
Program Verification

The MOCCA . . .

Program Specifications

Partial and Total . . .

Proof

Module Home Page

Title Page

JJ II

J I

Page 1 of 16

Back

Full Screen

Close

Quit

Lecture 16:

Program Specifications

Aims:

• To look at Hoare triples as a way of writing program specifications;

• To discuss what we mean by partial and total correctness.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Program Verification

The MOCCA . . .

Program Specifications

Partial and Total . . .

Proof

Module Home Page

Title Page

JJ II

J I

Page 2 of 16

Back

Full Screen

Close

Quit

16.1. Program Verification

• Our digression into propositional logic is over — at last. Remember why we made
this digression. We want to consider how to prove that a program is correct.

We do this when exhaustive testing is impossible (which is pretty much always) and
when we are working in a domain where the cost of failure is high (e.g. safety-critical
domains).

• If you want to provide correctness guarantees about your programs, then software
development comprises the following three steps:

1. Take the informal problem specification PS and translate it into a formal
program specification LP M L Q M.

2. Write a program C that is intended to satisfy the specification L P M L Q M.

3. Prove that C satisfies LP M L Q M, written

` LP M C L Q M

Obviously, this is hugely simplified. Rarely can any software project be decomposed
into nice simple sequential tasks. Often program specifications evolve, there is inter-
leaved or concurrent work on different tasks, and there is an amount of backtracking.

• In many ways, the first task is the hardest. Even coming up with the informal prob-
lem specification can be difficult. Translating it into a formal specification, written
in some logic, involves all the kinds of difficulties we encountered when we looked
at the connections between English and propositional logic. The informal problem
specification may be inconsistent, incomplete, imprecise or ambiguous. Indeed one
advantage of translating it into logic will be to reveal its inconsistency, incomplete-
ness, imprecision or ambiguity.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Program Verification

The MOCCA . . .

Program Specifications

Partial and Total . . .

Proof

Module Home Page

Title Page

JJ II

J I

Page 3 of 16

Back

Full Screen

Close

Quit

• It should also be said that the steps above describe what is sometimes called after-the-
fact verification. Only when program C has been completed is it proved. Arguably,
it is preferable to practice as-you-go verification, in which program construction and
proof go hand-in-hand. Thus, it is guaranteed that the program that gets constructed
meets its specification. We don’t have time to look at as-you-go verification.

• Perhaps one of the most important things to take from the highly simplified steps
above is that programs can only be proved correct with respect to a specification.
Without a specification of what the program is supposed to do, talk of correctness
or verification or proof is meaningless.

• Question: We will be proving the correctness of programs (written in MOCCA).
Do you think it is possible to prove the correctness of algorithms (e.g. written in
DECAFF)?

• The advantages of formally specifying and verifying a program include:

– The specification is an important piece of program documentation.

– Experience has shown that verifying programs with respect to their specifcations
eliminates more errors and does so earlier than testing-and-debugging.

– This has the added advantage of reducing software development and mainte-
nance time and costs.

– Properly specified and verified software is easier to revise and reuse.

In safety-critical domains, we may increasingly face legal or professional requirements
that software comes with guarantees.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Program Verification

The MOCCA . . .

Program Specifications

Partial and Total . . .

Proof

Module Home Page

Title Page

JJ II

J I

Page 4 of 16

Back

Full Screen

Close

Quit

16.2. The MOCCA Programming Language

• We are going to prove programs that are written in a pretend programming lan-
guage called MOCCA. It contains the core features of many modern programming
languages. Indeed, anything that can be computed can be computed by MOCCA.

In MOCCA, however, we’ve stripped away some of the conveniences of real languages.
The only reason we do this is to simplify what you have to learn here. It is entirely
possible to extend the language with all the features you know from Java, C or C++,
and show how to do program verification on the extended language.

We discussed MOCCA briefly before, when we were looking at grammars for specifying
the syntax of programming languages. Here, for ease of reference, we give MOCCA’s
grammar in BNF again.

