Lecture 6: Recommender Systems for E-Commerce

Derek Bridge

Motivation

- The recommender systems we have looked at so far
 - maintain a profile of the user's long-term interests, either
 - content-based or
 - collaborative
 - can be used either
 - reactively: user requests a recommendation ("user pull")
 - proactively: system makes recommendations unbidden ("system push")
 - but cannot (easily) respond to the user's shortterm goals and interests

Motivation

- We'll look at short-term goals and interests in the context of a user accessing an online product catalog
- The user will reveal his/her constraints and preferences in the form of a *query* (or sequence of queries)
- Products in the catalog will have descriptions
 - these will tend to be structured descriptions
- The recommender system will be primarily
 - content-based: matches the query against the product descriptions
 - reactive: makes recommendations on request

Running example

Id	Address	Туре	Bdrms	Bthrms	Rent	Furnished	Location
1	16 Oxford Road	Flat	1	1	265	Yes	Acton
2	2 Heathfield Road	House	3	2	370	Yes	Acton
3	101 Nassau Road	Flat	2	1	271	No	Barnes

Eliciting the query: forms

- User can express constraints by submitting a form
 - fields can be left blank to indicate 'wild card'

area	<empty></empty>	~				
beds	two	~				
price	200					
furnished	<any></any>	~				
type	<empty></empty>	~				
baths	<any></any>					

Retrieval

- The query values are used to build an SQL query
 - executed against the database
 - its results are shown to the user

Filter-based retrieval

- Typically, SQL will be used to perform *filter-based retrieval*
 - exact-matching
- This brings two problems
 - result set may be empty: query is over-specified
 - result set may be too long: query is under-specified
- Some systems will attempt to lessen the first of these problems, e.g.
 - User's query: Rent = 200
 - SQL: SELECT * FROM Properties WHERE Rent > 190 AND Rent < 210
 - But this has at least two weaknesses! What are they?

Similarity-based retrieval

- An alternative is *similarity-based retrieval*:
 - score each item (based on similarity to the query)
 - rank them on their scores
 - recommend those at the top of the ranking
- In this case,
 - result set is never empty (no matter how under-specified the query is)
 - result set can be a manageable length, and in any case is ordered

Similarity, *sim(q, i)*

 A global similarity function, sim(q, i), is defined as a combination of local similarity functions, sim_A(q, i), one per attribute (column) in the query

	Id	Address	Туре	Bdrms	Bthrms	Rent	Furnished	Location
i:	i: 1 16 Oxford Road		Flat	Flat 1 1 265 Y		Yes	Acton	
		<i>q:</i>	Flat	3		200	No	Hayes
sim(q,		sim(q, i) = <u>}</u> :	sim_{type}	sim _{bdrms}	sim _{bthrm}	sim _{price}	sim _{furnished}	sim _{location}

Global and local similarities

E.g. sum the local similarities

 $sim(q,i) = \sum_{A \in q} sim_A(q,i)$

E.g. take a weighted sum

 $sim(q,i) = \sum_{A \in a} w_A \times sim_A(q,i)$

• E.g. can take averages or weighted averages

Local similarity functions

- E.g. one local similarity function is called the *overlap function*
 - very good for non-numeric attributes, especially ones with just two values, e.g. Type, Furnished

 $sim_A(q,i) = 1$ if q = i0 otherwise

Local similarity functions

- For numeric attributes, the absolute difference can form the basis:
 abs(q-i)
- But, attributes with large ranges can overpower other attributes. So normalize:

$$\frac{abs(q-i)}{A_{\max} - A_{\min}}$$

 And, this is a distance function but we need a similarity function so subtract from 1:

$$sim_A(q,i) = 1 - \frac{abs(q-i)}{A_{max} - A_{min}}$$

Local similarity functions

- Human experts might define domain-specific similarity functions, esp. for non-numeric attributes
 - E.g. sim_{location}(q, i)

	Acton	Barnes	Chelsea	Ealing	Hayes
Acton	1	0.6	0.3	0.9	0.8
Barnes		1	0.2	0.8	0.7
Chelsea			1	0.6	0.5
Ealing				1	0.8
Hayes					1

Exercise

Assuming

- global similarity is the sum of local similarities
- Bdrms has range 0-8
- Rent has range 100-750

what is the global similarity of property number 1 for the query shown?

	Id	Address	Туре	Bdrms	Bthrms	Rent	Furnished	Location
i:	1	16 Oxford Road	Flat	1	1	265	Yes	Acton

q: Flat 3 200 No Hayes

Utility-based retreival

- Some people say that what we actually want is utility-based retrieval
- Items will be scored by their utility
- The scoring functions typically compute a global utility as the sum, weighted sum, average or weighted average of local utilities
- E.g. a weighted sum

$util(q,i) = \sum\nolimits_{A \in q} w_A \times util_A(q,i)$

Utility-based retrieval

- How do we then define local utility?
- Often, we use similarity as a 'proxy' for utility

 $util_A(q,i) = sim_A(q,i)$

- the more similar the query and the item, the more useful
- In this case, utility-based retrieval and similaritybased retrieval are just two names for the same idea!

Utility-based retrieval

- But utility-based retrieval and similarity-based retrieval are not always just two names for the same idea
 - for some attributes, especially some numeric attributes, local utility may be defined differently

📓 Query 🛛 🔀								
area	<empty></empty>	~						
Min bedrooms	two	~						
Max price	200							
furnished	<any></any>	~						
type	<empty></empty>	~						
Min bahtrooms	<any></any>							
	Ok							

Local utility function: less-is-better

 For an attribute such as Rent, where the user's value q specifies a preferred maximum,

$$util_{A}(q,i) = 1 \text{ if } i \le q$$
$$= 0.5 \times \frac{A_{\max} - i}{A_{\max} - q} \text{ otherwise}$$

- We'll graph this
- Rent has range 100-750. The rent for property 1 is 265. What's the local utility if the user's preferred maximum rent is (a) 300, (b) 200?

