CS6120: Intelligent Media Systems

Derek Bridge

People

 Dr. Derek Bridge 	Lecturer
 Room 304, Kane Building 	
d.bridge@cs.ucc.ie	
 Adrian O'Riordan 	Lecturer
 CompSci Prefab 	
<u>a.oriordan@cs.ucc.ie</u>	
 Prof Barry Smyth 	Possible guest lecturer
 University College Dublin 	
 Aidan Waugh 	Demonstrator
 CompSci Prefab 	
 a.waugh@cs.ucc.ie 	

Teaching and examining

- Lectures: 13.00-15.00, Fridays
- Labs: 15.15-16.15, Fridays
- Handouts: copies of slides & labs on M.Sc. web site
- Written exam:
 - 90 minutes in the Summer
 - 60 marks
- Continuous assessment:
 - PHP programming
 - 40 marks

Outline

- Lecture 1: Background & motivation
 - Information overload
 - Adaptive systems
- Lecture 2: Personalization infrastructure
 - Types of personalization; user models
 - User identification; privacy
- Lecture 3: Personalized search
 - Search engines and spiders
 - Ranking algorithms
- Lecture 4: Collaborative filtering I
 - Core, user-based techniques
 - Evaluation

Outline

- Lecture 5: Collaborative filtering II
 - Challenges
 - Item-based techniques and hybrid systems
- Lecture 6: Recommender systems for e-commerce
 - Filter-based, similarity-based and utility-based retrieval
 - Diversity-enhanced retrieval; personalization
- Lecture 7: Conversational recommender systems for e-commerce
 - Navigation-by-asking
 - Navigation-by-proposing
- Lecture 8: Music recommender systems
 - Recommending tracks
 - Recommending play-lists

Outline

- Lecture 9: Web 2.0
 - Social navigation & networking
 - Blogs & news, feeds & syndication
- Lecture 10: Recommenders for the mobile web
 - Contextualization
 - Personalized web navigation
- Lecture 11: No lecture
 - Good Friday
- Lecture 12: Conclusions
 - Future prospects
 - Revision

Consumer decision making (idealized)

1. Perception of need

2. Establish criteria

- 3. Discovery of options
- 4. Identify consideration set
- 5. Compare items
- 6. Choose winner
- 7. Consume item
- 8. Evaluate item
- 9. Learn new needs and criteria

Which movie should I watch?

- The Internet Movie Database (IMDb)
 - Launched 1990; owned by Amazon since 1998
 - Database statistics

Which book should I buy?

Which papers should I read?

Which news articles shall I read?

Where should I take my vacation?

TripAdvisor.com

 "…features real advice from real travellers, with more than 5 million unbiased reviews and opinions, covering 250,000+ hotels and attractions"

'Shopping'

- …in the material world
 - Physical limitations on range of items available
 - Irreproducibility or limits on reproducibility of items
 - Can experience the item (test drive, try it on, try it out, taste it,...)
 - Guidance from salesperson or other intermediary (librarian, travel agent, tutor,...)

- ...online
 - Lower physical limitations means wider choice
 - Some items (digital ones) are infinitely reproducible
 - Cannot experience physical items; but may be able to play samples of digital items
 - No human intermediary ("disintermediation")
 - Greater reliance on information

Information about items

- Types of information about items
 - Descriptions
 - Technical
 - Lifestyle
 - Reviews
 - Expert
 - End-user
 - Meta-descriptions
 - Reliability
 - Reputation
- Format of information about items
 - Multimedia: text, images, video, audio

Information overload

Ubiguitous access

Estimating the scale of the problem

- "How much information?"
 - "...an attempt to estimate how much new information is created each year."
 - Peter Lyman, Hal R. Varian & others at the University of California at Berkeley
- 1999
 - 2 exabytes (10¹⁸ bytes)
 - Print is only .003%
 - Perhaps 99.96% created by individuals
 - http://www2.sims.berkeley.edu/research/projects/howmuch-info-2003/

- 2002
 - 5 exabytes
 - Print is only .001%

Estimating the scale of the problem

- A quick experiment
 - Issue queries to Google and count the results
 - Assumes Google's indexes are representative of the Web as a whole
 - Assumes that all results are relevant

ireland football	1,070,000
lung cancer	6,030,000
irish tourism	2,170,000
search queries	9,780,000
information overload	276,000
ucc	2,410,000
ucd	389,000
train timetables	288,000
george orwell	344,000
united states	694,000,000
china	74,800,000
sun holiday	7,450,000

