

Lecture 18: Floyd-Hoare Logic for Conditionals

Aims:

• To look at the inference rules for one- and two-armed conditionals.

> Module Home Page Title Page •• Page 2 of 8 Back Full Screen Close

> > Quit

18.1. Recap

• Let's start with an exercise that allows us to revise what we learned in the previous lecture.

Prove that $\vdash_{\text{par}} (|\mathbf{True}|) \operatorname{Prog} A (|u = x + y|)$ where $\operatorname{Prog} A$ is as follows:

• You can see that, because of the way we tackle proofs, i.e. backwards and using the rule of consequence, we never actually make explicit use of the Sequence rule. It *is* being used but only implicitly — in the way we lay out our proofs.

Module Home Page
Title Page
44 >>
•
Page 3 of 8
Back
Full Screen
Close
Quit

18.2. Conditionals

• Two-armed-conditional

$$\frac{(\!(B \land P)\!) C_1 (\!(Q)\!), \quad (\!(\neg B \land P)\!) C_2 (\!(Q)\!)}{(\!(P)\!) \text{ if } B C_1 \text{ else } C_2 (\!(Q)\!)}$$

If B is **true**, C_1 is executed; if B is **false**, C_2 is executed. If we have proved that C_1 takes us from states satisfying $B \wedge P$ to states satisfying Q and C_2 takes us from states satisfying $\neg B \wedge P$ to states satisfying Q, then we can conclude that the conditional command as a whole takes us from states satisfying P to states satisfying Q.

- How do we push a condition Q 'backwards' up through a two-armed conditional?
 - 1. Push Q up through C_1 . Call the result P_1 .
 - 2. Push Q up through C_2 . Call the result P_2 .
 - 3. Then the precondition of the conditional P is $(B \Rightarrow P_1) \land (\neg B \Rightarrow P_2)$

• Prove that $\vdash_{\text{par}} (|\operatorname{\mathbf{True}}) \operatorname{ProgB} (|y = x + 1|)$ where ProgB is

$$a := x + 1;$$

if $(a - 1) = 0$
{
 $y := 1;$
}
else
{
 $y := a;$
}

• Here's the finished result. Make sure you make enough notes during the lecture so

Recap Conditionals Module Home Page Title Page •• Page 5 of 8 Back Full Screen Close Quit

that you know how I arrived at this result.

$$\begin{array}{l} \left(\mathbf{True} \right) \\ \left(\left((x+1-1)=0 \Rightarrow 1=x+1 \right) \land \\ \quad ((x+1-1) \neq 0 \Rightarrow x+1=x+1) \right) \\ \text{Consequence (proof (f))} \end{array} \\ a := x+1; \\ \left((a-1)=0 \Rightarrow 1=x+1) \land ((a-1) \neq 0 \Rightarrow a=x+1) \right) \\ \text{if } (a-1)=0 \\ \left\{ \begin{array}{l} \left(1=x+1 \right) \\ y := 1; \\ \left(y=x+1 \right) \\ \text{Assignment} \end{array} \right\} \\ else \\ \left\{ \begin{array}{l} \left(a=x+1 \right) \\ y := a; \\ \left(y=x+1 \right) \\ \text{Assignment} \end{array} \right\} \\ else \\ \left\{ \begin{array}{l} \left(a=x+1 \right) \\ y := a; \\ \left(y=x+1 \right) \\ \text{Assignment} \end{array} \right\} \\ \left\{ \begin{array}{l} \left(y=x+1 \right) \\ y := a; \\ \left(y=x+1 \right) \\ \text{Two-armed-conditional} \end{array} \right. \end{array} \right.$$

Proof (1): To show **True** \Rightarrow [((x + 1 - 1) = 0 \Rightarrow 1 = x + 1) \land ((x + 1 - 1) \neq 0 \Rightarrow x + 1 = x + 1)].

By arithmetic, $((x + 1 - 1) = 0 \Rightarrow 1 = x + 1) \land ((x + 1 - 1) \neq 0 \Rightarrow x + 1 = x + 1)$ simplifies to $(x = 0 \Rightarrow x = 0) \land (x \neq 0 \Rightarrow x + 1 = x + 1)$. $x = 0 \Rightarrow x = 0 \equiv$ **True**. $x + 1 = x + 1 \equiv$ **True** by arithmetic. So we have $x \neq 0 \Rightarrow$ **True** \equiv **True**. So this gives us **True** \land **True** \equiv **True**.

• Prove that $\vdash_{\text{par}} (|\operatorname{\mathbf{True}})| \operatorname{Prog} C (|z = \min(x, y)|)$ where $\operatorname{Prog} C$ is

$$if x \ge y \\
 {
 z := y;
 }
 else
 {
 z := x;
 }
 }$$

When you use the rule of consequence, remember you are stepping outside Floyd-Hoare logic. In this example, we will use the following fact of arithmetic:

$$a = \min(b, c) \equiv (a = b \lor a = c) \land a \le b \land a \le c$$

• One-armed-conditional

$$\frac{(B \land P) C (Q), \quad (\neg B \land P) \Rightarrow Q}{(P) \text{ if } B C (Q)}$$

If B is **true**, C is executed; if B is **false**, the conditional does not execute any additional command. If we have proved that C takes us from states satisfying $B \wedge P$

Recap
Conditionals
Module Home Page
Title Page
•• ••
▲ →
Page 7 of 8
Back
Full Screen

Close

Quit

to states satisfying Q, and if we know that Q follows directly in the other case, i.e. $(\neg B \land P) \Rightarrow Q$, then we can conclude that the conditional command as a whole takes us from states satisfying P to states satisfying Q.

- How do we push a condition Q 'backwards' up through a one-armed conditional?
 - 1. Push Q up through C. Call the result P'.
 - 2. Then the precondition of the conditional P is $(B \Rightarrow P') \land (\neg B \Rightarrow Q)$
- Here's an example. Below is *ProgD* and a proof that $\vdash_{\text{par}} (|\text{True}|) \operatorname{ProgD} (|x \ge 0|)$

$$\begin{array}{l} \left(\mathbf{True} \right) \\ \left(\left(x < 0 \Rightarrow -x \ge 0 \right) \land \left(x \not< 0 \Rightarrow x \ge 0 \right) \right) \\ \mathbf{if} \ x < 0 \\ \left\{ \begin{array}{l} \left(-x \ge 0 \right) \\ x := -x; \\ \left(x \ge 0 \right) \\ \mathbf{Assignment} \end{array} \right\} \\ \left(x \ge 0 \right) \\ \left(x \ge 0 \right) \\ \mathbf{One-armed \ conditional} \end{array} \right.$$

Proof (1): To show that **True** \Rightarrow $((x < 0 \Rightarrow -x \ge 0) \land (x \not< 0 \Rightarrow x \ge 0)).$

From definitions of $\langle \text{ and } \geq, x < 0 \Rightarrow -x \ge 0 \equiv \text{True.}$ And $x \not< 0 \Rightarrow x \ge 0 \equiv \text{True.}$ So $(x < 0 \Rightarrow -x \ge 0) \land (x \not< 0 \Rightarrow x \ge 0) \equiv \text{True.}$ This leaves us with **True** \Rightarrow **True** \equiv **True**.

Acknowledgements

I continue to base material on that in Chapter 4 of [HR00].

Clip Art (of head with bomb) licensed from the Clip Art Gallery on DiscoverySchool.com.

References

[HR00] M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning about Systems. Cambridge University Press, 2000.