〈program〉 ::= 〈block〉
〈block〉 ::= { 〈command-list〉 }

〈command-list〉 ::= ε
〈command-list〉 ::= 〈command〉 〈command-list〉

〈command〉 ::= 〈block〉
〈command〉 ::= 〈assignment〉
〈command〉 ::= 〈one-armed-conditional〉
〈command〉 ::= 〈two-armed-conditional〉
〈command〉 ::= 〈while-loop〉

〈assignment〉 ::= 〈var〉 := 〈expr〉
〈one-armed-conditional〉 ::= if 〈expr〉 〈command〉
〈two-armed-conditional〉 ::= if 〈expr〉 〈command〉 else 〈command〉

〈while-loop〉 ::= while 〈expr〉 〈command〉
etc.

• Reminders

http://www.cs.ucc.ie/~dgb/courses/toc.html


Program Verification

The MOCCA . . .

Program Specifications

Partial and Total . . .

Proof

Module Home Page

Title Page

JJ II

J I

Page 5 of 16

Back

Full Screen

Close

Quit

– The grammar is ambiguous. It gives two parse trees when there is a dangling-
else . We’ve left it ambiguous, and it is up to MOCCA programmers to use
enough curly braces to write unambiguous programs.

– Syntax is only part of the story. In particular, programs will also need to
obey static semantic rules. For example, in if commands and while commands,
〈expr〉 must return a Boolean. And ideally, throughout the program, assignment
commands should assign any given variable values of one particular type.

– We’ve no other loops (including for loops); we’ve no arrays; we’ve no proce-
dures; we’ve no object-oriented stuff; etc.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Program Verification

The MOCCA . . .

Program Specifications

Partial and Total . . .

Proof

Module Home Page

Title Page

JJ II

J I

Page 6 of 16

Back

Full Screen

Close

Quit

16.3. Program Specifications

• There are many very elaborate ways of writing formal program and system specifica-
tions. Here we use one of the simplest, that has always been associated with proving
program correctness.

• A program specification comprises a pair of assertions about program states:

Precondition P : describes the state before the program executes;
Postcondition Q: describes the state after the program executes.

• Given a program C, we would write a Hoare triple:

L P M C L Q M

which means (roughly)

If program C is run in a state that satisfies P , then the state after it
executes will satisfy Q.

• Some books would write {P }C {Q } instead of L P M C L Q M. But using curly braces
is too confusing: they get confused with the curly braces that are allowed in many
programming languages.

• The two assertions, P and Q (the pre- and post-condition), must describe states. For
a simple language, such as MOCCA, we describe states by placing conditions on the
values stored in different variables.

• Examples of states:
L x = 3 ∧ y = 4 M

L x > 0 M

L x = y2 ∧ z = 2x M

http://www.cs.ucc.ie/~dgb/courses/toc.html


Program Verification

The MOCCA . . .

Program Specifications

Partial and Total . . .

Proof

Module Home Page

Title Page

JJ II

J I

Page 7 of 16

Back

Full Screen

Close

Quit

• Here’s a really simple informal problem specification:

Problem 16.1.
Parameters: A non-negative integer, x.
Returns: The factorial of x.

• We take the informal problem specification and translate it into a formal program
specification, written as a Hoare triple:

L x ≥ 0 M C L y = x! M

In other words, this specification says: we want a program C which (still roughly),
if executed starting in a state in which program variable x contains a number greater
than or equal to 0, will, after execution of C, end in a state in which program variable
y contains x!, the factorial of x.

• How the precondition becomes true is not relevant. (Maybe parameters are passed in
and used to initialise x; maybe the user is prompted to enter an integer.) Similarly,
what we do with any values computed to make the precondition true is not relevant.
(Maybe the value of y is returned to some client code. Maybe the value is displayed
on the screen or written to a file.) We are not concerned with these details. We are
concerned only with the correctness of the computation itself.

• In fact, there is something wrong with this program specification, which we must
remedy. We’ll return to this later and fix it.

• Suppose we then try to write a program C to satisfy this specification. There are
many programs we could write. Some will satisfy the specification, and some won’t.
Here are two examples.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Program Verification

The MOCCA . . .

Program Specifications

Partial and Total . . .

