CS6120: Intelligent Media Systems

Dr. Derek Bridge

School of Computer Science & Information Technology UCC

Social Recommender Systems

MODIFICATIONS TO COLLABORATIVE RECOMMENDERS

k-Nearest Neighbours for **User-Based Collaborative Recommending**

for each candidate item, i

for each user v in \mathbb{U}_i except for active user u, i.e. other users who have rated *i*

compute sim(u, v)

let NN be the set of k nearest neighbours, i.e. the k users who have rated i and who are most similar to uand whose similarity to *u* is positive

let $\widehat{r_{u,i}}$ be the weighted average of the ratings for i in NNrecommend the candidates in descending order of predicted rating

Modification: Friends

for each candidate item, i

for each user v who is a friend of u and has rated i compute sim(u, v)

let NN be the set of k nearest neighbours, i.e. the kusers who have rated *i* and who are most similar to *u* and whose similarity to *u* is positive

let $\widehat{r_{u,i}}$ be the *weighted average* of the ratings for i in NN

recommend the candidates in descending order of predicted rating

Problem: Problem: too few friends same bed, different dreams Coverage and accuracy · The interest graph is not problems equal to the social graph not enough friends to make good predictions

Modification: Friends

Modification: Trust

for each candidate item, i

for each user v in \mathbb{U}_i except for active user u, i.e. other users who have rated *i*

compute **trust**(**u**, **v**)

let NN be the set of k nearest neighbours, i.e. the k users who have rated i and who u trusts most and whose trust by *u* is positive

let $\widehat{r_{u,i}}$ be the weighted average of the ratings for i in NNrecommend the candidates in descending order of predicted rating

Explicit Trust vs Implicit Trust

- Explicit
 - In some systems, users select who they trust • e.g. Epinions
 - NB trust(u, v) means u trusts v's opinion

- In other systems, trust is inferred from user
 - interaction likes, shares, comments, visits to profile, chats,...
- Epinions 🖬
- But your immediate web of trust is small
 - coverage and accuracy problems

Trust Aggregation

- Aggregation
 - for quantifying the trust when there is more than one path from u to w
 - Options
 - use the score of the
 - shortest path

 use the highest score
 - average the scores
 - ...

0.28

0.7

0.4

0.3

Discussion

Using user-user similarity

- 1. Sparsity can reduce coverage and accuracy
- 2. Cold-start problem with new users who have few ratings
- 3. Prone to attacks
- 4. The anonymity makes this less transparent

Using trust

- Trust reaches more users (if it is propagated enough)
 Reduced cold-start problem:
 - each new trust relationship brings more coverage and accuracy than each new rating
 - can import your social graph from another site
- 3. Attacks are more difficult
- 4. More transparent: more like word-of-mouth

Discussion

Trust

 a relationship between two users

Reputation

- the community's view of a user
- e.g. by aggregating trust or by votes on reviews/ comments/ answers to questions
- e.g. karma in reddit
- e.g. reputation and badges in stackoverflow
- e.g. an academic's H-score
- In a user-based collaborative recommender you could use a combination of
 - user-user similarity
 - trust
 - reputation
- In an item-based collaborative recommender, you could weight the users by trust or reputation within the item-item similarity

NEWSFEED PRIORITIZATION

Facebook NewsFeed

Stories from your friends the average user has 1500 candidate stories

- _ so Facebook must show you a subset
- it scores them and shows those with highest scores
- Facebook terminology
 Object: a status update, a comment, a fan page,...
 Edge: an interaction with an

NewsFeed Prioritization

EdgeRank •

- Affinity, u_e :
- a measure of your engagement with this friend or page
- Weight, w_e:
 e.g. commenting has more weight than liking
 e.g. changes to relationship status have high weight
- Time decay factor, d_e : recency of activity
- Since 2010, Facebook uses 100,000 signals
 - family vs close friend vs acquaintances vs friends of friends number of friends
 - interacting with an object; total number of people interacting with an object
 - type of post that you seem to interact with more
 - device; speed of Internet connection - ...

WHO TO FRIEND OR FOLLOW

Facebook: People You May Know • Social graph Recommendations ideally people you might know, not total strangers - friends and family edges in the graph are bidirectional because primarily based on number of mutual friends that you connections require interact with a lot consent

Ţ

• From Facebook: "We show you people based on mutual friends, work and education information, networks you're part of, contacts you've imported and many other factors."

