(CS6120 Continuous Assessment, 2013-2014

Derek Bridge
13th February, 2014

1 Introduction

You are given four files of data, as follows:

e movies.txt: Each line of the file describes a movie, including its title and
genre(s).

e users.txt: Each line of the file describes a user, including some demo-
graphic data.

e debug.txt: Each line of the file contains one rating. This file contains
only 20 ratings. You should use this file to test the Python that you write.

e ratings.txt: Each line of the file contains one rating. This file contains
100,000 ratings. You should use this file to run experiments.

You are also given one file of Python, as follows:

e ims.py: This contains some Python which you can freely use to make it
hugely easier for you to run experiments.

Do not edit these files.
Write Python to run experiments on the data. Ideally, your experiments will
make comparisons, e.g.:

e between different algorithms (e.g. user-based, item-based, other);

e between different formulae within the algorithms (e.g. the three formulae
for making user-based predictions presented in lecture 6, or other formulae
you find in the research literature);

e between different parameterisations (e.g. different values for k);

e between different evaluation criteria (i.e. criteria other than just MAE);
and

e between predictions and recommendations.



Present your results in an iPython notebook. Give precise, concise explana-
tions of what is being compared, what is being measured, and your experimental
methodology.

Review the relevant research literature and discuss it in your notebook. For
example, you might discuss the usefulness of MAE as a measure of the quality
of a prediction algorithm; or the difficulty of evaluating a recommendation algo-
rithm; or other ways of evaluating prediction/recommendation systems. Your
research may even help you to design new experiments (different algorithms, dif-
ferent formulae, different evaluation criteria, etc.) that you can run and whose
results you can include in your notebook.

Those of you who are less comfortable with programming can, to a limited
degree, compensate for less coding & experimentation by including a deeper
and broader discussion, with more extensive use of the research literature. Sim-
ilarly, those of you who are less comfortable with analytic writing can, to a
limited degree, compensate for less discussion by including more programming
and rigorous experimentation.

All elements (the Python you write, the experimental results, and discussion
of the research literature) must be present in your notebook. You will receive
no credit for elements that are not part of your notebook.

When to start? Start now!

You may be running dozens and dozens of experiments. Once you are using
the full dataset of 100,000 ratings, each may take 10 minutes or more to run.
So it’s unwise to leave everything to the last minute. There is no way you can
hope to run experiments and bring it all together in the final few hours before
the deadline.

2 Format

The only acceptable format for your work is an iPython notebook.
Your notebook should comprise the following;:

—_

a heading that includes your name and student id;
a short abstract (200 words or so);

an introduction;

Ll

one or more sections and subsections presenting your discussion of the
research literature, your Python code, and your experimental results;

5. a final section that offers conclusions and ideas for future work; and
6. a list of references, i.e. sources cited in the body of your notebook.

Feel free to use tables, diagrams, charts and graphs to make the presentation
of your work more vivid.

Note that the references section is not a list of things you've read. It is a
list of things you’ve cited in the body of your notebook.



3 Academic Integrity

This is an ndividual assignment. The work you submit must be your own. In
no way, shape or form should you submit work as if it were your own when some
or all of it is not.

Collusion: Given how much freedom there is in the assignment, everybody’s
work will be different. It will be obvious if there is collusion. All parties
to collusion will be penalized.

Deliberate plagiarism: You must not plagiarise the programs, results, writ-
ings or other efforts of another student or any other third-party. Plagia-
rism will meet with severe penalties, which can include exclusion from the
University.

Inadvertent plagiarism: In reporting your exploration of the research liter-
ature be careful to avoid inadvertent plagiarism (e.g where ‘paraphrases’
of the source material are too close to the original).

Small amounts of material may be quoted directly, where the exact word-
ing of the original needs to be conveyed in your paper. But in these cases,
the material must be presented within quotation marks; the quoted mate-
rial must be followed by an immediate citation to your references section;
and the work must be listed in your references section.

Even when not quoting directly, be scrupulous to use citations to acknowl-
edge the influence of the research literature and to add support to claims
that you make. Here again a citation should be given immediately, and
the work must be listed in your references section.

Falsification and fabrication: The experimental results reported in your note-
book must come from the experiments that you have run. Do not falsify
or fabricate results.

Your notebook will be checked for signs of collusion, plagiarism, falsification
and fabrication. You may be called to discuss your submission with me and this
will inform the grading, any penalties and any disciplinary actions.

You may, of course, ask me questions. I may share questions and answers
with the class, if I feel they are general matters, for example, of clarification.
But I will also discuss with you questions that relate to your own Python, your
experiments and your reading and, in the interest of giving you proper credit
for your endeavours, these will not be shared with the class.

