Classification: k¥ Nearest Neighbours

1 Introduction

Recall that in classification problems, the task is to detidehich of a predefined, finite set of categories an object
belongs.

In this lecture, we look at another classification methoce itethod we look at is known as thenearest-neighbours
or kNN method.

Just as with the probabilistic methods that we looked aténpitevious two lectures, we need a dataset of examples.

Each example describes an instance and gives the class ¢b wibielongs. As before, we’ll assume instances are
described by a set of attribute-value pairs, and there iste it of class labels. So the dataset comprises examples
of the form({A4; = a1, 42 = as, ..., A, = a,},class = cl). For a particular instance, we will refer toz’s value

for attributeA; asz. A;.

In the probabilistic methods that we looked at, the learrsitegp involved computing probabilities from the dataset.
Once this was done, in principle the dataset could be thravay aclassification was done using just the probabilities.

In k-nearest-neighbours, the learning step is trivial: we §irafore the dataset in the system’s memory. Yes, that's it!
In the classification step, we are given an instapftbe query), whose attributes we will refer to@sl; and we wish
to know its class. Ik N N, the class of; is found as follows:

1. Find thek instances in the dataset that are closest to

2. Thesek instances then vote to determine the clasg. of

Ties (whether they arise when finding the closest instarcgsit when voting for the class @) are broken arbitrarily.

In the following visualisation of this method, we assumer¢hare only two attributesl; and A,, and two different
classes (where circles with solid fill represent instanoele dataset of one class and circles with hashed fill reptese
instances in the dataset of the other class). Quésyhere being classified by its 3 nearest neighbours:

Attribute A1

Attribute A2

All that remains to do is discuss how distance is measurethaw the voting works.

2 Distance

2.1 Local distance functions, global distance functions ahweights

A global distance function, dist, can be defined by combining in some way a numbeliocél distance functions,
dist 4, one per attribute.

The easiest way of combining them issiom them:
dist(z, q) =qgef Liz dista, (z.4:, ¢.A;)
More generally, the global distance can be defined asighted sum of the local distances. The weighis allow

different attributes to have different importances in tbenputation of the overall distance. Weights sometimes lie
between zero and one; a weight of zero would indicate a yotadlevant attribute.

dist(z, q) =gef Dieiwi X dista, (.4;, q.A;)

A weighted average is also common:

2P w; x dista, (z.4:, ¢.Ai)
ST

dist(z, q) =qgef

The weights can be supplied by the system designer. Thessarevays of learning weights from a dataset.

What we haven't discussed is how to define the local distameetions. We will exemplify the different definitions
by computing the distance between queandz; andz, below:

T T2 q
sex | female sex | male sex | male
weight | 60 weight | 75 weight | 70
amount | 4 amount | 2 amount | 1
meal | full meal | full meal | snack
duration | 90 duration | 60 duration | 30
class | over class | under class | ?

The attributes and their values are: sex (male/female)ghtdbetween 50 and 150 inclusive), amount of alcohol
consumed in units (1-16 inc.), last meal consumed todaygnamack or full meal), and duration of drinking session
(20-320 minutes inc.). The classes are: over or under timé driving limit.

2.2 Hamming distance

The easiest local distance function, known asotreel ap function, returns 0 if the two values are equal and 1 otherwise:

. 0 ifz.A=qA
dista(z.4,4.4) :def{ 1 otherwisg.

If the global distance function is defined as the sum of thalldistances, then we're simply counting the number
of attributes on which the two instances disagree. This liegt&lamming distance. Weighted sums and weighted
averages are also possible.

Class Exercise What is the Hamming distance betweenandq and between, andg?



2.3 Manhattan distance for numeric attributes

If an attribute is numeric, then the local distance functian be defined as thabsol ute difference of the values:

dista(z.4,q.4) =geflz.A — ¢. A

If the global distance is computed as the sum of these lostdnites, then we refer to it as thkanhattan distance.
Weighted sums and weighted averages are also possible.

One weakness of this kind of scheme is that if one of the atgibhas a relatively large range of possible values,
then it can overpower the other attributes. In the exampie might be the case wittiuration relative toweight and
amount. Therefore, local distances are ofteormalised so that they lie in the rang@. .. 1. There are many ways to
normalise, some being better-motivated than others. Foplaiity, we will look at only one. We will divide by the
range of permissible values:
B |z. A — q.A|

def Amax - Am'n
where A is the largest possible value for attribute and Anin is its smallest possible value. We'll call this the
range-nor malised absolute difference.

dista(z.4,q.A)

The other weakness of this scheme, of course, is that it casdmtonly on numeric attributes.

2.4 Heterogeneous local distance functions

We can combine absolute distances and the overlaps in artiantdle both numeric and symbolic attributes:

|z A-qAl i g ;
G i, If Als numeric

dista(2.4,q.A) =gef 0 if Aissymbolicand:.A = q.A
1 otherwise.

As usual, the global distance can be computed as a sum, wdighin or weighted average of the local distances.

Class Exercise Taking a sum of local distances defined heterogeneously,iwktze distance between andq?

2.5 Knowledge-intensive distance functions

Human experts can sometimes define domain-specific loci@ndis functions, especially for symbolic-valued at-
tributes. In this way, they can bring their prior knowledgéear.

A simple but common example is when there is already somédodaring defined over the values of the symbolic
attribute. For example, the last meal a person ate has vatmessnack andfull. These can be thought of as totally
ordered by the amount of food consumed:

none < snack < full

We can assign integers to the values in a way that respectsdieng:none = 0, snack = 1 andfull = 2. Now, we
can use a range-normalised absolute difference functidhese integers. So, for example,

0—-1
distmea (NONe, snack) = % =0.5
0—-2
distmea (None, full) = % =1

Class Exercise.Let the weights fosex, weight, amount, meal andduration be 4, 3, 5, 1 and 2 respectively. Taking
a weighted sum of local distances defined heterogeneoulBreatistme is defined as above, what is the distance
betweenr, andq?

