
Comparison of Classifiers

We’ve looked at a number of ways of building classifiers including naı̈ve Bayes,kNN , rules and neural networks. We
also considered the proper way to measure their accuracy. Inthis lecture, we do two things: first we make some more
remarks about neural networks; second we take a more roundedlook at how to compare different classifiers.

1 Neural Networks

1.1 Speed of learning

The time taken by the learning step for a neural network can bevery variable in practice and, in the worst case, is not
good at all. If there arene examples andnw weights, each epoch takesO(nenw) time, and, in the worst case, the
number of epochs can be exponential inn, the number of inputs.

For example, we saw in the previous lecture that a large number of epochs were needed to learn exclusive-or. This was
a small network, and we were presenting it with all possible examples!

There are various techniques to try to speed up learning in practice. One is to use a learning rate,α, that is closer to
1 (but see below). Another technique is to introduce anotherterm into the weight update rules called amomentum
factor. We won’t go into details, but in the early epochs, this factor is close to zero, and then, in the remaining epochs,
it is set to, e.g., 0.9. This gives the algorithm time to find a good general direction (making small changes) in the early
epochs, and then increases the learning speed once that direction has been found.

Of course, another idea is to abandon sequential software simulations and use parallel hardware.

1.2 Convergence

Will the network learn the function that we are training it tolearn? Quite apart from how long the process will take,
there is the question of whether we will ever reach a situation of zero error (or near zero error).

As previously discussed for TLU learning, if the value chosen for the learning rate is too large, there is a danger
of ‘overshooting’, and even oscillating around, the optimal weights. But there is another danger, which applies to
networks but not to single TLUs. The error surface may havelocal minima. These are places where no small change
in the weights makes the error any smaller, but the network has not yet reached the global minimum error.

Opinion differs on the significance of this problem; people disagree about whether it is common enough in real
domains to be a worry. In domains where you do think that it is aproblem, there are techniques for overcoming it.
One approach is to allow the learning algorithm to make some weight changes that actually increase the error (see
simulated annealing).

1.3 The role of the network architecture

As noted earlier, we want generalisation: accurate classifications on unseen data. Will we get it?

The network architecture or topology plays a major role here. How many hidden layers should there be? And in each
of those hidden layers, how many hidden units should there be? The wrong choices can lead to poor generalisation.

If the network is too small, it will not be able to represent the function that it needs to represent: it won’t be able to
draw the distinctions it needs for making good predictions even on the seen data.

But, if the network is too big, it will have room to simply memorise the examples and act like a large look-up table.

1

To illustrate this a little, I trained a neural network on a dataset of 150 plants from the UCI Machine Learning Repos-
itory (whose URL is on the module web site). All of them are irises of some kind. There are four attributes (all
numeric-valued): sepal length in cm; sepal width in cm; petal length in cm; and petal width in cm. There are no
missing values. There are three classes: a plant can be of class Iris Setosa (class label〈1, 0, 0〉), Iris Versicolour (class
label 〈0, 1, 0〉) or Iris Virginica (class label〈0, 0, 1〉). In the data, there are 50 examples of each of the three classes.
The data is not noisy.

I had to decide on a network topology. Obviously, I need 4 input units (excluding the ‘extra’ threshold unit) and three
output units. My Java implementation of back-prop only allows one hidden layer, so, with my software I’ve no real
choice about how many hidden layers to use! But I still need todecide how many hidden units there will be in that
layer. I decided to try out a number of different cases: I tried out 5 and 10 (excluding the ‘extra’ one).

Here are graphs of average error (using 5 iterations of repeated holdout) for different numbers of epochs and different
numbers of hidden units:

How might we come up with a good network architecture? Some people claim to be good at deciding architectures
on the basis of the input and output spaces. But even then, they follow their ‘informed’ guesswork by a period of
experimentation with different architectures. The alternative is to seek to do this automatically. One approach is
random generation of architectures — but there are too many possibilities to make this a good approach. Another
approach is to try to evolve the architecture using a geneticalgorithm (see future lecture). This sounds promising but
it is so computationally expensive that it is rarely feasible. More common is to use ahill-climbing approach. Again
we won’t cover the details but basically you start with a single random architecture and make it successively smaller
(or bigger) using information-theoretic measures to decide which weights (and hence hidden units) to retain.

