
Planning and Acting in Nondeterministic Domains

So far, we’ve been looking atclassical planning. To repeat, classical planners make at least the following assumptions:

• The planner has complete and certain knowledge of (relevant portions of) the initial world state;

• each action will be executed infallibly;

• there are no other agents in the execution environment whose actions would interfere with execution of the plan.

These are pretty unrealistic assumptions.

Non-classical plannersare ones that abandon one or more of these assumptions. We aregoing to focus here on
abandoning the second assumption. However, the techniqueswe look at can be very helpful in domains in which the
first and third assumptions also do not pertain.

There are two main families of techniques, and which you adopt and when depends on how much indeterminacy there
is in the domain.

Bounded indeterminacy: Actions can have unpredictable effects, but the possible effects are known and sufficiently
few in number that they can be listed in the operator. For example, the possible outcomes of tossing a coin
areHeadsor Tails. To cope with bounded indeterminacy, the agent can make a plan that works for all possible
outcomes. The main technique here isconditional planning.

Unbounded indeterminacy: Actions can have unpredictable effects, and the full set of possible effects is either un-
known or too large to be enumerated in an operator. For example, many of the actions that you take when driving
a car exhibit unbounded indeterminacy. The main techniqueshere areexecution monitoringandreplanning.

Of course, some domains have both kinds of indeterminacy, and so you would need to integrate both conditional
planning and execution monitoring & replanning into a single system.

1 Conditional Planning

Conditional planning, also known ascontingency planning, deals with bounded indeterminacy by allowing operators
to havedisjunctive effectsand building plans that contain different branches for different eventualities. This implies
also that the plan containssensing actionswhich, when executed, enable the agent to decide which branch of the plan
to follow.

Here is the specification of a coin tossing operator with disjunctive effects:

Op(ACTION: tossCoin(x),
PRECOND: haveCoin(x),
EFFECT: landsHeads(x) ∨ landsTails(x))

But we can also use disjunctive effects for operators that might go wrong: one set of effects will be when the operator
executes correctly (e.g. the block is now no longer on top of another block, it is now in the robot’s hand) and the other
set of effects will be for when the operator is executed clumsily (e.g. the block is no longer on top of another block,
but it isn’t in the robot’s hand either, since it was dropped,and so now it is on the table):

Op(ACTION: unstack(x, y),
PRECOND: on(x, y) ∧ clear(x) ∧ armempty,
EFFECT: ¬on(x, y) ∧ clear(y) ∧

((¬armempty∧ ¬clear(x) ∧ holding(x)) ∨
ontable(x)))

1

We can also use operators with disjunctive effects for operators that discover information about the world. For example,
if we execute an operator that tries turning a door handle, wewill know whether the door is locked or not:

Op(ACTION: checkDoor(x),
PRECOND: atDoor(x) ∧ ¬knowIf(locked(x)),
EFFECT: know(locked(x)) ∨ know(¬locked(x)))

(The observant amongst you will note that the above is not strictly first-order predicate logic since it allows wffs to be
arguments of predicate symbols. But, it serves our purposeshere: an illustration of a disjunctive effect.)

Conditional plans contain conditional steps. We will writethese using the syntaxif testthen PlanAelse PlanB, where
testis a Boolean function that tests the state of the world. For example, we might have a plan that comprises two steps:
a step for tossing coin a, and then a conditional step:

tossCoin(a)
if landsHeads(a)then goRight()else goLeft()

By nesting conditional steps, plans become trees.

We won’t look at a conditional planning algorithm. Instead,we’ll content ourselves with a few further observations.

A single plan will now have multiple paths through it and, strictly, a plan is not finished unlessall paths lead to
satisfaction of the goal. In other words, a conditional planmust reach a goal state regardless of which outcomes
actually occur.

But, this leads to a problem. There can be an ‘explosion’ of paths. (A sequence ofn disjunctive operators, each having
just two alternative effects, gives2n paths.) We cannot in fact plan for every eventuality. Instead, we must focus on the
most likely eventualities and plan for these. This requiresthat we use probability information to constrain the planning
algorithm.

