
Fuzzy Logic

1 Uncertainty and Vagueness

Uncertainty and vagueness are major challenges in AI. Uncertainty is aboutdegree of beliefand it can be handled
mathematically byprobability. For example, we don’t know whether it will rain tomorrow. This is an example of
uncertainty. But, based, e.g., on observation of past weather patterns, we might be able to put a value on the probability
that it will rain tomorrow.

Vagueness is aboutdegree of truthand it can be handled mathematically byfuzzy logic. For example, suppose we
know for sure that the temperature now is18◦ centigrade. There is no uncertainty here. But, if we are asked to say
whether the day is hot, we now have a problem of interpretation. The statement seems neither absolutely true, nor
absolutely false. We might prefer to assign some intermediate truth value to the statement.

Our reactive agents (and intelligent agents in general) must be able to deal with both uncertainty and vagueness. For
example, one major source of uncertainty is the unreliability of the sensing equipment. However, we’ll look now at
vagueness and fuzzy logic. Fuzzy logic has been applied withsome considerable success to reactive control tasks.

2 Some Motivation: Fuzzy Control

Consider an anti-locking brake system, controlled by a programmable controller. The operation of such a system is
akin to the sense/plan/act cycle. Readings are taken of, e.g., brake temperature and vehicle speed. An action, e.g. a
change in brake pressure, is then selected and executed. Thecycle then repeats. The aim is to maintain the state of the
system or to smoothly change the state of the system in response to changes in the environment.

Traditional control systems typically use differential equations to define responses to sensor values. But this approach
has problems:

• In some cases, solving the complex equations can be too computationally expensive for real-time control.

• Often, the equations implement a ‘bang-bang’ control regime: actions are either full on in one direction or full
on in the other direction. For some tasks a bang-bang controlregime might result in actions being repeatedly
too drastic and desired outcomes being overshot.

• In some cases, e.g. for new or ill-understood devices and environments, the equations may not be known yet;
developing them might be years of work; and the resulting equations might be difficult to understand.

An alternative is to use a system of fuzzy rules, such as the following:

if brake temperature is warm∧ vehicle speed is not very fastthen decrease brake pressure slightly

which uses imprecise terms in its condition and action.

Such rules can be cheap to apply, and have been found to give quite smooth control. Most importantly, fuzzy con-
trollers can often be quickly developed. The rules can come from interviewing experts, looking at their manuals, or
observing their actions. Given enough data, the rules can beautomatically evolved or learned. The rules are readily
understandable, and therefore more maintainable.

Hybrid approaches, where fuzzy control improves an existing equation-based controller, are also common.

Note that, while our current interest in fuzzy logic is its application in fuzzy control, it has been used for a variety of
purposes throughout AI (although its use is always controversial).
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3 Fuzzy Set Theory

Fuzzy control uses fuzzy logic, and fuzzy logic is built on fuzzy set theory. Traditional, ‘non-fuzzy’ sets are sometimes
referred to ascrisp setsto distinguish them fromfuzzy sets.

In (crisp) set theory, we have auniverse of discourse, U : the collection of all possible objects under consideration. A
(crisp) set,A, is then a collection of objects, drawn from the universe of discourse. Each object inU is either inA or
not inA. More formally, for every setA there is amembership function, fA, which, for every objecta in U returns T
(true) or F (false) according to whethera is in A or not.

Example. Let U be a collection of students; call thema, b, c, d, ande. Let setCS =def {a, b, d} be the set of these
students who are studying Computer Science. The membershipfunction forCS, fCS, is as follows:

fCS(a) = T
fCS(b) = T
fCS(c) = F
fCS(d) = T
fCS(e) = F

The idea in fuzzy set theory is that set membership should be amatter of degree, not simply T or F. The key generali-
sation is to allow the membership function to return not simply T or F, but a grade of membership, usually denoted by
a real number between 0 (absolutely not a member) and 1 (absolutely a member).