Now we’ll turn to the broader issue of how to compare classifiers. The remaining sections of these notes compare
classifiers on a variety of different criteria.

2 Accuracy

Accuracy is the obvious way to compare classifiers. We have previously discussed how to measure it. Given a dataset
of already-classified instances, you would use a suitable method (holdout, repeated holdout,k-fold cross-validation,
repeatedk-fold cross-validation or LOOCV) to measure the accuracy ofeach classifier. It is important that you use the
same training and tests for each classifier. For example, if you are using the holdout method and you have partitioned
the dataset into 66% training instances and 34% test instances, then each classifier that you are comparing should be
trained on the same training set and tested on the same test set. It is also important that you don’t cheat when setting
parameters. This has to be done using a validation set — see the earlier lecture.

When comparing different classifiers, it can be useful to include a simple-minded classifier, to act as a benchmark.
One simple benchmark is the classifier that always returns the majority class in its training set. So, for example, if
the training set contains 75% spam and 25% ham, this classifier will always returnclass= spam. It will be correct

2

approximately 75% of the time! So if your more sophisticatedclassifiers (naı̈ve Bayes orkNN or some new algorithm
you’ve invented) can’t do better than 75% accuracy then, forall their sophistication, they aren’t learning predictive
relationships from the data.

Once you have obtained accuracy figures for each classifier, you’ll be able to see whether they outperform whichever
classifiers you included as benchmarks, and you’ll be able tosee which of the classifiers is best (highest accuracy). At
this point, you consult a statistics book or a statistician because you need to do asignificance test. This will tell you
how confident you can be that there really is a difference.

3 Task Characteristics

Different classifiers may be better suited to different tasks. For example, some might be better able to handle numeric
attributes than others; some might be best-suited to tasks where there are only two classes; etc.

3.1 Input data types

Are some of the classifiers better-suited to numeric inputs?Boolean inputs? Symbolic inputs? Mixtures? I leave you
to think about this for yourselves.

3.2 Number of classes

Are some of the classifiers better-suited to problems in which there are only two classes? How well do they handle
more than two classes? I leave you to think about this for yourselves.

3.3 Missing values

It is not uncommon that instances in either the training set or the test set have missing values for certain of the attributes.
For example, a bank might describe people who apply for loansusing just two attributes: salary and age. A training
instance might be missing the age, for example:{salary= 20000, class= noLoan}. A test instance might be missing
the salary, for example:{age= 25}.

Making this more difficult is that missing values can have different interpretations:

Value unknown: we know the person has a salary but we don’t know what it is;

Value inapplicable: we know the person doesnothave a salary; or

Status unknown: we do not know whether the person has a salary or not.

People building classifiers have not been very good at makingthese distinctions!

Can a classifier’s learning step cope with missing values? Can a classifier’s classification step cope with missing
values? Suppose instances have three attributes,A, B andC, but some are missing a value forA.

Naı̈ve Bayes:This copes well with missing values. There are several approaches, some better-motivated than others.
We mention just a couple.

Learning: When computingP (A = a|class= c), you simply ignore instances in the training set which lack a
value for attributeA.

3

Classifying: As you know, for an instance with no missing values, we would want to computeP (class =
cl|A = a, B = b, C = c) for each classcl ∈ L. We would uses Bayes’ rule and we would assume
conditional independence to rewrite this asP (A = a|class = cl) × P (B = b|class = cl) × P (C =
c|class = cl) × P (Cclass = cl) (ignoring the divisor as usual). If the query is missing a value for
attributesA we can either

• simply ignore this attribute, i.e. computeP (B = b|class= cl)×P (C = c|class= cl)×P (Cclass =
cl); or

• average the probabilities for each of the possible values for this attribute. (Again there are more
advanced variants in the case of continuous-valued attributes which have not been discretised.)

The second option is particularly well-suited to missing values that mean ‘value inapplicable’.

kNN :

Learning: Nothing special needs to be done: just store the dataset.

Classifying: The local distance functions need to be redefined so that theycan cope with missing values. A
common approach is simply for the local distance functiondistA to return the maximum distance (typically
1) if either x or q is missing its value for attributeA. This is somewhat crude, and may not reflect the
different kinds of missing values described above.

Rules:

Learning: Since we did not study any rule learning algorithms in this module, we can’t really consider how
well they cope with missing values.