Proof

Module Home Page

Title Page

JJ II

J I

Page 8 of 16

Back

Full Screen

Close

Quit

• This one is true. Still roughly, if this program is executed in a state where x ≥ 0
then, after execution, the program will be in a state where y = x!.

L x ≥ 0 M
y := 1;
z := 0;
while z 6= x
{ z := z + 1;

y := y × z;
}
L y = x! M

• But this one is false.

L x ≥ 0 M
y := 1;
z := 0;
while z 6= x
{ y := y × z;

z := z + 1;
}
L y = x! M

• Unfortunately, this one is also true.

L x ≥ 0 M
x := 3;
y := 6;
L y = x! M

http://www.cs.ucc.ie/~dgb/courses/toc.html


Program Verification

The MOCCA . . .

Program Specifications

Partial and Total . . .

Proof

Module Home Page

Title Page

JJ II

J I

Page 9 of 16

Back

Full Screen

Close

Quit

If this trivial program is executed in a state where x ≥ 0 then, after execution, the
program will be in a state where y = x!.

Clearly, the program isn’t what we wanted when we wrote the problem specification.
But the fault here doesn’t lie with the program; it lies with the program specification.
The program specification doesn’t prevent us from changing the value of x.

• And unfortunately, and much more subtly, this one is false.

L x ≥ 0 M
y := 1;
while x 6= 0
{ y := y × x;

x := x− 1;
}
L y = x! M

This time the program looks good. It certainly computes the factorial of the original
value of x. But again it alters x.

Suppose x originally contained 4. By the time we come to test the postcondition, y
will contain the factorial of the original value of x (4), i.e. y will contain 24. But x
will now contain zero, whose factorial is 1. So the postcondition isn’t true: 24 6= 1.

• The solution to our woes is to distinguish program variables and specification vari-
ables.

Program variables: Appear in the program or in preconditions and postconditions

Specification variables: Only appear in preconditions and postconditions

http://www.cs.ucc.ie/~dgb/courses/toc.html


Program Verification

The MOCCA . . .

Program Specifications

Partial and Total . . .

Proof

Module Home Page

Title Page

JJ II

J I

Page 10 of 16

Back

Full Screen

Close

Quit

– cannot change value (because, for example, they cannot be used in assign-
ment commands within the program)

– enable us to ‘remember’ initial values
– generally written using a subscript, e.g. x0

• So here is a revised Hoare triple, using specification variables.

L x = x0 ∧ x ≥ 0 M C L y = x0! M

• Now this is false, as we would hope:

L x = x0 ∧ x ≥ 0 M
x := 3;
y := 6;
L y = x0! M

• And this one is now true, as we would hope:

L x = x0∧ ≥ 0 M
y := 1;
while x 6= 0
{ y := y × x;

x := x− 1;
}
L y = x0! M

http://www.cs.ucc.ie/~dgb/courses/toc.html


Program Verification

The MOCCA . . .

Program Specifications

Partial and Total . . .

Proof

Module Home Page

Title Page

JJ II

J I

Page 11 of 16

Back

Full Screen

Close

Quit

Class Exercise

• Write program specifications in the form of Hoare triples for the following problem
specifications.

Problem 16.2.
Parameters: An integer, x
Returns: Twice the value of x.

Problem 16.3.
Parameters: A non-negative integer, x
Returns: The largest integer that does not exceed√

x.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Program Verification

The MOCCA . . .

Program Specifications

Partial and Total . . .

Proof

Module Home Page

Title Page

JJ II

J I

Page 12 of 16

Back

Full Screen

Close

Quit

16.4. Partial and Total Correctness

• Our explanation of the meaning of a Hoare triple, L P M C L Q M, has been informal
so far. Note how the word “roughly” peppered the text. We did not say what to
conclude about a triple if C does not terminate. It has been conventional to separate
consideration of termination from other aspects of program correctness.

