
Classification: Probabilistic Methods

We’re going to begin our study of AI by looking at a task that is, on the one hand, easy to understand and yet, on the
other hand, very widespread. The task is calledclassification.

1 Classification

In classification problems, the task is to decide to which of a predefined, finite set of categories an object belongs.

Note that the classes or categories are known in advance; there is a finite number of them; and, in fact, there is usually
only a small number of them. Each class or category has a name,which we refer to as theclass label.

We refer to the objects asinstances.

A classification system (or classifier) receives a description of the instance to be classified; decides to which class the
instance belongs; and outputs the appropriate class label.We will assume that instances are described by values for a
set of attributes.

Here are some examples:

• In a game, one character has to decide whether another character is friend or foe, based on the appearance or
behaviour of the other character.

• In a public building, a security system may allow access to private areas of the building to employees but not to
visitors, determined by an analysis of images from a video camera.

• In an email system, a spam filter decides whether an incomingemail is spam or ham, based on the email’s
content and formatting.

• In a language school, a decision agent must decide whether anewly-enrolled student will study at beginner,
intermediate or advanced level, based on the student’s performance in a language exam.

Classification may also be a subtask within other more complicated tasks. For example, to understand human language
requires the ability to choose the correct meanings of ambiguous words; this is a classification task.

There are many, many ways to build classifiers. The first classification methods we are going to study use probabilities.

2 Probabilities

2.1 Probabilities and joint probabilities

In probability theory, we talk ofrandom variables, A, B, . . .. These are just variables that can take on different
values. In our case, they will stand for features of our domain of interest (e.g. attributes of instances or the class of an
instance). The values of the random variables can be of different types: Boolean (e.g.sunny= true), numeric (e.g.
income= 60000, height = 1.73) or symbolic (e.g.pollen = low). For simplicity, we will restrict our attention to
random variables whose values are discrete and finite.

SupposeA is a random variable whose possible values are{a1, a2, . . . , ak}. Theprobability that attributeA has value
ai is writtenP (A = ai). The probabilities must satisfy the following:

• 0 ≤ P (A = ai) ≤ 1
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• P (A = a1) + P (A = a2) + . . . + P (A = ak) = 1

The joint probability that A = ai andB = bj is writtenP (A = ai, B = bj) (and similarly for joint probabilities
involving more than two variables). A variable can take on only one value so

• P (A = ai, A = aj) = 0 if a1 6= aj

2.2 Conditional probabilities

Theconditional probability ofA = ai givenB = bj is writtenP (A = ai|B = bj). It is defined as follows:

P (A = ai|B = bj) =
P (A = ai, B = bj)

P (B = bj)

This definition can be used wheneverP (B = bj) > 0.

Suppose we have Boolean-valued variablesheadacheandflu. And supposeP (headache= true) = 0.1, P (flu =
true) = 0.025 andP (headache= true, flu = true) = 0.0125. Then, using the definition above,P (headache=
true|flu = true) = 0.5. As a visualisation, think of each point in the following Venn diagram as a possible state of
affairs. To reflect the idea thatP (headache= true) = 0.1, the region whereheadache= true covers 0.1 of the whole
area, and similarly for other probabilities/areas:

flu = true

headache = true

It could be said thatP (headache= true|flu = true) measures the probability ofheadache = truerelative to the reduced
set of states in whichflu = true.

If we multiply through byP (B = bj), the definition of conditional probability can be rewrittenas the following,
known as theproduct rule:

P (A = ai, B = bj) = P (A = ai|B = bj) × P (B = bj)

2.3 Independence and conditional independence

A = ai is said to beindependentof B = bj if the probability ofA = ai is not influenced by whetherB = bj holds.
The definition is:A = ai andB = bj areindependentif

P (A = ai|B = bj) = P (A = ai)

or, equivalently,
P (B = bj |A = ai) = P (B = bj)

or, equivalently,
P (A = ai, B = bj) = P (A = ai) × P (B = bj)

The last of these will be useful to us.
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Class Exercise.How might we show diagrammatically thatheadache= true andeyeColour= blueare independent?