Classifying: The forwards- and backwards-chaining algorithms do not need any modification. However, if a
rule mentions attributeA and the instance to be classified has no value forA, then that rule will never
succeed. This might result in the instance being misclassified or failing to be classified at all.

Neural networks: Neural networks cannot handle instances with missing values: some value must be placed onto
each input unit. There are three possibilities — see the nextparagraph.

There are, of course, three possibilities that work with allthe classifiers: (a) remove from your dataset any instances
that have missing values; (b) replace each missing values with a dummy value (if one is available) with the risk that
this will make learning/classifying harder (e.g. it may turn a linearly separable function into one that is not linearly
separable); and (c) replace missing values with ‘made up’ values, e.g. in the case of a numeric attribute, the mean or
mode could be used.

3.4 Noise

We’ll use the word ‘noise’ in a relatively narrow sense. A noisy training set is one in which instances may have
incorrect values for the attributes or class. For example, the drinking dataset is very noisy: people misreported their
weight, the duration of their drinking, and the number of units of alcohol consumed. If the breathalyser equipment
was at all faulty or used incorrectly, then their class (under or over) might be incorrect too. Obviously, we cannot hope
to learn a perfect classifier from a noisy training set. The question is: how sensitive are different classifiers to noise?

This question is best answered by running experiments and measuring accuracy. (We could even introduce random
errors into the training set and see how quickly accuracy falls off.)

In general, rule-based systems (at least, of the kind we’ve looked at so far) tend to be very brittle in the face of noise,
whereas naı̈ve Bayes,kNN and neural networks tend to be more robust. The accuracy of naı̈ve Bayes is unlikely to
be badly damaged by small inaccuracies in the probabilities(particularly since we’re only interested in seeing which
is the largest);kNN can generally be made more robust by increasingk and, sometimes, by reducing the weight of
local distances computed on unreliable attributes; the accuracy of a neural network is unlikely to be badly damaged by
small inaccuracies in the weights.

4

4 Efficiency

When comparing different classifiers for efficiency, we needto consider four factors: their time- and space-efficiency
for the learning step, and their time- and space-efficiency for the classifying step.

I leave you to think about this for yourselves.

5 Transparency

I am using the word ‘transparency’ to bundle together a number of issues concerning the degree to which human users
will find different classifiers to be intelligible. There aretwo points where we might wish for ‘transparency’.

Learning step. In the case of eager learners, after the learning step we might hope that the system can present an
intelligible version of what it has learned.

Naı̈ve Bayes classifiers can display their probabilities, and there are some nice graphical ways of presenting these to
allow easy visualisation. ForkNN , people have devised graphical ways of visualising the contents of the system.
Rule-based systems can display their rules, and these may beintelligible to human experts. There is not much that
a neural network can do: displaying their weights will help no one. There has been research into trying to extract
rules from networks, so that these can be displayed. But, in general, we have to conclude that neural networks are a
‘black-box’.

Classification step. A classifier should be able toexplainwhy an instance has been classified the way that it has,
and it should be able to report isconfidencein its classification. Let’s look at these in turn.

Explanations are particularly important in safety-critical domains (especially where life is endangered) or in domains
where litigation risks and costs are high. A naı̈ve Bayes classifier can present rudimentary explanations by presenting
the probabilities that it computed. A rule-based system candisplay a trace of the rules that fired. This might be
adequate if the rules are reasonably intelligible to begin with. Neural networks can offer nothing.

kNN ’s explanations have been found to be especially good: the classifications are based directly on already-classified
instances (the neighbours) and these instances can be displayed to provide compelling explanations for the classifica-
tion. Recent research (some of it done here in my UCC researchgroup) is further improvingkNN ’s explanations.

Users may also want to know how confident a classifier is that itis making the right classification. A naı̈ve Bayes
classifier can compare the probabilities it computes for each class: the more different the probabilities, the more
confident it can be. A rule-based classifier has no way of quantifying its confidence, unless the rules themselves
have probabilities associated with them.kNN classifiers can quantify their confidence based on: how similar the
neighbours are toq and the degree to which the neighbours agree or disagree. Neural networks can do little to quantify
their confidence.

6 Incorporation of prior knowledge

Classifiers differ in the ease with which they can incorporate prior knowledge. By prior knowledge, we simply mean
knowledge that human experts already possess about the task. We don’t want such knowledge to go to waste. Can it
be used to initialise the system, either just prior to the learning step or even in place of the learning step?

