
Classification: Bayesian Methods

1 Bayes’ Rule

Bayes’ rule states:

P (B = bj |A = ai) =
P (A = ai|B = bj)P (B = bj)

P (A = ai)

Bayes’ rule is useful in practice because there are many cases where we do have estimates of the three probabilities
needed to compute the fourth.

For example, a doctor may know that: meningitis causes the patient to have a stiff neck 50% of the time; the (uncon-
ditional) probability that a patient has meningitis is 0.00002; and the (unconditional) probability that a patient hasa
stiff neck is 0.05.

P (stiffNeck= true|meningitis= true) = 0.5

P (meningitis= true) = 0.00002

P (stiffNeck= true) = 0.05

By Bayes’ rule,

P (meningitis= true|stiffNeck= true) =
P (stiffNeck= true|meningitis= true)P (meningitis= true)

P (stiffNeck= true)

=
0.5 × 0.00002

0.05
= 0.0002

i.e. we expect 1 in 5000 patients who have a stiff neck will have meningitis.

An obvious question is: why might we be likely to have an estimated conditional probability in one direction, but
not the other? Why might we have an estimate ofP (stiffNeck= true|meningitis= true) but not ofP (meningitis=
true|stiffNeck= true)? The former (the probability of a stiff neck given that the patient has meningitis) reflects the
way that meningitis works, i.e. that it causes stiff necks. This probability estimate is therefore largely unaffected by
changing circumstances. The latter (the probability that the patient has meningitis given that s/he has a stiff neck —
in other words how predictive a stiff neck is of meningitis),is more fragile knowledge: it depends on all the other,
possibly changing, factors that affect why people are getting stiff necks.

2 Using Bayes’ Rule in Classification

Recall from earlier that to classify a new instance, we do thefollowing:

1. For each class labelcl ∈ L, compute the conditional probability for that class given the description of the new
instance:

P (class= cl|A1 = a1, A2 = a2, . . . , An = an)

2. Return the class label with the highest probability.

Previously, we computed the conditional probability from the joint probability distribution. But we are now assuming
that this distribution is not available. But we can use Bayes’ rule to rewrite the expression so that it uses probabilities
that might be available:

P (class= cl|A1 = a1, A2 = a2, . . . , An = an) =

P (A1 = a1, A2 = a2, . . . , An = an|class= cl)P (class= cl)

P (A1 = a1, A2 = a2, . . . , An = an)
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Do we have these three probabilities?

• We can easily estimateP (class= cl) from a dataset.

• As we saw in the previous lecture, we don’t really need the divisor because it will be the same in every compu-
tation, i.e. for eachcl ∈ L.

• But there is a problem when it comes to the conditional probabilities P (A1 = a1, A2 = a2, . . . , An =
an|class = cl). Again, the approach doesn’t scale up. The number of conditional probabilities we need to
have estimated is the number of possible instance descriptions multiplied by the number of classes. This will
often be too large. To see this by way of an example, let’s assume alln attributes are Boolean-valued; the num-
ber of different instance descriptions is then2n. We would need to estimate2n × |L| conditional probabilities.
We might as well go back to using the full joint probability distribution.

How can we rescue ourselves?

3 Bayesian Classification using the Näıve Bayes Distribution

In classification above, we had the problem of obtaining probabilitiesP (A1 = a1, A2 = a2, . . . , An = an|class= cl).
Maybe the notions of independence or conditional independence can help.

It is unlikely that statements about the attributes that describe instances will be independent, i.e. it is unlikely that
A1 = a1 andA2 = a2 and . . . andAn = an are independent.

But it may be the case that they are conditionally independent givenclass= cl. If so, we can rewrite:

P (A1 = a1, A2 = a2, . . . , An = an|class= cl) =

P (A1 = a1|class= cl) × P (A2 = a2|class= cl) × . . . × P (An = an|class= cl)

So, to recap, what we want to compute is:

P (class= cl|A1 = a1, A2 = a2, . . . , An = an)

which, by Bayes’ rule, becomes

=
P (A1 = a1, A2 = a2, . . . , An = an|class= cl) × P (class= cl)

P (A1 = a1, A2 = a2, . . . , An = an)

and, if the attributes are conditionally independent giventhe class, we get

=
P (A1 = a1|class= cl) × P (A2 = a2|class= cl) × . . . × P (An = an|class= cl) × P (class= cl)

P (A1 = a1, A2 = a2, . . . , An = an)

Is it now more feasible to obtain the probabilities?

• As above, we can easily estimateP (class= cl) from a dataset.

• As above, in classification we don’t really need the divisor.

