
Classification: k Nearest Neighbours

1 Introduction

Recall that in classification problems, the task is to decideto which of a predefined, finite set of categories an object
belongs.

In this lecture, we look at another classification method. The method we look at is known as thek-nearest-neighbours
or kNN method.

Just as with the probabilistic methods that we looked at in the previous two lectures, we need a dataset of examples.
Each example describes an instance and gives the class to which it belongs. As before, we’ll assume instances are
described by a set of attribute-value pairs, and there is a finite set of class labelsL. So the dataset comprises examples
of the form〈{A1 = a1, A2 = a2, . . . , An = an}, class = cl〉. For a particular instancex, we will refer tox’s value
for attributeAi asx.Ai.

In the probabilistic methods that we looked at, the learningstep involved computing probabilities from the dataset.
Once this was done, in principle the dataset could be thrown away; classification was done using just the probabilities.

In k-nearest-neighbours, the learning step is trivial: we simply store the dataset in the system’s memory. Yes, that’s it!

In the classification step, we are given an instanceq (the query), whose attributes we will refer to asq.Ai and we wish
to know its class. InkNN , the class ofq is found as follows:

1. Find thek instances in the dataset that are closest toq.

2. Thesek instances then vote to determine the class ofq.

Ties (whether they arise when finding the closest instances to q or when voting for the class ofq) are broken arbitrarily.

In the following visualisation of this method, we assume there are only two attributesA1 andA2, and two different
classes (where circles with solid fill represent instances in the dataset of one class and circles with hashed fill represent
instances in the dataset of the other class). Queryq is here being classified by its 3 nearest neighbours:

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���

���
���
���
���

q

Attribute A1

Attribute A2

k = 3

All that remains to do is discuss how distance is measured, and how the voting works.

1

2 Distance

2.1 Local distance functions, global distance functions and weights

A global distance function, dist, can be defined by combining in some way a number oflocal distance functions,
distA, one per attribute.

The easiest way of combining them is tosum them:

dist(x, q) =def Σ
n
i=1 distAi

(x.Ai, q.Ai)

More generally, the global distance can be defined as aweighted sum of the local distances. The weightswi allow
different attributes to have different importances in the computation of the overall distance. Weights sometimes lie
between zero and one; a weight of zero would indicate a totally irrelevant attribute.

dist(x, q) =def Σ
n
i=1wi × distAi

(x.Ai, q.Ai)

A weighted average is also common:

dist(x, q) =def
Σn

i=1wi × distAi
(x.Ai, q.Ai)

Σn
i=1wi

The weights can be supplied by the system designer. There arealso ways of learning weights from a dataset.

What we haven’t discussed is how to define the local distance functions. We will exemplify the different definitions
by computing the distance between queryq andx1 andx2 below:

x1

sex female
weight 60

amount 4
meal full

duration 90
class over

x2

sex male
weight 75

amount 2
meal full

duration 60
class under

q

sex male
weight 70

amount 1
meal snack

duration 30
class ?

The attributes and their values are: sex (male/female), weight (between 50 and 150 inclusive), amount of alcohol
consumed in units (1-16 inc.), last meal consumed today (none, snack or full meal), and duration of drinking session
(20-320 minutes inc.). The classes are: over or under the drink driving limit.

2.2 Hamming distance

The easiest local distance function, known as theoverlap function, returns 0 if the two values are equal and 1 otherwise:

distA(x.A, q.A) =def

{

0 if x.A = q.A

1 otherwise.

If the global distance function is defined as the sum of the local distances, then we’re simply counting the number
of attributes on which the two instances disagree. This is called Hamming distance. Weighted sums and weighted
averages are also possible.

Class Exercise.What is the Hamming distance betweenx1 andq and betweenx2 andq?

2

2.3 Manhattan distance for numeric attributes

If an attribute is numeric, then the local distance functioncan be defined as theabsolute difference of the values:

distA(x.A, q.A) =def |x.A − q.A|

If the global distance is computed as the sum of these local distances, then we refer to it as theManhattan distance.
Weighted sums and weighted averages are also possible.