2 Execution Monitoring and Replanning

Imagine that an agent has built a plan using any of the ideas that we have discussed so far (partial-order planning,
hierarchical planning, conditional planning, or some mixture of these). How can it now cope with unbounded indeter-
minacy?

While executing the plan, the agent can also engage inexecution monitoringto determine whether the current state
of the world is as the plan says it should be. Why might the world not be in the state that the plan says it should
be? Perhaps execution of the previous action did not have itsexpected effects because it was fumbled; or perhaps
some other agent has been executing actions that interfere with our agent’s. In fact, there are two kinds of execution
monitoring:

• Action monitoring:Before executing the next step, the agent uses its sensors tocheck that the preconditions of
that step are, indeed, true (as the plan expects them to be).

• Plan monitoring:Before executing the next step, the agent uses its sensors tocheck that the preconditions for
the entire remaining plan are true (i.e. it checks all preconditions, except those that are achieved by another
remaining step in the plan). (Of course, in practice, you don’t want your agent to spend too much time sensing
and checking preconditions. You have to check just those that are important and readily-checked.)

Replanningoccurs when something goes wrong. The agent invokes the planner again to come up with a revised plan
to reach the goal. Often, the most efficient way to come up withthe revised plan is torepair the old plan, i.e. to find a
way from the current, unexpected state of the world back ontothe plan.

2

3 Continuous Planning

In execution monitoring and replanning, there is a tighter integration of planning and execution. Rather than looking
further at execution monitoring and replanning, we’ll lookat an even more general approach, known ascontinuous
planning. It has a tight integration of planning and execution. It doesn’t engage in identifiably separate planning
episodes. It can begin execution of partial plans, before they are complete. And it can continuously formulate new
goals, which means that it’s plan may never be complete.

We can readily extend POP to be a continuous planner.1 When we extended POP for hierarchical planning, all we
needed to do was add a new way of refining plans. And the same is true here. The algorithm is just a loop, and each
time round the loop we pick one of the plan refinement operators of which there are now 10 (excluding decomposition
of abstract operators):

Make the initial plan, i.e. the one that contains only theStart andFinish steps.
while true
{ Choose one of the following:

1. Achieve an unachieved precondition by adding a new step.
2. Achieve an unachieved precondition using an existing step.
3. Protect a link by promotion.
4. Protect a link by demotion.
5. New goal:Add a new goal to theFinish step.
6. Unsupported link:If there is a causal linkStart c

−→ a, wherec is
no longer true inStart, then remove the link. This prevents us
from executing an action whose preconditions are false.

7. Extending a causal link:If sj
c

−→ sk, but there is an earlier stepsi ≺ sj

which could also achieve conditionc, without introducing a new conflict,
then removesj

c
−→ sk and insertsi

c
−→ sk.

(This refinement allows us to take advantage of serendipitous events.)
8. Redundant action:If an actiona is the source of no causal links,
then removea from the plan. It serves no purpose.

9. Execute an unexecuted action:If an actiona (other thanFinish)
has its preconditions satisfied byStart, has no actions
(other thanStart) ordered before it and conflicts with no causal
links, then removea from the plan and execute it.

10. Unnecessary historical goal:If there are no unachieved preconditions
and no actions (other thanStart andFinish), then we have
achieved the current goal set. Remove the goals, and await new ones.

}

Here’s a running example. To make the example more manageable, we will allow ourselves to use amoveoperator,
which moves a block to another. This avoids the need to separately unstack and stack, so it makes the example less
cluttered. For the same reasons, we’re also going to omit allmention of thearmemptyprecondition.

Here is the operator:

Op(ACTION: move(x, z),
PRECOND: clear(x) ∧ clear(z) ∧ on(x, y),
EFFECT: on(x, z) ∧ ¬clear(z) ∧ clear(y) ∧ ¬on(x, y))

1This formulation of continuous planning, and the example, are based on section 12.6 in S.Russell and P.Norvig,Artificial Intelligence: A
Modern Approach(2nd edn.), Prentice-Hall, 2003.

3

Suppose the start state is like this:

a
b c d
e f g

Suppose the goal ison(c, d) ∧ on(d, b).