• Due to conditional independence, we no longer needP (A1 = a1, A2 = a2, . . . , An = an|class= cl) for each
class. Instead, we needP (A1 = a1|class= cl), P (A2 = a2|class= cl), . . . , P (An = an|class= cl) for
each class. These are easily computed from datasets. Are there fewer probabilities to estimate? Yes! Consider
n Boolean-valued attributes and|L| classes. Originally, we needed2n × |L| conditional probabilities. Now we
need2n × |L| conditional probabilities.
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Of course, this all relies on the attribute-value pairs being conditionally independent given the class. However, this
approach is often used even when the attribute-value pairs are not conditionally independent. It can work surprisingly
well, even in these applications. Classifiers that work thisway are often callednäıve Bayes classifiers: they are ‘naı̈ve’
because of the simplifying assumption.

4 Summary of Näıve Bayes Classifiers

Learning step. This requires a dataset. For each instance, the dataset mustgive the instance’s attribute values and its
class. Learning that uses data of this kind (i.e. where each instance is already associated with its corresponding
output) is calledsupervised learning. This is a phrase we will define properly in a future lecture.

From the dataset, we must estimate

• P (class= cl) for each classcl ∈ L.

• P (A = ai|class= cl) for each attribute-value pairA = ai and classcl ∈ L.

Classification step.A new instance{A1 = a1, A2 = a2, . . . , An = an} is classified as follows:

1. Compute, for each classcl ∈ L,

P (class= c|A1 = a1, A2 = a2, . . . , An = an)

which, by Bayes’ rule and the simplifying assumption of conditional independence, is computed as

=
P (A1 = a1|class= cl) × P (A2 = a2|class= cl) × . . . × P (An = an|class= cl) × P (class= cl)

P (A1 = a1, A2 = a2, . . . , An = an)

(And, remember, we don’t need the divisor.)

2. Return the class label with the highest probability.

The learning step is done once-and-for-all, in advance, to obtain the probabilities. In principle, once we have obtained
the probabilities, the dataset can be thrown away. Then, as each new instance arises, we can classify it using these
probabilities.

5 Example

We are given the following dataset:

shape colour size class

circle blue large +
circle red medium -
circle red large -
square blue small -
square red small -
square red medium +
square blue medium +
square blue large -
triangle red small -
triangle red large +
triangle blue medium +
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In the lecture we will use the naı̈ve Bayes classifier to classify the new instance{shape= circle, colour= blue, size=
medium}.

In the lecture we will also answer:

• Are colour= red andsize= large independent?

• Are colour= red andsize= large conditionally independent givenclass= +?

6 Discussion

• The naı̈ve Bayes classifier is competitive with other classification methods in many cases. In some cases, it even
outperforms other methods. For classifying textual documents (e.g. into spam and ham), it is among the more
effective algorithms. It is also scalable: it can easily handle thousands of attributes.

• It is possible that some of the conditional probabilitiesP (A = ai|class= cl) that we compute from the dataset
will be zero. If zero probabilities are ever used in classification, then the whole probability of that class will
evaluate to zero and that class will be ruled out. A simple solution is to replace the zero by a small constant, e.g.
0.5/n or P (class= cl)/n wheren is the number of instances in the dataset. Others apply a correction to all
probabilities. For example, instead of computing

ncl
A=ai

ncl

wherencl is the number of instances in whichclass= cl andncl
A=ai

is the numberof thesein which A = ai,
they compute

ncl
A=ai

+ m

ncl + m

wherem is a small positive integer.

• If you have a large number of attributes, then the product ofthe conditional probabilities, is likely to underflow
in floating point maths. To avoid this problem, instead of computing and comparing the following

P (A1 = a1|class= cl) × P (A2 = a2|class= cl) × . . . × P (An = an|class= cl) × P (class= cl),

(from above but without the divisor), you use logarithms

log P (A1 = a1|class= cl)+logP (A2 = a2|class= cl)+. . .+logP (An = an|class= cl)+logP (class= cl)

(This is another reason why we cannot allow probabilities tobe zero: you cannot take the log of zero.)

• We’ve assumed discrete values for our attributes. Where this does not hold, you can use discretisation. There
are also methods for handling real-valued attributes directly.

• If there are many candidate attributes, it may be useful to restrict attention to only a subset of the attributes.
Various methods have been proposed for automatically determining which subset to use.

• There is an enormous amount of work now onBayesian networks, which provide a way of explicitly representing
dependencies, thus allowing the removal of some of the independence assumptions made by naı̈ve Bayesian
methods.
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