
Reinforcement Learning

We’re looking at table-driven implementations of reactiveagents, in which the action function is stored as a big lookup
table. Each entry in the table maps from a percept to the action that should be taken. And we’ve considered two ways
of creating this table: human designers can work out all the entries, or we can use a genetic algorithm to try to evolve
a table of high fitness. In this lecture, we look instead at howthe agent canlearn an action function stored in a table.

We’ve studied learning previously, when we were looking at classifiers. But, what we studied before is a differenttype
of learning from what we will study in this lecture. What we studied before is calledsupervised learning; what we
will study here isreinforcement learning. What distinguishes them is the nature of the information the learner receives
from the ‘teacher’ or from the environment:

Supervised learning: The learner receives examples of inputs and target outputs.E.g. each example might be an
email and a human-supplied classification (ham or spam); or each example might be a description of a per-
son’s food and drink consumption along with a classification(under- or over-the-limit) based on a breathalyser
reading. Do not, however, assume that supervised learning is used only when we are building a classifier. It is
much broader. It can be used to learn a system that carries outregression. Remember, the job of a regression
system is to predict a real number e.g. a system that predictstomorrow’s rainfall. In this case, the learner will
receive descriptions of one day’s weather along with the actual rainfall recorded on the following day. Equally,
we can use supervised learning to learn an agent’s action function. Suppose an expert chess player creates a set
of examples, each comprising a board configuration plus the best move that can be made in that configuration.
Then, we can use supervised learning to learn an agent function.

Reinforcement learning: In reinforcement learning, the learner receives only rewards (or punishments) after exe-
cuting certain actions and thereby on entering certain states. The rewards (or punishments) act as positive (or
negative) reinforcement on actions, i.e. they make it more (or less) likely that the agent will execute those actions
if it finds itself in the same or similar situations in the future. For example, a character in a game might observe
the effect its actions have on its score or on some measurement of its health; if it is capable of reinforcement
learning, it can use these observations to improve its action function. A complication in many tasks is that
reward isdelayed, giving rise to acredit assignment problem, i.e. it must work out which of its earlier actions
contributed to the reward and by how much to reinforce them. For example, in chess reward comes at the end
of the game (when the agent wins or loses); in waiting on tables in a restaurant reward comes at the end of the
meal (on receipt or non-receipt of a tip).

In this context, machine learning researchers often distinguish a third type of learning, namelyunsupervised learning.
We won’t be covering unsupervised learning in this module.

Reinforcement learning is a huge subject, with many different algorithms for different settings. But in this lecture we
gain a flavour of the topic by looking at only one such algorithm.

1 Reward

At each time stept, the agent uses its sensors to obtain a perceptst. We will assume that the environment is fully
observable and thatst completely determines the state that the agent is in. On the basis ofst, the agent chooses and
executes an actionat. The agent obtains a rewardrt (a real number) based on(st, at). This reward might come from
a teacher who is observing the agent, or it might come from theexternal environment, or it might even come from
within the agent itself (e.g. a measure of improved health ordecreased hunger). Following execution of the action, the
world will now be in a new state. The agent can sense this new state by using it sensors to obtain perceptst+1.

For simplicity, we will assume a deterministic environment. This means that if on more than one occasion the agent
senses a particular percepts and chooses to execute a particular actiona, then the reward and the next percept will be

1

the same on each occasion. In a non-deterministic environment, by contrast, after sensings and executinga on one
occasion the reward might ber′ and the next percept might bes′ but on another occasion after sensings and executing
a the reward might ber′′ (r′ 6= r′′) and the next percept might bes′′ (s′ 6= s

′′).

The agent tries to maximise the reward it receives in the longrun. To make this more precise, we need to distinguish
two cases. On the one hand, some agents execute actions untilthey reach a particular terminal state or one of a set of
terminal states. When their sensors tell them they have reached a terminal state, they stop. For example, an agent that
walks a maze stops when it reaches a particular point (e.g. the exit); an agent that plays a board game stops when the
game is over (when it wins, loses or draws). Of course, the agent can then reinitialise itself and ‘go again’, e.g. walk
the maze again, perhaps from a different starting point; or walk a different maze; or play another round of the game.

In the other case, the agent is not trying to reach any particular terminal state. Instead it acts continuously, in principle
without limit. An example is an agent whose job is forever to walk the walls of a room. A more realistic example is
an agent that monitors a factory process. To keep things simple, in this lecture we will focus on this second case, i.e.
on agents that act continuously.