SometimesA = ai andB = bj will not be independent in any absolute sense but they may be independent when a
third factor is fixed. I’m sure, for example, if we could obtain the probabilities, we would find thatshoeSize= small
andlanguageSkill= low are not independent: I’m sure we would find that if you have small feet then you are more
likely to have low language skills! But this is a spurious relationship that depends on a third, though unmentioned,
factor: age. Once age is fixed (‘given’), then the dependencedisappears.shoeSize= smallgivenage= youngand
languageSkill= low givenage= youngare independent. This is calledconditional independence.

The definition is:A = ai andB = bj areconditionally independentgivenC = ck if

P (A = ai, B = bj |C = ck) = P (A = ai|C = ck) × P (B = bj|C = ck)

This definition can be used wheneverP (C = ck) > 0.

3 Inference on a Joint Probability Distribution

3.1 What is a joint probability distribution?

Suppose we have two random variablesweather and pollen whose sets of legal values are{cloudy, sunny} and
{low, medium, high} respectively. Then we can show all the possible joint probabilities by a table with 6 rows. For
example:

weather pollen Prob

cloudy low 0.5
cloudy medium 0.01
cloudy high 0.01
sunny low 0.2
sunny medium 0.19
sunny high 0.09

Each row in this table represents a different state of the world and so they are all mutually exclusive. The probabilities
in the table must sum to 1.

3.2 Where do joint probability distributions come from?

1. Elicit them from human experts.

2. Compute them from simpler probabilities, e.g. using the product rule.

3. Learn them from data. If you have a large dataset, then you can estimate the probabilities:

P (row) =
number of records that match row

total number of records

The following joint probability distribution, for example, was learned from a U.S. census database:
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sex hoursworked wealth Prob

female 40.5− poor 0.25
female 40.5− rich 0.03
female 40.5+ poor 0.04
female 40.5+ rich 0.01
male 40.5− poor 0.33
male 40.5− rich 0.1
male 40.5+ poor 0.13
meale 40.4+ rich 0.11

3.3 Inference using the joint probability distribution

You can obtain any other probability from the joint distribution. To findP (E) for some expressionE, you sum the
probabilities in the rows that matchE.

For example,P (sex = male, wealth = poor) = 0.33 + 0.13 = 0.46. Similarly, P (wealth = poor) = 0.75 (by
summing the 4 rows in whichwealth= poor). And, having computedP (sex= male, wealth= poor) andP (wealth=
poor), we can plug these probabilities into the definition of conditional probability to computeP (sex= male|wealth=
poor):

P (sex= male|wealth= poor) = 0.46/0.75 = 0.61

Class Exercise.ComputeP (wealth= poor|sex= male).

3.4 Classification using the joint probability distribution

At last! It’s time to return to the task of classification.

Let the attributes of the instances beA1, . . . , An. The new instance, which is to be classified, will be described by a
set of attribute-value pairs,{A1 = a1, A2 = a2, . . . , An = an}. Let the set of class labels beL.

We can use the joint probability distribution to classify a new instance as follows:

1. For each class labelcl ∈ L, use the joint probability distribution to compute the conditional probability for that
class given the description of the new instance:

P (class= cl|A1 = a1, A2 = a2, . . . , An = an)

(To emphasise: you are computing this for eachcl ∈ L, so the number of calculations you perform is|L|, the
number of class labels.)

2. Return the class label with the highest probability.

For example, suppose we wish to classify a person whose descriptive attributes are{sex = male, hoursworked=
40.5+}. Does this person belong to thepooror rich class?

1.

P (wealth= poor|sex= male, hoursworked= 40.5+) =
P (wealth= poor, sex= male, hoursworked= 40.5+)

P (sex= male, hoursworked= 40.5+)

=
0.13

0.13 + 0.11
= 0.54
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P (wealth= rich|sex= male, hoursworked= 40.5+) =
P (wealth= rich, sex= male, hoursworked= 40.5+)

P (sex= male, hoursworked= 40.5+)

=
0.11

0.13 + 0.11
= 0.46

2. Return the class with the highest conditional probability. In this case, the person is predicted to bepoor.

Note that you did not really need to compute the divisor (i.e.the expression below the line)! For each class label whose
conditional probability you compute, the divisor will be the same. So only the dividend (above the line) determines
which class wins.

3.5 The bad news

This approach to inference in general and classification in particular does not scale well. In realistic problems there
will be many more variables, and some will have many more values. The table will be too big. No human could
estimate all the probabilities. Equally, no dataset will provide enough data to reliably estimate the probabilities based
on frequency in the dataset.
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