One weakness of this kind of scheme is that if one of the attributes has a relatively large range of possible values,
then it can overpower the other attributes. In the example, this might be the case withduration relative toweight and
amount. Therefore, local distances are oftennormalised so that they lie in the range0 . . . 1. There are many ways to
normalise, some being better-motivated than others. For simplicity, we will look at only one. We will divide by the
range of permissible values:

distA(x.A, q.A) =def
|x.A − q.A|

Amax − Amin

whereAmax is the largest possible value for attributeA, andAmin is its smallest possible value. We’ll call this the
range-normalised absolute difference.

The other weakness of this scheme, of course, is that it can beused only on numeric attributes.

2.4 Heterogeneous local distance functions

We can combine absolute distances and the overlaps in order to handle both numeric and symbolic attributes:

distA(x.A, q.A) =def

|x.A−q.A|
Amax−Amin

if A is numeric
0 if A is symbolic andx.A = q.A

1 otherwise.

As usual, the global distance can be computed as a sum, weighted sum or weighted average of the local distances.

Class Exercise.Taking a sum of local distances defined heterogeneously, what is the distance betweenx1 andq?

2.5 Knowledge-intensive distance functions

Human experts can sometimes define domain-specific local distance functions, especially for symbolic-valued at-
tributes. In this way, they can bring their prior knowledge to bear.

A simple but common example is when there is already some total ordering defined over the values of the symbolic
attribute. For example, the last meal a person ate has valuesnone, snack andfull. These can be thought of as totally
ordered by the amount of food consumed:

none < snack < full

We can assign integers to the values in a way that respects theordering:none = 0, snack = 1 andfull = 2. Now, we
can use a range-normalised absolute difference function onthese integers. So, for example,

distmeal(none, snack) =
|0 − 1|

2 − 0
= 0.5

distmeal(none, full) =
|0 − 2|

2 − 0
= 1

3

Class Exercise.Let the weights forsex, weight, amount, meal andduration be 4, 3, 5, 1 and 2 respectively. Taking
a weighted sum of local distances defined heterogeneously, wheredistmeal is defined as above, what is the distance
betweenx2 andq?

To explore this idea a bit further, we’ll invent another attribute, one that wasn’t present in the original dataset,type,
with values{lager, stout, whiteWine, redWine, whisky, vodka}, to denote the main kind of beverage the person has
been drinking. We’ll look at a variety of ways of defining someknowledge-intensive local distance functions for this
attribute.

One possibility, of course, is to define a total ordering, based perhaps on alcohol content, e.g.:

lager < stout < whiteWine < redWine < whisky < vodka

and then to assign consecutive integers and compute a range-normalised absolute difference. Hence, e.g.,

disttype(stout, whisky) =
|1 − 4|

5 − 0
= 0.6

Another possibility is to define ataxonomy (class hierarchy) of beverage types, such as the following:

alcoholicDrink

beer wine spirit

light dark redWine whiteWine whisky vodka

lager stout

Based on distances in this tree, we can again compute range-normalised distances. For example,

disttype(stout, whisky) =
5

5 − 0
= 1.0

The final approach that we will consider is simply to enumerate all the distances in a matrix. This allows the designers
to use whatever distances they feel make sense in their domain. Note that, since the diagonal of the matrix will
represent the distance between a value and itself, it shouldbe filled in with zeros. And, assuming that distance is
symmetric, the lower triangle will be a reflection along thisdiagonal of the upper triangle.

We have looked at only three ways of defining a distance function fortype. For other attributes there could be numerous
other domain-specific approaches.

3 Voting

Once we have obtainedq’s k-nearest-neighbours using the distance function, it is time for the neighbours to vote in
order to predictq’s class. Two approaches are common.

4

Majority voting: In this approach, all votes are equal.

For each classcl ∈ L, we count how many of thek neighbours have that class. We return the class with the
most votes.

