

More Derivations
Formal Proof
Soundness and
Informal Proof

Module Home Page		
Title Page		
< ▶		
Page 1 of 6		
Back		
F # C		
Full Screen		
Close		
Close		
Quit		

Lecture 15: Proof

Aims:

- To see more examples of natural deduction;
- To see examples of formal proofs;
- To discuss what we mean by the soundness and completeness of a deduction system;
- To see examples of informal proofs.

More Derivations

Formal Proof

Soundness and . . .

Informal Proof

15.1. More Derivations

• We start with three more examples of what we were doing at the end of the previous lecture.

Show $\{p \Leftrightarrow q, q \Rightarrow \neg r\} \vdash p \Rightarrow \neg r$ Show $\{p \Rightarrow r, q \Rightarrow r, p \lor q\} \vdash r$ Show $\{p \Rightarrow q, \neg q\} \vdash \neg p$

More D	Perivation
Formal	Proof

Soundness and . . .

Informal Proof

15.2. Formal Proof

- A *proof* is a derivation from no premisses. Obviously, they're almost bound to begin with some assumptions!
- E.g. prove that $\vdash p \Rightarrow p$
 - 1. Subderivation:
 - $\begin{array}{ccc} 1.1 & p & \text{assumption} \\ 1.2 & p & 1.1, \text{ repetition} \end{array}$
 - $2. \quad p \Rightarrow p \qquad 1, \Rightarrow \text{-I}$
- Here's another example of a proof. We'll prove that $\vdash ((p \land q) \lor (\neg p \land r)) \Rightarrow (q \lor r)$

1.		
	1.1	
	1.2	
		1.2.1
		1.2.2
		1.2.3
	1.3	
		1.3.1
		1.3.2
		1.3.3
	1.4	
2.		

More Derivations Formal Proof Soundness and ... Informal Proof

15.3. Soundness and Completeness

• A deduction system derives wffs using syntactic operations alone, without reference to the semantics. We could invent a set of inference rules that license even quite bizarre inferences. However, if a deduction system is to be useful, the wffs we can derive from a set of wffs must tie in with logical consequences of that set.

At least two things may go wrong.

• An inference rule might license an inference that is not a logical consequence. For example,

 \Rightarrow -DUFF

$$\frac{W_1 \Rightarrow W_2, W_2}{W_1}$$

We can use this rule to show, e.g., $\{p \Rightarrow q, q\} \vdash p$. But, we know that $\{p \Rightarrow q, q\} \not\models p$. (We showed this earlier. If you can't find it, draw a truth table and confirm it again!)

• An inference rule of this kind is said to be *unsound*. A deduction system that contains such a rule is *unsound*.

An inference rule is *sound* if the conclusions one can infer from any set of wffs using the rule are logical consequences of the set of wffs.

A deduction system is *sound* if it contains only sound inference rules.

• Another thing that may go wrong is that there may be logical consequences of a set of wffs that the deduction system fails to derive.

For example, we know that $\{p \lor q, \neg p\} \models q$. (Confirm it with a truth table if you don't believe it!). But if our deduction system has insufficient inference rules or insufficiently 'powerful' inference rules, it may be that we cannot show that $\{p \lor q, \neg p\} \vdash q$. In this case, the deduction system is said to be *incomplete*.

More Derivations Formal Proof Soundness and . . . Informal Proof

A deduction system is *complete* if every logical consequence of any set of wffs can also be derived from the set of wffs.

• Here's a summary of soundness and completeness.

A deduction system is sound so long as for any set of wffs A and any wff W,

if $A \vdash W$ then $A \models W$

A deduction system is complete so long as for any set of wffs A and any wff W,

if $A \models W$ then $A \vdash W$

• Soundness is essential, but completeness might be sacrificed in Computer Science uses of deduction systems, where the efficiency of the automated deduction system is important.

The soundness and completeness of a deduction system is obviously something that the logician who proposes the system should prove.

• If a deduction system is sound and complete, then for any wff W,

W is valid if and only if $\,\vdash\,W$

i.e. any valid wff will be provable and vice versa. And, for any set of wffs A and wff W,

there will be no interpretation that satisfies all the wffs in A if and only if $A \vdash W \land \neg W$

(When a wff of the form $W \land \neg W$ can be derived from a set of wffs A, we say that A is *inconsistent*.)

More Derivations
Formal Proof
Soundness and
Informal Proof

Module H	ome Page	
Title Page		
Thie Page		
••	\mathbf{P}	
Page 6 of 6		
Deat		
Васк		
Full Screen		
Chur		
Close		
Ouit		

15.4. Informal Proof

• In the correctness proofs that we will be doing soon, we won't be working with propositional symbols (*ps* and *qs*). We will have statements about programs, e.g. statements about the values of the variables in the programs, such as x > 2 or $x = 0 \land y > 10$.

Mostly, we'll need to prove that a conditional holds.

• Suppose we need to prove, e.g., $\vdash x > 5 \Rightarrow x > 0$.

Strictly, in propositional logic this cannot be proved. Think of it written using ps and qs! There are two different statements, linked by a conditional. So you are being asked to prove $\vdash p \Rightarrow q$, which is simply not provable.

But you can't help inspecting the inner details of the two statements and realising, given additionally what you know about arithmetic, that it is provable.

- We will prove such statements in two (informal) ways. (It is up to you to be smart enough to choose which of the two to use in any particular case.)
- Method 1. Use the laws of the algebra of propositions, plus whatever you know about arithmetic, to show the statement is valid (i.e. always true).
- Example. To show \vdash **True** $\Rightarrow x + x = 2x$.
- Method 2. Use the rules of natural deduction, plus whatever you know about arithmetic.
- Example. To show $\vdash x = n \Rightarrow x + 1 = n + 1$.

Acknowledgements

Clip Art (of head with bomb) licensed from the Clip Art Gallery on DiscoverySchool.com.