Lecture 5: Collaborative Filtering II

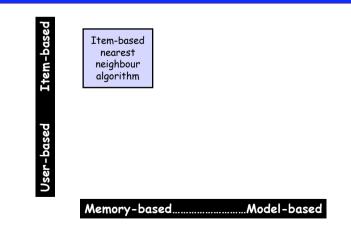
Challenges

- Improving time and space efficiency
- Handling cold-start issues
- Coping with sparsity
- Enhancing security & privacy
- Detecting and overcoming attacks

Improving time and space efficiency

- The user-based nearest-neighbours algorithm compares the active user to potentially every other user
 - there may be tens of millions of other users
 - in some domains, the number of items can be very large too (e.g. web pages)
 - finding the neighbours takes time and space that grows linearly with the number of users and the number of items
- This has led academics and practitioners to investigate item-based approaches

Types of CF algorithm



Ratings matrix

 Observation: we can compute similarity between columns (item-item similarity) just as easily as we can compute similarity between rows (user-user similarity)

3 1 2 3 4 4
3 4
3
4 3 3
2

Ann 2	4	3	5
-------	---	---	---

Similarity, *sim(i, j)*

Many systems use an adjusted cosine correlation

$$sim(i, j) = \frac{\sum_{u \in RB_{i,j}} (r_{u,i} - \overline{r_u})(r_{u,j} - \overline{r_u})}{\sqrt{\sum_{u \in RB_{i,j}} (r_{u,i} - \overline{r_u})^2} \sqrt{\sum_{u \in RB_{i,j}} (r_{u,j} - \overline{r_u})^2}}$$

- It is computed over all users u who have rated both i and j, RB_{i,j}
- $\overline{r_u}$ is the average over all of user u's ratings

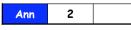
Item-based CF prediction algorithm

- Intuition: predict the rating based on this user's ratings for other items and how similar those other items are to *i*
- To predict a rating for active user *a* and item *i*:
 - For every item j that user a has rated,
 - Use profiles of all users who have rated both i and j to compute the similarity between i and j, sim(i, j)
 - Let NN be i's nearest neighbours, i.e. the set of size k for which sim(i, j) is highest
 - Compute a predicted rating, pred(a, i), from NN's ratings
- Worked example
 - We'll predict Ann's rating for Brazil
 - What similarities will we compute?

Example: *sim(Brazil, Alien)*

	Alien	Brazil	
Ben			sim(i, j)
Col	5	5	
Deb			
Edd	5	4	
Flo	5	5	

$$sim(i,j) = \frac{\sum_{u \in RB_{i,j}} (r_{u,i} - \overline{r_u})(r_{u,j} - \overline{r_u})}{\sqrt{\sum_{u \in RB_{i,j}} (r_{u,i} - \overline{r_u})^2} \sqrt{\sqrt{\sum_{u \in RB_{i,j}} (r_{u,j} - \overline{r_u})^2}}}$$



Example

- The similarities
 - sim(Brazil, Alien)
 - sim(Brazil, Dumbo) = -0.61
 - sim(Brazil, E.T.) = 0.28
 - sim(Brazil, Fargo) = 0.18
- Suppose k = 3
- Brazil's 3 nearest neighbours are Alien, E.T., Fargo

=

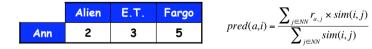
Predicted rating, pred(a, i)

 Following the same reasoning as before, we take a weighted average:

$$pred(a,i) = \frac{\sum_{j \in NN} r_{a,j} \times sim(i,j)}{\sum_{j \in NN} sim(i,j)}$$

- (This time NN is not a set of most similar users who have rated i; it is a set of most similar items rated by a)
- There is no need to adjust here for users' mean ratings because the only ratings used here come from the same user

Example



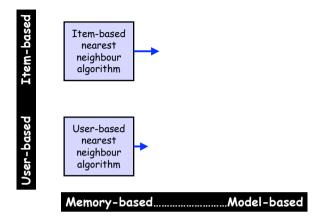
Item-based CF recommendation

- To recommend items to active user a:
 - you can take the approaches we saw before, e.g. computing predictions
 - Amazon simply finds items that are similar to ones you liked (viewed, added to wish list, purchased,...) and recommends these items

User-based versus item-based

- User-based seems 'truer' to word-of-mouth recommendations
- They have comparable accuracy
 - (the most accurate approach changes all the time)
- Time and space efficiency
 - in item-based prediction, you are only computing the similarity between i and each item that a has rated
- It is claimed that item-item similarity is likely to be more stable than user-user similarity
 - hence, item-based is more amenable to precomputation