Inverse distance-weighted voting:In this approach, closer neighbours get higher votes.

While there are better-motivated methods, the simplest version is to take a neighbour’s vote to be the inverse of
its distance toq:

vote(xi) =def

{

∞ if dist(xi, q) = 0
1

dist(xi,q)
otherwise

Then we sum the votes and return the class with the highest vote.

Class Exercise.Supposek = 3 andq’s 3-nearest-neighbours from the dataset are instancesx7, x35 andx38. (For
conciseness, I won’t show their attribute-values — they aren’t needed at this step anyway.) Here are their classes and
the distances we computed:

neighbour class dist
x7 under 0.2

x35 over 0.5
x38 over 0.4

What isq’s predicted class using (a) majority voting, and (b) inverse distance-weighted voting?

There are numerous other voting schemes. Human experts might even define a domain-specific scheme. For example,
in spam-filtering, the cost of misclassifying ham as spam (when legitimate email ends up in your spam folder) is
higher than the cost of misclassifying spam as ham (when spamends up in your in-box). A domain-specific voting
scheme might be defined to skew the classifier away from the former kind of error. For example, we could predict
class = spam if all k neighbours votespam; otherwise, we would predictclass = ham.

4 Usingk-Nearest-Neighbours for Other Tasks

We’ve been looking at classification. Butk-nearest-neighbours is useful for other tasks too.

4.1 Regression

In classification, there is a finite set of class labelsL from which we must choose. In regression, the task is, given the
description of an object, to predict a real value.

Examples abound: from meteorological data, predict tomorrow’s rainfall; from information about a software project,
predict how long it will take to complete; from information about stock market movements, predict the value that my
shares will have by close of business tomorrow.

In regression, the dataset comprises examples of the form〈{A1 = a1, A2 = a2, . . . , An = an}, value = r〉, wherer

is a real number. The only part ofk-nearest-neighbours that needs changing is the voting.

In other words, again we find thek instances in the dataset that are closest toq. Now we must use theirvalues to
predictq’s value. While there may be better-motivated approaches, the simplest approach is to take the mean of the
neighbours’values.

Class Exercise.Suppose our drinkers dataset no longer contains aclass for each instance (over or under). Instead, it
specifies the blood alcohol content (BAC) of the person, as measured by a breathalyser. This will be a real in the range
0 . . . 100 (a percentage).

5

Supposek = 3 andq’s 3-nearest-neighbours from the dataset are instancesx7, x35 andx38. Here are their BACs and
the distances we computed:

neighbour BAC dist
x7 20 0.2

x35 60 0.5
x38 40 0.4

What isq’s predicted BAC?

Don’t go away with the idea that regression is something thatkNN methods can do that naı̈ve Bayesian methods
cannot: it is just as possible to apply naı̈ve Bayesian methods to regression problems. In fact, neither is likely to be
the best method to use for regression!

4.2 Product recommendation

If there is time in the lecture, we will see howkNN can be used within product recommender systems.

Exercise

ThePants Pizza Parlour sells pizzas with optional toppings: pepperoni, pineappleand pickled onion. Every day this
week you have tried a pizza (A to E) and kept a record of which you liked:

pepperoni pineapple pickledOnion liked
A true true true false
B true false false true
C false true true false
D false true false true
E true false false true

1. Show how the naı̈ve Bayes classifier would classify{pepperoni = true, pineapple = true, pickledOnion =
false}.

2. Are pineapple = true andpickledOnion = true conditionally independent givenliked = false? Show your
working.

3. Using Hamming distance throughout,

(a) show how the1NN classifier would classify{pepperoni = false, pineapple = false, pickledOnion =
true};

(b) show how the3NN classifier with majority voting would classify{pepperoni = false, pineapple =
true, pickledOnion = true}; and

(c) show how the3NN classifier with inverse distance-weighted voting would classify{pepperoni = false, pineapple =
true, pickledOnion = true}.

6