Example. The membership function for the fuzzy setTS of tall students might be, e.g.:

fTS(a) = 0.2
fTS(b) = 0.8
fTS(c) = 0.0
fTS(d) = 1.0
fTS(e) = 0.5

This shows thatd is definitely tall andc definitely is not.a, b ande have some claims to tallness, e.g. it is half-true to
say thate is tall.

Membership functions for fuzzy sets (especially when the set is concerned with ages, heights or other (continuous)
numeric measurements) are often shown graphically. For example, here are plots of possible membership functions
for person ages:
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We see that the exact shape may vary: it might be bell-shaped,s-shaped or reverse s-shaped. In fact, it is often
convenient computationally to use triangular- or trapezoidal-shaped functions:
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Class Exercise. What, in fuzzy set theory, would the membership function of the empty set look like?

The definitions of set operations (such as union) need to be extended to cope with fuzzy sets. LetA, A1 andA2 be
fuzzy sets drawn from universeU .

Union A1 ∪ A2: For crisp sets, the union ofA1 andA2 is the set of elements that are either inA1 or in A2. For fuzzy
sets, the membership function for the union ofA1 andA2, fA1∪A2

, is defined by

fA1∪f2
(a) =def max(fA1

(a), fA2
(a))

Intersection A1 ∩ A2: For crisp sets, the intersection ofA1 andA2 is the set of elements that are in bothA1 andA2.
For fuzzy sets, the membership function for the intersection of A1 andA2, fA1∩A2

, is defined by

fA1∩A2
(a) =def min(fA1

(a), fA2
(a))

Complement A′: For crisp sets, the complement ofA is the set of elements that are in the universe of discourse but
are not inA. For fuzzy sets, the membership function for the complementof A, fA′ , is defined by

fA′(a) = 1 − fA(a)

Class Exercise. Draw the graph of the membership function for the set that is the union of the sets of young ages and
middle-aged ages. Draw the graph for their intersection too.

There is a whole new set of operations (ones that don’t exist in crisp set theory) calledmodifiers. These have approx-
imately the same effect as words and phrases such as“very” , “more or less”, etc. We want thevery operator to have
an intensifying effect and themorl (more or less) operator to reduce the intensity. Here are possible definitions:

fvery A(a) =def (fA(a))2

fmorl A(a) =def (fA(a))
1

2

Class Exercise. Draw the graphs for the set of very young person ages and the set of more or less young person ages.

Much more could be said on this subject (including its extension to fuzzy relations) but we move on now to fuzzy
logic.
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4 Fuzzy Logic

In classical logic, a statement,W , is either T or F. Again, we can use functions to formalise this. The function we
need is called aninterpretation function, I. If p represents the statement ‘the ball is red’, thenI(p) will return either
T or F.

In fuzzy logic,I can return degrees of truth, typically in the [0, 1] interval. For example,I(p) could be 0.6 (perhaps
if the ball is a reddish-orange colour).

The following connectives are defined in a way that is based onthe set theory operations:

I(W1 ∨ W2) =def max(I(W1), I(W2))
I(W1 ∧ W2) =def min(I(W1), I(W2))

I(¬W ) =def 1 − I(W )

There are problems in defining the conditionalW1 ⇒ W2 (and hence also the biconditional,W1 ⇔ W2). Around 72
alternative definitions have been proposed. One is

I(W1 ⇒ W2) =def

{

1 if I(W1) ≤ I(W2)
I(W2) otherwise

In classical logic,W1 ⇒ W2 ≡ ¬W1 ∨ W2. But, this equivalence does not hold when using the above definition of
the conditional in fuzzy logic.

We needn’t get too worried about these problems with definingthe conditional. In fuzzy control (next lecture), we will
only need conjunction (∧), disjunction (∨) and negation (¬). We will be writing condition-action rules like the ones
we used in production systems, but now the conditions and actions may be fuzzy.
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