4 Submission

e Ensure the name of your notebook comprises your name and student id,
e.g. sam_smiles_113123456.ipynb;

e Create a folder, also labelled with your name and student id (sam_smiles_113123456);



e Place your notebook (e.g. sam_smiles_113123456.ipynb) and any image
files into this folder;

e Compress the folder, which, on the Macs in the multimedia laboratories,
is done as follows:

— select the folder;

— select Compress from the File Menu thus generating a new file with
the .zip extension (e.g. sam_smiles _113123456.zip);

e Submit the compressed folder via Moodle.

When grading your work, I will use the original versions of movies.txt,
users.txt, debug.txt, ratings.txt and ims.py.

The assignment must be submitted by 5p.m. Thursday 27th March,
2014.

Where work is submitted up to and including 7 days late, 5% of the total
marks available shall be deducted from the mark achieved. Where work is
submitted up to and including 14 days late, 10% of the total marks available
shall be deducted from the mark achieved. Work submitted 15 days late or
more shall be assigned a mark of zero.

5 Acknowledgement

T am grateful to the those associated with the GroupLens Project (www.grouplens.org)
for making the data available.

Appendix

Here is a description of some functions that I have written for your use. They
are all in the file called ims.py. (Technically speaking, for the benefit of those
with a greater knowledge of programming, what I have done is define a class
and what I am describing here are methods, not functions.)

Before you can use these functions in your notebook, you must include a
Code cell that contains the following:

import ims
rec = ims.Recommender ()

This reads in data about the movies (from movies.txt) and the users (from
users.txt) and does some other housekeeping.

5.1 Loading the ratings
5.1.1 rec.load ratings(filename, test_percentage = 30, seed = None)

This reads in ratings from a file. It partitions the ratings randomly into a
training set and a test set.



filename is a string: the name of the file that contains the ratings. Use
"debug.txt" while debugging your Python; use "ratings.txt" for your ex-
periments. test_percentage is a non-negative integer: the percentage of the
ratings that it will place in the test set; the rest go into the training set. Note
that it is approximate: the test set may not contain exactly this proportion of
the ratings. seed is a non-negative integer. It is optional. Use it while debug-
ging your Python. It enables you to get the same random split of the data on
multiple runs of the program.

For example, this is what you might use while debugging your Python. It
reads in the small ratings file and it ensures the same random split every time
you run it:

rec.load_ratings("debug.txt", 30, 1)

And this, for example, is what you might use when you are ready to run exper-
iments:

rec.load_ratings("ratings.txt", 30)

5.1.2 rec.get_test_ratings()

Gets all the test ratings.

The result is a list, containing each rating from the test set, in no particular
order.

Fach rating is a dictionary, whose keys are as follows:

e user_id: the user
e movie_id: the movie

e rating: the rating

5.2 User-Based Collaborative Recommenders

5.2.1 rec.get k nearest_users(similarity function, k, active_ user_id,
candidate_movie_id = None)

Gets the k nearest users to active_user_id. It uses similarity_function to

compute the similarity of users to active_user_id. Optionally, if candidate movie_id

is not None, the set of neighbours is confined to those who have rated candidate movie_id.
The result is a list containing the nearest neighbours, in no particular order.

The length of this list will be no more than k and may be less than k if there

are insufficient users who both have movies in common with active_user_id

and have rated candidate movie_id.
Fach neighbour in the result list is represented as a dictionary, whose keys

are as follows:

e user_id: the neighbour’s id

e sim: the degree of similarity between active_user_id and user_id



e rating: user_id’s rating for candidate movie_id

The rating is only included if candidate movie_id was not None.

5.2.2 rec.get_thresholded nearest_users(similarity_function, threshold,
active_user_id, candidate_movie_id = None)

This is identical to the function in 5.2.1 except it has threshold instead of k. It
gets all users whose degree of similarity to active_user_id exceeds threshold
and who, optionally, have rated candidate movie_id.

5.2.3 rec.get k thresholded nearest_users(similarity_function, k, threshold,
active_user_id, candidate_movie_id = None)

This is identical to the function in 5.2.1 except it has both k and threshold. It

gets the k nearest users to active_user_id provided their similarity to active_user_id
exceeds threshold and who, optionally, have rated candidate movie_id. Again,

the result list may contain fewer than k neighbours.

5.3 Item-Based Collaborative Recommenders

5.3.1 rec.get k nearest movies(similarity function, k, candidate movie_id,
active_user_id = None)

Gets the k nearest movies to candidate movie_id. It uses similarity_function
to compute the similarity of movies to candidate movie_id. Optionally, if
active_user_id is not None, the set of neighbours is confined to those movies
which have been rated by active_user_id.