General Link Prediction Methods

- These are methods based on the structure of the graph
 - e.g. nodes represent users
 - e.g. edges represent relationships (friend, follower) or interactions
 - obviously cannot take into account extrinsic factors, e.g. a user relocates and becomes a (physical) neighbour of another
- If there is no edge between nodes u and v, these methods give a score
 - the missing edges with the highest scores are recommended

General Link Prediction Methods

Shortest paths

- Find the shortest path in the graph from \boldsymbol{u} to \boldsymbol{v}
- Calculate its length, l
- The score of the missing edge from *u* to *v* is negative *l*

Neighbourhoods

- Let nbrs(u) and nbrs(v) be the neighbours in the graph of u and v
- The score of the missing edge from *u* to *v* is, e.g.
 - size of intersection: $|nbrs(u) \cap nbrs(v)|$
 - Jaccard: $\frac{|nbrs(u) \cap nbrs(v)|}{|nbrs(u) \cup nbrs(v)|}$
 - preferential attachment: $|nbrs(u)| \times |nbrs(v)|$

General Link Prediction Methods

All paths

- Find all paths in the graph from *u* to *v*
- Let p_l be the set of paths from u to v that are of length l
- Katz: the score of the missing edge from u to v is $\sum_{l=1}^{\infty} \beta^l \times |p_l|$ where $0 < \beta \leq 1$

Random walks

- Inspired by PageRank
- Randomly surf
 starting at, e.g., u
 - count how many times you visit the other nodes such as
 - use this as the score for the missing edge

WTF: Twitter's Early Method

- First, find the active user's circle-of-trust • Next, use a random walk algorithm called SALSA
 - found by a kind of personalized PageRank
 - start at the active user
 - randomly walk the graph
 teleportation takes you
 - teleportation takes you back to the active user
 - score users by how often they get visited
- Let C be the users in the circle-of-trust
- Let F be the users who are followed by users in C
- algorithm called SALSA – start at a user in C – repeatedly
 - traverse a link to a user in F
 traverse a link back to a user in C
- Last, recommend users in C and F with high scores

 users in C are similar to the
 - active user
 users in F are interesting to
 - the active user

Twitter's Current Method

- There are no real details!
- It is a weighted hybrid (ensemble) of 20+ scoring methods

 dynamically adjusts the weighting
- As well as graph structure, they also use:
 - data about nodes (users), e.g. how many times a user has retweeted
 - data about the edges, e.g. timestamps
 - other kinds of edges (interactions), e.g. retweets, favourites, replied
- They could use, but probably don't:

 tweet content
- They certainly do:
 - lots of A/B testing!

Ongoing Research

- Similarly, recent research papers have discussed data that is extrinsic to the graph
 - Facebook: demographics
 - LinkedIn: overlap in the time two people belonged to an organization, organization size, role,...
- Unclear how much of this is in their current algorithms

GROUP RECOMMENDER SYSTEMS

Consuming Items Together

Rating Aggregation Methods

- Average:
 - the mean predicted rating for the item
- Median:
 - the middle predicted rating for the item
- Multiplicative:
 - multiply the predicted ratings
- Least Misery:
 - the minimum predicted rating
- Most Pleasure: - the maximum predicted
 - rating
- Borda count:
 - sum the inverse ranks

Issues in Aggregation

- Normalize each user's ratings before prediction and aggregation
- Manipulation of outcome

 if ratings are explicit ones, users can see others' ratings, and they know the aggregation method
 - how would you manipulate Least Misery?
 - what about Median?
 on the other hand, in this scenario, you sometimes a
 - scenario, you sometimes get conformity effects

- People expect fairness over time
 - if the same group gets a subsequent recommendation, a member who 'lost out' first time should carry more weight
 - but group membership often varies a bit over time
- Social factors influence the item the group will agree on – personalities
 - relationships within the group

Issues in Group Recommenders

- Explanations
- · Active versus passive groups
 - Active:
 - e.g. negotiating over a movie/ vacation
 - Passive:
 - e.g. choosing music or temperature for a shared space such as a shop, gym or office
- What does a rating mean?
 - my opinion of the item
 - my opinion of the item for this group
 - my opinion of the experience