Types of CF algorithm



Precomputation

- User-based
 - precompute all user-user similarities
 - find neighbours on-line
 - make predictions/recommendations on-line
 - periodically, recompute user-user similarities
- Item-based
 - precompute all item-item similarities
 - precompute each item's k nearest neighbours
 - make predictions/recommendations on-line
 - periodically, recompute item-item similarities & neighbours
 - but less often than you would for user-based

Handling cold-start issues

- An initial lack of ratings
- New user:
 - A new user has no ratings, so we cannot form neighbourhoods (except randomly)
 - Solutions
 - ask the user to rate some initial items (which items?)
 - display non-personalized predictions, e.g. based on population averages
 - use a hybrid recommender
- New item:
 - A new item has no ratings so we will not recommend it
 - Solution
 - use a hybrid recommender

Cold-start issues

- New community:
 - Catch-22
 - · without ratings we can't recommend well,
 - but until we recommend well, people won't hang around and give us ratings
 - Solutions
 - incentivize early adopters
 - have some other service on offer at the same time
 - take ratings data from another source
 - use a hybrid recommender

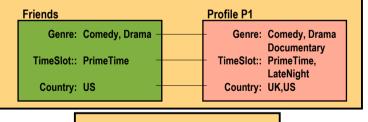
Hybrid systems

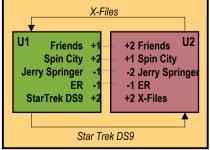
- A hybrid recommender system combines multiple techniques to achieve some synergy
- In particular, where complementary, one technique can compensate for another's weaknesses, e.g.
 - while a CF system is experiencing cold-start problems, recommendations to the new user or for the new item can still be made by some kinds of CB system
 - once rating profiles are of adequate size, the CF can make the serendipitous recommendations that the CB system cannot
 - grey sheep (users who do not consistently agree/disagree with others) can receive CB recommendations

A hybrid system: PTV

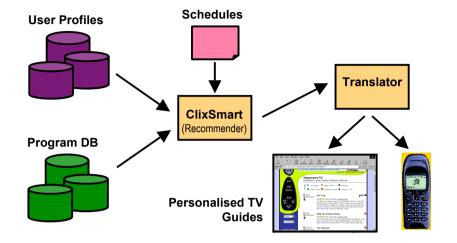
- Problem
 - hundreds of TV channels, thousands even
 - in USA, "TV Guide" is 400+ pages
- Solution:
 - personalized TV guide
- Launched 1999
 - E.g. ran as MyTv on the Irish Times website
 - Acquired 20,000 users (3-5% of the Irish Internet population of the time)
 - But later discontinued

PTV: CB and CF

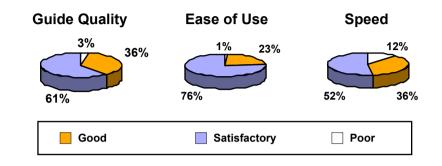




PTV



PTV: user trials (6 months)



Coping with sparsity

- Consequences for user-based CF
 - may not be able to find enough users who have rated *i*
 - users who have rated i may have no or few items in common with a
 - may find fewer than k neighbours (esp. if we exclude those with negative similarity)
 - may have to make do with neighbours with rather low similarity to a
 - ...
- Similar issues for item-based CF
- Solution: inferred ratings(?) or hybrid systems

Enhancing security & privacy

- Concerns about security & privacy of data stored in centralized repositories
- One response is investigation of distributed peer-to-peer CF systems
 - maybe this increases privacy issues!
- Another response is investigation of ways of not revealing actual ratings
 - Encryption
 - Perturbation
 - Obfuscation
 - Adding imprecision
- Given auxiliary info, the identity of some users can also be revealed
 - people who connect clusters of different tastes are very susceptible

Detecting & overcoming attacks

- CF systems are vulnerable to attack
 - profile injection attacks
- Shilling attacks
 - Nuke attacks: inject profiles that give low ratings to competitors' items
 - Push attacks: inject profiles that give high ratings to your own profiles
- Other attacks
 - Inject random profiles to create mayhem
 - Inject profiles for 'social vandalism'
 - E.g. <u>"Amazon blushes over sex link gaffe"</u>
- Some believe user-based algorithms are more susceptible

Desirable extensions

- Reporting prediction and recommendation confidence
- Explaining recommendations, and enhancing scrutability
- Incorporating explicit notions of user trust
- Making recommendations that are sensitive
 - to short-term, ephemeral goals
 - to time and place, etc.
- Recommending bundles of items
- Recommending to groups of users
- Recommending across domains