The result is a list containing the nearest neighbours, in no particular order.
The length of this list will be no more than k and may be less than k if there are
insufficient movies who both have users in common with candidate movie_id
and have been rated by active_user_id.

FEach neighbour in the result list is represented as a dictionary, whose keys
are as follows:

e movie_id: the neighbour’s id
e sim: the degree of similarity between candidate movie_id and movie_id
e rating: active_user_id’s rating for candidate movie_id

The rating is only included if active user_id was not None.

5.3.2 rec.get_thresholded nearest movies(similarity function, threshold,
candidate_movie_id, active_user_id = None)

This is identical to the function in 5.3.1 except it has threshold instead of k.
It gets all movies whose degree of similarity to candidate movie_id exceeds
threshold and who, optionally, have been rated by active_user_id.



5.3.3 rec.get k thresholded nearest movies(similarity_function, k, threshold,
candidate movie_id, active_user_id = None)

This is identical to the function in 5.3.1 except it has both k and threshold. It
gets the k nearest movies to candidate movie_id provided their similarity to
candidate movie_id exceeds threshold and who, optionally, have been rated
by active_user_id. Again, the result list may contain fewer than k neighbours.

5.4 Other

5.4.1 rec.get_user movie rating(user_id, movie_id)

Gets user_id’s rating for movie_id from the training set or None if this user
has no rating for this movie in the training set.

5.4.2 rec.get_user_ratings(user_id)

Gets all of user_id’s ratings from the training set as a list. If this user has no
ratings in the training set, an empty list is the result. Each rating in the result
list is represented as a dictionary, whose keys are as follows:

e movie_id: the movie id

e rating: user_id’s rating for movie_id

5.4.3 rec.get_user mean rating(user_id)

Gets the mean of user_id’s ratings from the training set. If this user has no
ratings in the training set, the mean is None.

5.4.4 rec.get user_demographics(user_id)

Gets all of user_id’s demographic data. The result is a dictionary, whose keys
are as follows:

e age: a positive integer
e gender: either 'M’ or 'F’

e occupation: one of ‘administrator’, ‘artist’, ‘doctor’, ‘educator’, ‘engi-
neer’, ‘entertainment’, ‘executive’, ‘healthcare’, ‘thomemaker’, ‘lawyer’, ‘li-
brarian’, ‘marketing’, ‘none’, ‘other’, ‘programmer’, ‘retired’, ‘salesman’,
‘scientist’, ‘student’, ‘technician’, or ‘writer’

e zipcode: a string of digits



5.4.5 rec.get_demographic_ratings(age = None, gender = None, occupation
= None, zipcode = None)

Gets all ratings from the training set for users whose demographics matches the
values in the arguments. For example, the following puts a list of all ratings
from female students into variable rs:

rs = rec.get_demographic_ratings(gender = ’F’, occupation = ’student’)
The result is a list, containing each rating, in no particular order. Each rating

is a dictionary, whose keys are the same as for 5.1.2.

5.4.6 rec.getmovie ratings(movie_id)

Gets all of movie_id’s ratings from the training set as a list. If this movie has
no ratings in the training set, an empty list is the result. Each rating in the
result list is represented as a dictionary, whose keys are as follows:

e user_id: the user id

e rating: user_id’s rating for movie_id

5.4.7 rec.getmovie mean rating(movie_id)

Gets the mean of movie_id’s ratings from the training set. If this movie has no
ratings in the training set, the mean is None.

5.4.8 rec.getmovie descriptors(movie_id)

Gets all of movie_id’s descriptors. The result is a dictionary, whose keys are as
follows:

e title: a string

e release_date: a string

e video_release_date: a string

e url: a string containing the URL of this movie in the IMDb

e genres: a list of 19 integers, each either 0 or 1. The 19 genres are:
unknown, Action, Adventure, Animation, Children’s, Comedy, Crime,
Documentary, Drama, Fantasy, Film-Noir, Horror, Musical, Mystery, Ro-
mance”, Sci-Fi, Thriller, War, and Western. Note that many movies have
more than one genre, i.e. more than one of the 19 integers will be set to
1.



5.4.9 rec.get_genre ratings(genre)

Gets all ratings from the training set for movies of the given genre. For example,
the following puts a list of all ratings for Horror movies into variable rs:

rs = rec.get_genre_ratings(’Horror’)

The result is a list, containing each rating, in no particular order. Each rating
is a dictionary, whose keys are the same as for 5.1.2.