Local utility function: more-is-better

 For an attribute such as Bdrms, where the user's value q specifies a preferred minimum,

$$\begin{split} util_{A}(q,i) &= 1 \quad \text{if} \quad i \geq q \\ &= 0.5 \times \frac{i - A_{\min}}{q - A_{\min}} \text{ otherwise} \end{split}$$

- We'll graph this
- Bdrms has range 0-8. Property 1 has 1 bdrm. What's the local utility if the user's preferred mimimum is (a) 1, (b) 2?

Recap

- In contrast to filter-based retrieval, similarity-based retrieval and utility-based retrieval
 - compute a score for each item
 - typically, a sum of local similarities/utilities, one per attribute in the query
 - typically, for local utility, similarity is used as a proxy but not always
 - ranks the items in order of descending score
 - recommends the top-ranking items
- A surprisingly under-used idea
 - but, where used, highly successful

Hooke & Macdonald

€ € €					0						
🖕 🛬 🙋 🤅	ጋ 🏠 💆	http://www	.hookem	macdonald.ie/app/search_property.asp 🔻 🕨 💽 *					G •	۵ 🐇	
😂 Disable * 🤱 Cookies * 🛄 CSS * 📰 Forms * 🔳 Images * 🚯 Information * 🏐 Miscellaneous * 🥖 Outline * 💱 Resize * 🎤 Tools * 🧕									ize r 🥜 Tools r 🛐	View Source 🔹 🄑 Options	
	HOOKE & MACDONALD			No.1 for new homes in Ireland							
	HOME	PROFILE	SALES	SECTION 23	LETTING	COMMERCIAL	NEWS	FINANCE	CONTACT US		
	Residential Lettings Home / Residential Lettings										
	New Ap	artments		Let on the Net							
	New Ho	NUSES							Importance		
	 Residen Commo 	itial Letting		Location		Dublin South		•	High 💌		
	Second	Hand Home	15	Rental Limit :		600		per month	High		
	Tax Bre	ak Property		No of bedroom	is :	3 bedroom		•	High 💌		
	or search by Select a L	/ location	-	Type of accom	modation:	Apartment		-	High		
	use a map t	to search		Furnished?		Ye:					
				Parking?		Ye: 💌					
									Submit		
	Hooke & Mar 118 Lower B Terms & Cor	cDonald Lim laggot Stree nditions, Priv	ited (Reg t, Dublin racy Stat	istered in Ireland 2 Tel 01 661010 coment	i - CRO 6992 D, Fax 01 676	5)Registered offici 6340, Email: sale:	r and bu Schooke	siness address macdonald.ie			

Problem

- When using similarity-based retrieval, the recommendations may be similar to the user's query (and when using utility-based retrieval, the recommendations may be of high utility)
- ...but they tend to be similar to each other as well
- This reduces the chance that one of the recommendations will satisfy the user

Diversity

- We must endeavour to recommend items that are similar to the query/have high utility but that are different from each other
 - the result set must be diverse
 - this increases the chances that at least one of the recommended items will satisfy the user
- Diversity is different in nature from utility/similarity
 - utility/similarity is a property of an individual item (with respect to the query)
 - diversity is a property of the result set as a whole

Diversity-enhanced retrieval

- Suppose we want to recommend k items to the user
- The idea in the Bounded Greedy Selection algorithm is
 - To start with a larger set of candidates (*b* × *k* candidates) that are of high utility
 - Then to select k of these, one by one, ensuring that each one we select is of
 - high utility
 - but also low total similarity to those already selected

Bounded Greedy Selection algorithm

- Candidates = b × k items of highest utility (found using utility-based retrieval)
- Result = []
- Do the following k times
 - Best = the member i of Candidates for which Quality(i, q, Result) is highest
 - insert Best into Result
 - remove Best from Candidates
- recommend *Result*

Bounded Greedy Selection algorithm

Quality(i,q,Result) = util(q,i) + RelDiversity(i,Result)

RelDiversity(i, Result) = 1 if Result is empty

$$= \frac{\sum_{j \in Result} (1 - sim(i, j))}{size(Result)}$$

Problem

- None of this is personalized!
- Maybe we want the system to use our long-term profile to 'fill in the gaps'
 - complement explicitly specified preferences with userspecific default ones from the user's long-term profile when otherwise unspecified

Example

- The CASPER online recruitment system
 - When a user enters a query, the server returns a set of high utility job adverts
 - Client-side, actions such as saving or replying to job adverts are interpreted as positive feedback
 - These adverts are stored in a long-term profile
 - When the user next enters a query,
 - the server returns a set of high utility job adverts again
 - But also, client-side, they are re-ordered by similarity to the adverts in the long-term profile
- B.Smyth, K.Bradley & R.Rafter (2002): Personalization techniques for online recruitment services, Communications of the ACM, vol.45(5), pp.39-40

Problems

- The following problems remain, irrespective of whether we use filter-based, similarity-based, utility-based or diversity-enhanced retrieval:
 - seldom are we able to specify all our requirements up-front
 - seldom are we satisfied with the initial set of results
- We've been assuming a single-shot system
 - submit query, view results, end of story
- If not satisfied, our only option is to revise the query and submit again
 - typically with no guidance!
 - can lead to 'stonewalling'

Solution

- A conversational recommender system
 - an iterative approach
 - users can elaborate their requirements as part of an extended recommendation dialog
 - Anext lecture