Deculte

Query

Estimating the scale of the problem

- "The Indexable Web is 11.5 Billion Pages"
 - A.Gulli & A.Signorini, 2005
 - Using the method of K. Bharat & A. Broder, 1998
 - Issue a random guery to a search engine A
 - · Choose a URL, u, from the result list
 - Visit u and construct queries from its content
 - See whether u appears in the result list when you issue these queries to search engine B
 - On the basis of how often this does/does not happen, we get an estimate of the overlap/non-overlap in A's and B's indexes

- Of the 11.5 billion pages
 - Google indexes 76.2%
 - Yahoo indexes 69.3%
 - MSN indexes 61.9%

Ask/Teoma indexes 57.6%

Estimating the scale of the problem

- Surface web
 - Indexed by web search engines
- Deep web (invisible web, hidden web)
 - especially dynamic web pages
 - typically not indexed by web search engines
 - estimated in year 2000 to be 500 times larger than the surface web <u>http://www.brightplanet.com/resources/details/deepweb.ht</u> <u>ml</u>
 - See also B. He et al (2007): Accessing the deep web, Communications of the ACM, vol.50(5), pp.94-101
 - Try the <u>Turbo10</u> search engine

Adaptive systems

- In the face of information overload,
 - abandon one-size-fits-all
 - develop adaptive systems, which tailor content, presentation and behaviour to their context of use
- E.g.
 - adaptive search engines: in result lists, promote items that are more relevant to this user
 - adaptive hypermedia: select and highlight content, inc. hyperlinks, that are of more interest to this user
 - adaptive recommender systems: recommend items that best satisfy user's goals and preferences

Personalization

- In particular, develop personalization technologies, which adapt to the user
- "...personalization tailors certain offerings (such as content, services, product recommendations, communications, and e-commerce interactions) by providers (such as e-commerce Web sites) to consumers (such as customers and visitors) based on knowledge about them, with certain goal(s) in mind."

[Adomavicius & Tuzhilin 2005, p.84]

- G. Adomavicius & A. Tuzhilin (2005): Personalization Technologies: A Process-Oriented Perspective, Communications of the ACM, vol.48(10), pp.83-90
- But be aware that personalization is not the only form of adaptation: a system can adapt to time, place, consumer's companions, consumer's device,...

Case study: Google News

- Google News is a news aggregator
 - developed by Krishna Bharat in 2001
 - now different versions available in 42+ regions and 17+ languages

- English-language versions cover the last 30 days' articles from 4,500 sites
- ranking and clustering of articles is automatic
- but humans select the source sites
 - accusations of bias, censorship, failure to censor, illegal reuse,...

Google News: How it works

- Ranking
 - timeliness of the article
 - whether it is an original piece
 - placement by the editors on the source page
 - apparent scope and impact
 - popularity (click rate of the article by users of Google News)
 - authority of the source based on
 - number of non-duplicate stories
 - length of articles
 - breadth of articles
 - number of important/breaking stories
 - click rate of the site by users of Google News
 - average quality of the writing
 - PageRank of the source's website
 - real world data on the news source (e.g. number of employees)
- Agglomerative hierarchical clustering

Personalization

- User can choose
 - standard sections (even from different versions)
 - new sections (based on keywords)
 - number of items per section
 - layout (JavaScript drag-and-drop)

Personalization

- Recommended stories
 - different recommendations for different users
- It records your selections
 - hence, when using Google News, you must sign-in to your Google account and you must have "Personalized Search" enabled
 - the more you use Google News in this fashion, the better the recommendations become
- It recommends stories to you that similar users have selected
 - a similar user is one who has selected stories similar to the ones you have selected
 - A. Das et al (2007): Google News Personalization: Scalable Online Collaborative Filtering, Procs. Of the 16th International World Wide Web Conference, pp.271-280

Personalization process model

[Adomavicius & Tuzhilin 2005, p.84]

Consumers' objectives

- Better outcomes
 - better information about items
 - better items chosen for consumption
- Better interaction
 - more efficient
 - more confidence-inspiring
 - more enjoyable experience
- Prestige
- Social interaction

Providers' objectives

- Increase conversion rate (visit-to-buy ratio)
 - measured by volume
 - measured by value
- Make interactions more efficient
 - pre-sales, sales and post-sales
- Increase likelihood of repeat visits/customer loyalty
- May depend on their business model
 - Are consumers charged per use, per transaction, by subscription?
 - Or is revenue generated via some third-party, e.g. from ad clickthrough?
 - The business model raises questions about bias: how much providers want to influence recommendations