In the case of an agent that acts continuously, the cumulative reward that the agent receives over time is calculated as
follows:

r0 + γr1 + γ2r2 + . . .

or, equivalently,
t=∞∑

t=0

γtrt

You can see that it is the sum of the rewards, but the formula includes what is calleddiscounting. γ is thediscount
rate, 0 ≤ γ ≤ 1. If we setγ = 0, only r0 is considered. If we setγ > 0, then the later a reward is received, the less it
counts. As we setγ closer to 1, future rewards are taken into account more strongly.

The task of the agent is to learn an action function that produces the greatest possible cumulative reward for the agent
over time.

2 Action-Value Functions

We’re going to start by adding an extra column and extra rows to our table.

In previous lectures, our table had one row per percept. So, for example, if the agent hasn touch-sensors (which return
0 or 1), there are2n different percepts and hence also2n rows in its table; each row pairs a percept with the action to
be taken when that percept has been sensed.

But in this lecture, we will pair each percept witheach action. For example, suppose the agent has 2 touch-sensors
(which return 0 or 1) and is capable of three actions,Move, Turn(RIGHT, 2) andTurn(LEFT, 2). Then, the
table will have the following entries:

2



Percept Action Q

00 Move
00 Turn(RIGHT, 2)
00 Turn(LEFT, 2)
01 Move
01 Turn(RIGHT, 2)
01 Turn(LEFT, 2)
10 Move
10 Turn(RIGHT, 2)
10 Turn(LEFT, 2)
11 Move
11 Turn(RIGHT, 2)
11 Turn(LEFT, 2)

Class Exercise. Suppose the agent hasn touch sensors (which return 1 or 0) andm different actions. How many rows
will the table contain?

What is the extra column for? In a given row of the table in which the percept iss and the action isa, theQ-value,
Q(s, a), will be an estimate of the cumulative reward that the agent will receive if it chooses actiona on sensing
percepts. Roughly then, it says how good the action is in that situation.

If the Q-values are ‘correct’, then in situations, the agent should choose the actiona for which Q(s, a) is highest.
Mathematically, this is written

arg max
a

Q(s, a)

Class Exercise. Suppose the current percept,s, is 01. And suppose that theQ-values are as follows:

Percept Action Q
...

...
...

01 Move 2
01 Turn(RIGHT, 2) 1
01 Turn(LEFT, 2) 7
...

...
...

What isarg maxa Q(s, a), i.e. what action will the agent choose?

But this assumes that theQ-values are ‘correct’. What we have to do now is consider how the agent can learn these
values.

3 Q-Learning

We are going to start with randomly-chosenQ-values (or perhaps all zeroes). The agent will improve these values by
a process of trial-and-error: it will choose and execute actions, and it will use the rewards it receives to update the
Q-values. Over time, we hope that the values will converge to the ‘correct’ values.

Here is the basic algorithm. It continuous to assume an agentthat acts continuously.

3

s := SENSE();
do forever
{ rand := a randomly-generated number between 0 and 1;

if rand < ǫ

{ Choose actiona randomly;
}
else
{ a := arg max

a

Q(s, a);

}
EXECUTE(a);
r := SENSEREWARD();
s
′ := SENSE();

Q(s, a) := r + γ max
a′

Q(s′, a′);

s := s
′;

}

In essence, the agent repeatedly chooses an action, obtainsa reward, and updates the values in the table.

Note that the algorithm uses both the following notation:

arg max
a

Q(s, a)

which, as we discussed previously, means the action with thehighestQ-value fors. But it also uses the following
notation:

max
a′

Q(s′, a′)

which means the highestQ-value fors′ (rather thanthe action with the highestQ-value).

3.1 Exploration versus Exploitation

As you can see, sometimes the agent chooses a random action; other times it chooses the action that has the highest
Q-value. It is choosing betweenexploration andexploitation:

Exploration: The agent chooses an action which, according to its current estimates, may not necessarily be the best
action to take but, by choosing this action, it has the opportunity of gaining new experiences and improving its
estimates of theQ-values.

Exploitation: The agent chooses the action which, according to its currentestimates, is the best action to take (the
one with the highestQ-value). This gives it the opportunity of gaining reward.

Pure exploration is of no use: it never puts into practice theinformation it has learned. Pure exploitation is no good: it
leaves the agent stuck in a rut. The agent must strike a balance between the two. The algorithm takes a simple view of
how to strike this balance: exploration is chosen with probability ǫ; exploitation is chosen with probability1 − ǫ.

There are more sophisticated ways of striking this balance.For example, by keeping track of which actions it has
chosen, it can favour actions that it has not tried very often. It also might make sense for the probability of exploration
to decrease over time.