Partial correctness: We say that triple L P M C L Q M is partially correct if, when C
is executed in any state that satisfies precondition P , the following holds: if C
terminates then, after execution, the postcondition Q holds. In this case, we
write

|=par L P M C L Q M

Total correctness: We say that triple L P M C LQ M is totally correct if, when C is
executed in any state that satifies precondition P , the following holds: C ter-
minates and, after execution, the postcondition Q holds. In this case, we write

|=tot L P M C LQ M

Obviously, we’re really interested in total correctness. The motivation for the dis-
tinction is to allow us to split our proofs into more manageable parts. We can prove
partial correctness first and then prove termination. And these two proofs establish
total correctness.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Program Verification

The MOCCA . . .

Program Specifications

Partial and Total . . .

Proof

Module Home Page

Title Page

JJ II

J I

Page 13 of 16

Back

Full Screen

Close

Quit

algorithm

any legal
input

if
this point is reached

then
this is the desired output

Partial Correctness

output

algorithm

any legal
input

this point is reached

this is the desired output
output

Total Correctness

indeed

and

Class Exercise

• Let’s check our intuitions.

• Say which of these hold.

1. |=par Lx = 1 M x := x + 1 L x = 2 M

2. |=tot L x = 1 M x := x + 1 L x = 2 M

3. |=par Lx = 1 M y := x L y = 1 M

4. |=tot L x = 1 M y := x L y = 1 M

5. |=par Lx = 1 M y := x L y = 2 M

6. |=tot L x = 1 M y := x L y = 2 M

• Say which of these hold.

1. |=par Lx = x0 ∧ y = y0 M temp := x;x := y; y := temp L x = y0 ∧ y = x0 M

http://www.cs.ucc.ie/~dgb/courses/toc.html


Program Verification

The MOCCA . . .

Program Specifications

Partial and Total . . .

Proof

Module Home Page

Title Page

JJ II

J I

Page 14 of 16

Back

Full Screen

Close

Quit

2. |=tot L x = x0 ∧ y = y0 M temp := x;x := y; y := temp L x = y0 ∧ y = x0 M

3. |=par Lx = x0 ∧ y = y0 M x := y; y := x L x = y0 ∧ y = x0 M

4. |=tot L x = x0 ∧ y = y0 M x := y; y := x L x = y0 ∧ y = x0 M

5. |=par Lx = x0 Mwhile True x := x + 2 L y = x0! M

6. |=tot L x = x0 Mwhile True x := x + 2 L y = x0! M

http://www.cs.ucc.ie/~dgb/courses/toc.html


Program Verification

The MOCCA . . .

Program Specifications

Partial and Total . . .

Proof

Module Home Page

Title Page

JJ II

J I

Page 15 of 16

Back

Full Screen

Close

Quit

16.5. Proof

• We’re not going to show
|=par LP MC L Q M

We’re going to show
`par L P M C L Q M

i.e. we’re going to use a deduction system. But the deduction system we use is sound
and complete, so |=par and `par coincide.

• We’re not going to show
|=tot LP MC L Q M

We’re going to show
`tot L P M C L Q M

i.e. we’re going to use a deduction system. But the deduction system we use is sound
and complete, so |=tot and `tot coincide.

• So, it’s time to look at the inference rules in the first of the two deduction systems:
the rules for proving partial correctness.

Acknowledgements

My approach to this subject is based heavily on that given in Chapter 4 of [HR00]. I
acknowledge also the strong influence of Mike Gordon’s Specification and Verification I
course notes [Gor].

The diagram comes from [Har92], p.103.

Clip Art (of head with bomb) licensed from the Clip Art Gallery on DiscoverySchool.com.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Program Verification

The MOCCA . . .

Program Specifications

Partial and Total . . .

Proof

Module Home Page

Title Page

JJ II

J I

Page 16 of 16

Back

Full Screen

Close

Quit

References

[Gor] M. Gordon. Specification and Verification I (Course Notes).

[Har92] D. Harel. Algorithmics: The Spirit of Computing. Addison-Wesley, 2nd edition,
1992.

[HR00] M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning
about Systems. Cambridge University Press, 2000.

http://www.cs.ucc.ie/~dgb/courses/toc.html

	Program Verification
	The MO.5exCCA Programming Language
	Program Specifications
	Partial and Total Correctness
	Proof

