

Factorial

The n-Queens Problem

Module Home Page

Title Page

JJ II

J I

Page 8 of 15

Back

Full Screen

Close

Quit

– Assume Queen i is placed on row i.

– So all we have to do is choose the columns.

– A candidate configuration can be represented by an n-tuple, 〈x1, x2, . . . , xn〉,
where xi is the column on which Queen i is placed.

– E.g., the diagram above would be represented as

〈1, 3, 5, 2, 4, 7, 8, 6〉

25.3.1. A Näıve Algorithm

• Here is a possible algorithm for solving the n-Queens Problem.

In fact, as you’ll see when we analyse its complexity, it’s a really poor algorithm. So
I’ve deliberately not taken the trouble to even write it out in detail. I’ve just the
sketched the main idea in very, very high-level terms.

while there are untried configurations
{ generate the next configuration of the n Queens;

if no two Queens can ‘take’ each other
{ print this configuration;
}

}

– Let’s count how many configurations the algorithm tests.

– This algorithm generates-and-tests every possible tuple 〈x1, x2, . . . , xn〉

http://www.cs.ucc.ie/~dgb/courses/toc.html


Exponentiation

Factorial

The n-Queens Problem

Module Home Page

Title Page

JJ II

J I

Page 9 of 15

Back

Full Screen

Close

Quit

– E.g. for 4-Queens, it generates

〈1, 1, 1, 1〉, 〈1, 1, 1, 2〉, 〈1, 1, 1, 3〉, . . . 〈1, 1, 2, 1〉, 〈1, 1, 2, 2〉, 〈1, 1, 2, 3〉, . . .

– x1 can be any one of n values, so can x2,. . . , so can xn.

– Therefore, it tests nn configurations.

t(n) =def nn

– 44 = 256; 88 = 16777216

25.3.2. An Improvement

• The näıve algorithm ignores an obvious constraint that can save us a huge amount
of effort:

No two Queens can be in the same column — I.e. no two values in a tuple
can be the same.

• Here, still in very, very high-level terms is a revised algorithm:

while there are untried configurations
{ generate the next configuration of the n Queens. . .

allowing no duplicates values in the configuration;
if no two Queens can ‘take’ each other
{ print this configuration;
}

}

http://www.cs.ucc.ie/~dgb/courses/toc.html


Exponentiation

Factorial

The n-Queens Problem

Module Home Page

Title Page

JJ II

J I

Page 10 of 15

Back

Full Screen

Close

Quit

item We can visualise the configurations that this algorithm generates and tests for
n = 4. The algorithm carries out a test at the end of each branch of this tree:

4 3 4 2

1 2 3 4

2 3 4 1 3 4 1 2 4 1 2 3

34 24 23 34 14 1 3 2 4 14 12 23 13 12

3 2 4 3 4 1 3 1 4 2 4 1 2 2 3 2 3 21 1

– You can select any one of n values for x1.
– You can select any one of n− 1 values for x2.

–
...

– You can select the one remaining value for xn.
– Therefore, it tests n! configurations.

t(n) =def n!

– 4! = 24; 8! = 40320

http://www.cs.ucc.ie/~dgb/courses/toc.html


Exponentiation

Factorial

The n-Queens Problem

Module Home Page

Title Page

JJ II

J I

Page 11 of 15

Back

Full Screen

Close

Quit

25.3.3. Another Improvement

• But, we can test incomplete configurations and abandon them early if they already
contain two Queens that can take each other.

We can visualise this using the following diagram:

1 2 3 4

2 3 4 1 3 4 1 2 4 1 2 3

24 23 1 3 2 4 23 13

3 3 2 2

YES YES
• This looks good! So let’s see what it looks like in DECAFF. The easiest implementa-

tion is a recursive one. There’s no need to spend too much time puzzling over how it
works. I’m only showing it to you as a matter of interest. We’ve done what we set
out to do, i.e. discuss the complexity.

Assume x is a global variable and that it is an array of length n. (If x[k] contains i,
this means that the kth Queen is in row k and column i.) To start the algorithm,

http://www.cs.ucc.ie/~dgb/courses/toc.html


Exponentiation

Factorial

The n-Queens Problem

Module Home Page

Title Page

JJ II

J I

Page 12 of 15

Back

Full Screen

Close

Quit

you would call NQueens(1).

Algorithm: NQueens(k)

for i := 1 upto n
{ if CanPlace(i, k)

{ x[k] := i;
if k = n
{ print array x;
}
else
{ NQueens(k + 1);
}

}
}

It uses a procedure that returns a Boolean to say whether Queen i can be placed

http://www.cs.ucc.ie/~dgb/courses/toc.html


Exponentiation

Factorial

The n-Queens Problem

Module Home Page

Title Page

JJ II

J I

Page 13 of 15

Back

Full Screen

Close

Quit

into column k:

procedure CanPlace(i, k)

for j := 1 upto k − 1
{ if x[j] = i; // Two in same column

{ return false;
}
if abs(x[j]− i) = abs(j − k) // Two in same diagonal
{ return false;
}

}
return true

• It’s much harder to determine the complexity of this algorithm.

– On the one hand, it does tests at each point along the paths, not just at the
ends of the paths. So that’s more work!

– On the other hand, many paths are abandoned before all n Queens have been
placed.

– What do you think the worst case is?

• There are many further ways of trying to speed up this algorithm, e.g. avoiding the
duplicated effort that results from symmetries in the problem.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Exponentiation

Factorial

The n-Queens Problem

Module Home Page

Title Page

JJ II

J I

Page 14 of 15

Back

Full Screen

Close

Quit

Acknowledgements

I based some of the n-Queens material on the treatment given in [HSR96].

Clip Art (of head with bomb) licensed from the Clip Art Gallery on DiscoverySchool.com.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Exponentiation

Factorial

The n-Queens Problem

Module Home Page

Title Page

JJ II

J I

Page 15 of 15

Back

Full Screen

Close

Quit

References

[HSR96] E. Horowitz, S. Sahni, and S. Rajasekaran. Computer Algorithms/C++. W.H.
Freeman, 1996.

http://www.cs.ucc.ie/~dgb/courses/toc.html

	Exponentiation
	Factorial
	The n-Queens Problem
	A Naïve Algorithm
	An Improvement
	Another Improvement