4



3.2 Updating Q(s, a)

Let’s see whether we can make sense of the way the algorithm updates theQ-values:

Q(s, a) := r + γ max
a′

Q(s′, a′);

We see that the new value is the reward the agent has just received for its latest action added to an estimate of the
cumulative reward it can receive. Do we know the cumulative reward? We don’t. But we can use theQ-value of the
best action that we might take next. For this we usemaxa′ Q(s′, a′). In other words, we find the actiona′ that, when
executed in the new situations′, gives the highestQ-value, and we use thatQ-value as our estimate of the cumulative
reward we will receive in the future.

Class Exercise. Suppose the table currently contains the following entries:

Percept Action Q
...

...
...

10 Move 5
10 Turn(RIGHT, 2) 4
10 Turn(LEFT, 2) 1
11 Move 0
11 Turn(RIGHT, 2) 4
11 Turn(LEFT, 2) 6

1. Suppose the current percept,s is 10. Assuming exploitation rather than exploration, which action will the agent
choose?

2. Suppose that, after executing the chosen action, the agent receives a reward of 3 and its next percept is 11.
(Assumeγ is 1.) Update the table accordingly.

Why does this formula for updating the table work? The first time the agent consults the table to choose an action for
a given percept, theQ-values are arbitrary, and so they are not really giving any meaningful information on which to
base the decision. However, once an action has been executed, the agent receives information (the reward), which it
uses to update the table, hence improving the information the agent will obtain the next time it consults the table to
choose an action for that percept.

Over the course of repeated updates, theQ-values will get better and better. When one estimatedQ-value improves,
then the estimatedQ-values of its immediate predecessors will also improve next time they get updated.

Eventually, the tabulatedQ-values should converge to give values that perfectly ‘estimate’ the actual cumulative
rewards. In fact, this only happens under certain conditions, one of which is that every percept-action pair gets tried
infinitely often.

The conditions of convergence are rather stringent. But, inpractice, even when theQ-values are not perfectly correct,
the agent may still end up with values that enable it to perform well in its environment.

4 Concluding Remarks

Reinforcement learning is an extremely promising approach. One of its notable successes is TD-Gammon, which,
after training on 1.5 million backgammon games, came to rival the performance of expert human players. There’s a
lot more that could be said about it. If it interests you, you can look it up in a book. But here’s a synopsis of some of
the issues:

5

• In non-deterministic environments, the way we are updating Q-values is not guaranteed to converge, even if
all percept-action pairs get tried infinitely often. This iswhy in some books you might see a different way of
updatingQ:

Q(s, a) := Q(s, a) + α(r + γ max
a′

Q(s′, a′) − Q(s, a));

or equivalently
Q(s, a) := (1 − α)Q(s, a) + α(r + γ max

a′

Q(s′, a′));

This takes a weighted average of the currentQ-value and the revised estimate. The parameterα (0 ≤ α ≤ 1)
weights the parts of this average and should decay over time.

• Books will discuss ways of improving convergence (for bothdeterministic and non-deterministic environments).
In essence, these involve updating more than oneQ-value each time round the loop. But this requires the agent
to remember sequences of actions that it has taken, which requires a memory; hence the agent would not strictly
be a reactive agent.

• As our agent tries out actions, it will be able to observe theconsequences of actions, e.g. if it sensess and
executesa, the agent obtains a reward ofr and its next percept will bes′. From this, it can build what is
sometimes called a ‘model’ of the world. Books may discuss reinforcement learners that learn and use the
‘model’; they may also discuss approaches in which it is assumed that the learner has been given a ‘model’ in
advance. Again these agents might not qualify as being purely reactive.

• The use of an explicit lookup table, with an entry for every percept-action pair, is a major constraint. First,
storage may be a problem: tables may be too large (or, for continuous environments, they may be infinite).
Second, no attempt is made to generalise, i.e. no attempt is made to infer theQ-values of unseen percept-action
pairs from seen percept-action pairs.

Active research is looking at how to represent and learn theQ-function in some more compact form, in which
generalisations are captured. One of the most successful approaches is to usekNN . Only some rows of the
table are stored. Then, when we want aQ-value, we find thek-nearest neighbours and predict theQ-values from
the neighbours. (This is regression, rather than classification.) Of course, updates toQ-values must be handled
in a cleverer way too.

Books are more likely to discuss training a neural net to store theQ-function. This has, in general, met with less
success than thekNN approach.

• Books might discuss research that addresses concerns about scalability and convergence properties. Hierarchi-
cally organised tasks are, for example, an active area of research.

6