The agent starts to plan. We’ll assume that it constructs thefollowing complete plan, without doing any execution:

Start
on(d, g)
on(c, f)
on(b, e)
ontable(a)

clear(a)
clear(c)
clear(d)
clear(b) MOVE(d, b)

on(d, g)
clear(d)
clear(b)

MOVE(c, d)
on(c, f)
clear(c)
clear(d)

Finish
on(c, d)
on(d, b)

The agent is about to execute the first step of the plan. But before it can even choose this step, another agent intervenes!
The other agent (quite helpfully in this case) moves d onto b.The world is now like this:

a
b c
e f g

d

Our agent perceives this. It recognises thatclear(b) andon(d, g) are no longer true in the current state, so it updates

the effects of theStart step. This also means that causal linksStart
clear(b)
−→ move(d, b) andStart

on(d,g)
−→ move(d, b) are

invalid so they are removed (seeUnsupported linkin the algorithm):

Start
on(d, b)
on(c, f)
on(b, e)
ontable(a)

clear(a)
clear(c)
clear(d)
clear(g) MOVE(d, b)

on(d, y)
clear(d)
clear(b)

MOVE(c, d)
on(c, f)
clear(c)
clear(d)

Finish
on(c, d)
on(d, b)

The plan is now incomplete. It now has two unachieved preconditions,on(d, y) andclear(b).

move(d, b) was being used to achieve goalon(d, b). But we now notice that, as a result of the ‘helpful’ interference of

the other agent, an earlier step in the plan (in this case,Start) can achieve this goal. So we replacemove(d, b)
on(d,b)
−→

Finish by Start
on(d,b)
−→ Finish (seeExtending a causal linkin the algorithm).

And we can now remove actionmove(d, b) from the plan entirely (seeRedundant actionin the algorithm):

4

Start
on(d, b)
on(c, f)
on(b, e)
ontable(a)

clear(a)
clear(c)
clear(d)
clear(g)

MOVE(c, d)
on(c, f)
clear(c)
clear(d)

Finish
on(c, d)
on(d, b)

This time round the loop, the agent realises thatmove(c, d) can be executed (Execute an unexecuted actionin the
algorithm). The step will be deleted from the plan.

Unfortunately, the agent is clumsy. While executing the move of c to d, it drops c onto a, instead of d. The current
state is therefore now as follows:

a
b
e f g

d
c

So the plan now looks like this:

Start
on(d, b)
on(c, a)
on(b, e)
ontable(a)

clear(f)
clear(c)
clear(d)
clear(g)

Finish
on(c, d)
on(d, b)

The plan is therfore still incomplete: there remains an unachieved precondition,on(c, d).

So the agent does some more planning (using goal achievement, as in normal POP), and obtains:

Start
on(d, b)
on(c, a)
on(b, e)
ontable(a)

clear(f)
clear(c)
clear(d)
clear(g)

MOVE(c, d)
on(c, a)
clear(c)
clear(d)

Finish
on(c, d)
on(d, b)

Again,move(c, d) is ready to be executed (seeExecute an unexecuted action). Suppose this time it works correctly, so
the new state of the world is:

a
b
e f g

d
c

5

The action is deleted from the plan, and the results of sensing the world are used to update the effects of theStart step,
and these now directly achieve the preconditions ofFinish:

Start
on(d, b)
on(c, d)
on(b, e)
ontable(a)

clear(f)
clear(c)
clear(a)
clear(g)

Finish
on(c, d)
on(d, b)

We can now delete the two goal conditions (seeUnnecessary historical goalin the algorithm). And we are done. Of
course, in practice, new goals are always being formulated and added to the preconditions ofFinish (seeNew goalin
the algorithm), and so this process continues indefinitely.

The system we have just described is very flexible. And you cansee how extensible it is: it is easy to add new
ideas, simply by incorporating new plan refinement operators. For example, one nice idea is to bring in the idea of
hierarchical decomposition. The idea might be to use abstract operators whenever possible and to defer decomposition
so that it is only done immediately prior to execution time. The high level plan ensures that we have done enough
thinking ahead. But deferral of decomposition means that weonly come up with detailed actions when we know what
the world is actually like.

6

