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Lecture 18:

Floyd-Hoare Logic for Conditionals

Aims:

• To look at the inference rules for one- and two-armed conditionals.
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18.1. Recap

• Let’s start with an exercise that allows us to revise what we learned in the previous
lecture.

Prove that `par LTrue MProgA Lu = x + y M where ProgA is as follows:

z := x;

z := z + y;

u := z;

• You can see that, because of the way we tackle proofs, i.e. backwards and using the
rule of consequence, we never actually make explicit use of the Sequence rule. It is
being used but only implicitly — in the way we lay out our proofs.
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18.2. Conditionals

• Two-armed-conditional

L B ∧ P MC1 LQ M, L¬B ∧ P MC2 LQ M
L P M if B C1else C2 LQ M

If B is true, C1 is executed; if B is false, C2 is executed. If we have proved that C1

takes us from states satisfying B∧P to states satisfying Q and C2 takes us from states
satisfying ¬B ∧ P to states satisfying Q, then we can conclude that the conditional
command as a whole takes us from states satisfying P to states satisfying Q.

• How do we push a condition Q ‘backwards’ up through a two-armed conditional?

1. Push Q up through C1. Call the result P1.

2. Push Q up through C2. Call the result P2.

3. Then the precondition of the conditional P is (B ⇒ P1) ∧ (¬B ⇒ P2)
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• Prove that `par LTrue MProgB L y = x + 1 M where ProgB is

a := x + 1;

if (a− 1) = 0
{

y := 1;

}
else
{

y := a;

}

• Here’s the finished result. Make sure you make enough notes during the lecture so

http://www.cs.ucc.ie/~dgb/courses/toc.html
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that you know how I arrived at this result.

LTrue M
L ((x + 1− 1) = 0 ⇒ 1 = x + 1)∧

((x + 1− 1) 6= 0 ⇒ x + 1 = x + 1) MConsequence (proof 1©)
a := x + 1;
L ((a− 1) = 0 ⇒ 1 = x + 1) ∧ ((a− 1) 6= 0 ⇒ a = x + 1) MAssignment
if (a− 1) = 0
{ L 1 = x + 1 M

y := 1;
L y = x + 1 MAssignment

}
else
{ L a = x + 1 M

y := a;
L y = x + 1 MAssignment

}
L y = x + 1 MTwo-armed-conditional

Proof 1©: To show True ⇒ [((x + 1 − 1) = 0 ⇒ 1 = x + 1) ∧ ((x + 1 − 1) 6= 0 ⇒
x + 1 = x + 1)].

By arithmetic, ((x + 1 − 1) = 0 ⇒ 1 = x + 1) ∧ ((x + 1 − 1) 6= 0 ⇒ x + 1 = x + 1)
simplifies to (x = 0 ⇒ x = 0) ∧ (x 6= 0 ⇒ x + 1 = x + 1). x = 0 ⇒ x = 0 ≡ True.
x + 1 = x + 1 ≡ True by arithmetic. So we have x 6= 0 ⇒ True ≡ True. So this
gives us True ∧True ≡ True.
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• Prove that `par LTrue MProgC L z = min(x, y) M where ProgC is

if x ≥ y
{

z := y;

}
else
{

z := x;

}

When you use the rule of consequence, remember you are stepping outside Floyd-
Hoare logic. In this example, we will use the following fact of arithmetic:

a = min(b, c) ≡ (a = b ∨ a = c) ∧ a ≤ b ∧ a ≤ c

• One-armed-conditional

LB ∧ P M C L Q M, (¬B ∧ P ) ⇒ Q

L P M if B C L Q M

If B is true, C is executed; if B is false, the conditional does not execute any
additional command. If we have proved that C takes us from states satisfying B ∧P

http://www.cs.ucc.ie/~dgb/courses/toc.html
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to states satisfying Q, and if we know that Q follows directly in the other case, i.e.
(¬B∧P ) ⇒ Q, then we can conclude that the conditional command as a whole takes
us from states satisfying P to states satisfying Q.

• How do we push a condition Q ‘backwards’ up through a one-armed conditional?

1. Push Q up through C. Call the result P ′.
2. Then the precondition of the conditional P is (B ⇒ P ′) ∧ (¬B ⇒ Q)

• Here’s an example. Below is ProgD and a proof that `par LTrue MProgD L x ≥ 0 M

LTrue M
L (x < 0 ⇒ −x ≥ 0) ∧ (x 6< 0 ⇒ x ≥ 0) MConsequence (proof 1©)
if x < 0
{ L−x ≥ 0 M

x := −x;
Lx ≥ 0 MAssignment

}
L x ≥ 0 MOne-armed conditional

Proof 1©: To show that True ⇒ ((x < 0 ⇒ −x ≥ 0) ∧ (x 6< 0 ⇒ x ≥ 0)).

From definitions of < and ≥, x < 0 ⇒ −x ≥ 0 ≡ True. And x 6< 0 ⇒ x ≥ 0 ≡ True.
So (x < 0 ⇒ −x ≥ 0) ∧ (x 6< 0 ⇒ x ≥ 0) ≡ True. This leaves us with True ⇒
True ≡ True.
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I continue to base material on that in Chapter 4 of [HR00].
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