
Total Correctness

A Deduction System . . .

Module Home Page

Title Page

JJ II

J I

Page 1 of 7

Back

Full Screen

Close

Quit

Lecture 21:

Total Correctness

Aims:

• To look at the inference rules for total correctness.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Total Correctness

A Deduction System . . .

Module Home Page

Title Page

JJ II

J I

Page 2 of 7

Back

Full Screen

Close

Quit

21.1. Total Correctness

• Suppose we are asked to prove

`tot L P M C L Q M

So now we are concerned with termination as well as partial correctness.

• We need a different deduction system with a different set of inference rules. In a
language as simple as MOCCA, there are only two kinds of problem that can prevent
termination.

– The value of an expression may be undefined, e.g. division by zero.

– A while loop may never be exited.

Of course, if we extend our language, then there could be other sources of non-
termination. For example, if we add procedures and we allow recursion then any
command that contains a call to a recursive procedure (including cases of mutual
recursion) may result in an infinite computation.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Total Correctness

A Deduction System . . .

Module Home Page

Title Page

JJ II

J I

Page 3 of 7

Back

Full Screen

Close

Quit

21.2. A Deduction System for Total Correctness

• Most of the inference rules are unchanged. But wherever we evaluate an expression,
we must make sure that its value is defined. For example, if we have the following
assignments,

x := 10 div u

x := 32 mod v

x := z div(w + 1)

x := 1 + z mod(x− y)

we must make sure that u, v, (w + 1) and (x− y) are not zero, respectively.

If we have an if command or a while loop, the Boolean expression may involve
some arithmetic, and again this gives the potential for a division by zero. Here are
examples:

if x = 10div y . . .

while x = 32mod y . . .

• In our new inference rules, we write ‘E is defined’. But you don’t write this in a
proof. You replace it by a suitable assertion. So if, within E, there’s a division
(using div or mod) by some expression E′, you replace ‘E is defined’ by E′ 6= 0. If
there’s no division, then simply ignore ‘E is defined’.

Sequencing
L P M C1 L R M, L R M C2 L Q M

LP MC1;C2 L Q M

Assignment
E is defined

L Q[V 7→ E] M V := E L Q M

http://www.cs.ucc.ie/~dgb/courses/toc.html


Total Correctness

A Deduction System . . .

Module Home Page

Title Page

JJ II

J I

Page 4 of 7

Back

Full Screen

Close

Quit

Consequence
P ⇒ P ′, LP ′ MC L Q′ M, Q′ ⇒ Q

L P M C L Q M

One-armed-conditional

B is defined, L B ∧ P M C L Q M, (¬B ∧ P ) ⇒ Q

L P M if B C L Q M

Two-armed-conditional

B is defined, L B ∧ P M C1 L Q M, L¬B ∧ P M C2 L Q M
L P M if B C1 else C2 L Q M

• The rule for while loops, however, is much more complicated.

While

B is defined,
L Inv ∧B ∧ 0 ≤ VE ∧VE = VE 0 M C L Inv ∧ 0 ≤ VE ∧VE < VE 0 M

L Inv ∧ 0 ≤ VE Mwhile B C L Inv ∧ ¬B M

• We have to try to discover a variant. A variant is an integer expression whose value
can be shown to decrease every time we go round the loop, but which is always
non-negative. If we can find an expression that has these properties, the loop must
terminate. The expression can only decrease in value a finite number of times before
it becomes zero.

In the rule above VE is the variant. We require that its value decreases by saying in
the condition of the rule that, if its value is VE 0 before the body, then its value is
less than VE 0 after the body.

• How do we prove the total correctness of a while loop?

http://www.cs.ucc.ie/~dgb/courses/toc.html


Total Correctness

A Deduction System . . .

Module Home Page

Title Page

JJ II

J I

Page 5 of 7

Back

Full Screen

Close

Quit

1. Guess a wff Inv that you hope is an invariant and an integer expression VE
that you hope is a variant.

2. Prove that (Inv ∧ ¬B) ⇒ Q.

3. Push Inv ∧ 0 ≤ VE ∧VE < VE 0 upwards through C. Let’s call the wff you get
from this W .

4. Prove that (Inv ∧B ∧ 0 ≤ VE ∧VE = VE 0) ⇒ W .

5. Now write Inv ∧ 0 ≤ VE above the while loop. (Continue to push this up
through the rest of the program, if any.)

• Prove that `tot Lx ≥ 0 MProgA L y = x! M where ProgA is:

y := 1;

z := 0;

while x 6= z
{

z := z + 1;

y := y × z;

}

http://www.cs.ucc.ie/~dgb/courses/toc.html


Total Correctness

A Deduction System . . .

Module Home Page

Title Page

JJ II

J I

Page 6 of 7

Back

Full Screen

Close

Quit

– The invariant is y = z! as before.

– The variant is x− z.

We can see that loop-test B, i.e. x 6= z, and all the expressions in the assignment
commands are defined (no uses of div or mod).

Acknowledgements

My approach here was partly based on the approach taken in [Kal90] as well as [HR00].

Clip Art (of head with bomb) licensed from the Clip Art Gallery on DiscoverySchool.com.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Total Correctness

A Deduction System . . .

Module Home Page

Title Page

JJ II

J I

Page 7 of 7

Back

Full Screen

Close

Quit

References

[HR00] M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning
about Systems. Cambridge University Press, 2000.

[Kal90] A. Kaldewaij. Programming: The Derivation of Algorithms. Prentice Hall, 1990.

http://www.cs.ucc.ie/~dgb/courses/toc.html

	Total Correctness
	A Deduction System for Total Correctness