To explore this idea a bit further, we’ll invent another ibitite, one that wasn’t present in the original datatsge,

with values{lager, stout, whiteWine, redWine, whisky, vodka}, to denote the main kind of beverage the person has
been drinking. We'll look at a variety of ways of defining sokr@wledge-intensive local distance functions for this
attribute.

One possibility, of course, is to define a total orderinggloigserhaps on alcohol content, e.g.:
lager < stout < whiteWine < redWine < whisky < vodka
and then to assign consecutive integers and compute a remgelised absolute difference. Hence, e.g.,

. 1-4
distyype(stout, whisky) = % =0.6

Another possibility is to define axonomy (class hierarchy) of beverage types, such as the following:

alcoholicDrink

B

beer wine spirit
light dark  redWine whiteWine whisky vodl
lager stout

Based on distances in this tree, we can again compute rasrgeatised distances. For example,

5

distiype(stout, whisky) = — 5
5 _

=1.0

The final approach that we will consider is simply to enumegditthe distances in a matrix. This allows the designers
to use whatever distances they feel make sense in their doniNote that, since the diagonal of the matrix will
represent the distance between a value and itself, it shmililled in with zeros. And, assuming that distance is
symmetric, the lower triangle will be a reflection along thiagonal of the upper triangle.

We have looked at only three ways of defining a distance fandtirtype. For other attributes there could be numerous
other domain-specific approaches.

3 Voting

Once we have obtainegs k-nearest-neighbours using the distance function, it ig tior the neighbours to vote in
order to predict’s class. Two approaches are common.



Majority voting: In this approach, all votes are equal.

For each class! € L, we count how many of thé neighbours have that class. We return the class with the
most votes.

Inverse distance-weighted voting:In this approach, closer neighbours get higher votes.

While there are better-motivated methods, the simplesioeis to take a neighbour’s vote to be the inverse of
its distance ta:
oo if dist(z;,q) =0
vote(x:) =def { —1L1__ otherwise
dist(z1,9)

Then we sum the votes and return the class with the highest vot

Class Exercise.Supposeé: = 3 andg's 3-nearest-neighbours from the dataset are instanges;; andzss. (For
conciseness, | won't show their attribute-values — they'areeeded at this step anyway.) Here are their classes and
the distances we computed:

neighbour class dist
x7 under 0.2

r3s over 0.5

r3s over 0.4

What isq’s predicted class using (a) majority voting, and (b) ineedstance-weighted voting?

There are numerous other voting schemes. Human experts evigh define a domain-specific scheme. For example,
in spam-filtering, the cost of misclassifying ham as spamefwlegitimate email ends up in your spam folder) is
higher than the cost of misclassifying spam as ham (when gpais up in your in-box). A domain-specific voting
scheme might be defined to skew the classifier away from theeokind of error. For example, we could predict
class = spamif all & neighbours votgpam; otherwise, we would predictass = ham.

4 Usingk-Nearest-Neighbours for Other Tasks

We've been looking at classification. Bk#nearest-neighbours is useful for other tasks too.

4.1 Regression

In classification, there is a finite set of class labefsom which we must choose. In regression, the task is, gien t
description of an object, to predict a real value.

Examples abound: from meteorological data, predict toowos rainfall; from information about a software project,
predict how long it will take to complete; from informatiobaut stock market movements, predict the value that my
shares will have by close of business tomorrow.

In regression, the dataset comprises examples of the foAn = a1, A = ao, ..., A, = a,}, value = r), wherer
is a real number. The only part bfnearest-neighbours that needs changing is the voting.

In other words, again we find thieinstances in the dataset that are closest ttlow we must use thewalues to
predictg’s value. While there may be better-motivated approaches, the sshppproach is to take the mean of the
neighboursvalues.

Class Exercise.Suppose our drinkers dataset no longer contairiass for each instanceoger or under). Instead, it
specifies the blood alcohol content (BAC) of the person, aasumed by a breathalyser. This will be a real in the range
0...100 (a percentage).

Supposé: = 3 andg’s 3-nearest-neighbours from the dataset are instances;; andzss. Here are their BACs and
the distances we computed:

neighbour BAC dist

z7 20 0.2
z3s 60 0.5

What isqg’s predicted BAC?

Don'’t go away with the idea that regression is something #féfV methods can do that naive Bayesian methods
cannot: it is just as possible to apply naive Bayesian nuatho regression problems. In fact, neither is likely to be
the best method to use for regression!

4.2 Product recommendation

If there is time in the lecture, we will see hdwN N can be used within product recommender systems.

Exercise

The Pants Pizza Parlour sells pizzas with optional toppings: pepperoni, pineajpple pickled onion. Every day this
week you have tried a pizza (A to E) and kept a record of whiahlik@d:

| pepperoni  pineapple pickledOnion | liked

A true true true false
B true false false true
C false true true false
D false true false true
E true false false true

1. Show how the naive Bayes classifier would clas§ifgpperoni = true pineapple = true pickledOnion =
false}.

2. Are pineapple = true andpickledOnion = true conditionally independent givéiked = false? Show your
working.

3. Using Hamming distance throughout,

(a) show how thel NN classifier would classify{pepperoni = false pineapple = false pickledOnion =
true};

(b) show how the3N N classifier with majority voting would classifypepperoni = false pineapple
true pickledOnion = true}; and

(c) showhowth&N N classifier with inverse distance-weighted voting wouldsiy { pepperoni = false pineapple =
true pickledOnion = true}.