In the case of a naı̈ve Bayes classifier, for example, human experts might already have some sense of the probabilities
needed. If so, the classifier could be built using these human-supplied probabilities or we could work out some way of
combining the human-supplied probabilities with ones computed from a dataset.

5

Experts might be able to supply some or all of the rules neededby a rule-based classifier. The learning step, if takes
place at all, would only need to learn additional rules to cover instances not already covered by the human-supplied
rule.

When building akNN classifier, human experts can use their knowledge to design knowledge-intensive local distance
functions and also, if the global distance is to be a weightedsum or weighted average of the local distances, experts
might be able to choose the weights (attributes importances). Human experts might also exercise judgement over
which already-classified instances they would like to include in thekNN classifier’s dataset.

There is little that human experts can do to encode their prior knowledge into neural networks. One line of research
did take human-supplied rules and use these to influence the network architecture/topology and the initial weights (see
the exercise at the end of these notes).

7 Incremental learning

Up to now, we have separated our presentation of classifiers into a learning step and a classification step. But suppose
new already-classified examples become available after thesystem has finished its learning step and is now being
used for classification. Indeed, often these new examples will arise because the user of the classifier will confirm or
disconfirm whether the system got the classification right. For example, in a spam filter the user might be willing to
give feedback in the hope of improved classification accuracy.

The ability to continue to learn is important: it can make a system adapt to changing circumstances. Consider spam
filtering for example:P (class= spam) is very different today from what it was a few years ago. So thequestion is:
can we build versions of these classifiers that take on new training examples incrementally, or do they only operate in
‘batch’ mode?

Naı̈ve Bayes classifiers can update probabilities in an incremental fashion.kNN classifiers can store new examples
in their dataset as they arise. Of course, there is a risk thatthe dataset grows too large, causing a degradation in
classification efficiency. However, there is research into ways of editing the dataset to reduce its size, while preserving
its classification accuracy.

Rule-based systems and neural networks cannot, in general,take on new examples incrementally. The best we can do
in general is add the new examples to the original training set and retrain the system from scratch on the enlarged set
of instances.

Exercise (Part of a past exam question)

This question is about TLUs, neural networks and rule-basedclassifiers. Throughout, assume the following (which
differ from what we used in lectures):

• theactivation functionof the TLUs,g, is defined as follows:

g(x) =def

{

1 if x ≥ θ

−1 otherwise

whereθ is the threshold of the TLU; and

• -1 will denote false and 1 will denote true.

1. Design a TLU which has two inputss1 ands2. The inputs can take values of -1 or 1. The TLU should compute
the conjunction ofs1 ands2, s1 ∧ s2. Give the two weights and the threshold.

6

2. Suppose you wanted your TLU to compute the conjunction of an arbitrary numbern of inputs,n ≥ 1. What
weights and threshold would you use?

3. Similarly, give the weights and threshold for a TLU that computes the disjunction of two inputs,s1 ∨ s2.

4. Similarly, give the weights and threshold for a TLU that computes the disjunction ofn inputs,n ≥ 1.

5. Hence, continuing to assume that all inputssi take on values of only -1 or 1, design a fully connected, layered,
feedforward neural network that outputs a 1 in exactly the same circumstances that the following rules would
conclude thatp is true:

(s1 ∧ s3) ⇒ p

(s1 ∧ s2 ∧ s4) ⇒ p

6. A knowledge engineer elicits a set of rules from a medic whospecialises in diseases of the male sarcophagus.
These disfiguring diseases,tumulus, ossuaryandcromlech, are treated using either the drugPlacebinor the drug
Incubio:

(badBreath∧ dizziness) ⇒ tumulus
(badBreath∧ hairLoss∧ toothache) ⇒ tumulus
(dizziness∧ runnyNose) ⇒ ossuary
(hairLoss∧ runnyNose) ⇒ ossuary
redEars⇒ cromlech
tumulus⇒ Placebin
ossuary⇒ Incubio
cromlech⇒ Placebin

The knowledge engineer encodes the rules as a neural networkusing the ideas embodied in your answer to the
previous question.

She then obtains some historical data, showing, for each patient, his symptoms and which of the two drugs was
found to be effective. Using the back-propagation algorithm, she trains the neural network on the historical data.

Discuss the advantages that the knowledge engineer believes will ensue from this combined rule-and-network
approach.

7

