
Learning in Neural Networks

1 Introduction

Having looked at learning in a single TLU, we now look at the learning algorithm for a fully connected, layered,
feedforward network. The algorithm we look at is called the back-propagation algorithm (or the back-prop algorithm)
for reasons that will become clear below.

There is a change we have to make to the TLUs in our network in order to make this algorithm work properly. We
have to redefine g, the activation function. We need g to be a function that can be differentiated. At the moment, g is a
step-function, and these cannot be continuously differentiated. We replace our step-function by an s-shaped function
called a sigmoid. We will use:

g(x) ,
1

1 + e−x

Note that previously TLUs (using step-functions) could output only 0 or 1. But now, TLUs (using sigmoid-functions)
can output any real numbers between 0 and 1. (In fact, from this definition, the outputs can never quite reach 0 or 1.)

0
x

g(x) g(x)
1

0

0
x

0

1

Step function
(threshold at zero)

Sigmoid function

This function can be differentiated. Its partial derivative with respect to x , δg
δx

, also written g′, is as follows:

g′(x) = g(x) × (1 − g(x))

The back-prop learning algorithm is basically the same as the algorithm for a single TLU. But there’s a problem
that we have to solve. It is called the blame assignment problem (or, in some circumstances, the credit assignment
problem). In our case, we need to decide which of the existing weights is to blame for an error and divvy-up the
adjustment among those weights.

Why is this a problem (especially given that it wasn’t a problem in TLU learning)? Updating weights between the
hidden layer and the output layer is simple enough. We can easily compute the error between the actual net outputs
and the target outputs, and we can divide this up among the weights. But how do we know the error at the hidden
layer? In other words, we know what the hidden units do produce; but how do we know what the hidden units ought
to produce. Without knowing their target outputs, we don’t know their error, and so we can’t share it out.

The back-prop algorithm solves this problem. It relies on having the nice uniform architecture of a fully connected,
layered, feedforward network. (There are variants of the backprop algorithm that can be used for networks that are
not fully-connected and/or layered. There are alternative learning algorithms and even, for some cases, variants of
backprop that can be used for recurrent networks.)

1

As you might guess from its name, this algorithm propagates error back through the layers of the network. So first it
computes the error at the output units, and adjusts the weights on the lines entering those output units. Then, on the
basis of those adjustments, it can compute error at the hidden units and adjust the weights on the lines entering the
hidden units.

For simplicity, we’ll be sticking to two-layer networks. But in general, the error will be propagated back, layer by
layer, through the whole network.

The neat thing about back-prop is that a unit’s weights will change in a way that can be calculated using only informa-
tion that is local to that unit.

2 The Back-Propagation Algorithm

Suppose we’re presenting some training example to the network. The example comprises an input vector, s (the vector
of incoming sensor values) and the target output vector, target (the values we’d like to see appearing on the output
lines of the units in the output layer). We activate the network, using s, and we observe the actual output values from
the output units, output.

Let’s look at one of these output units, ok. Its input activation is the weighted sum of the outputs of all the hidden
units, and we’ll call this inok

. Its actual output is g(inok
) and we’ll call this outputok

. Its target output is targetok
.

The error at this output node is, of course:

Errok
, targetok

− outputok

.

This output node receives weighted input from the hidden units. Suppose there are m hidden units, 〈h0, . . . , hm〉. A
given hidden unit, hj , has an output of outputhj

, which it feeds into each of the output units, including ok. The weight
on the line between hj and ok will be denoted by whj ,ok

.

This weight needs adjusting in the light of the error computed above. The amount it should be adjusted by is

∆ok
, g′(inok

) × Errok

The derivation of this is beyond the scope of this course, but some explanation is given at the end of these notes.

The formula for making the adjustment is then:

whj ,ok
:= whj ,ok

+ α × outputhj
× ∆ok

As before, α is the learning rate.

The above update rule is used to update all the weights between all the hidden units and all the output units.

Next, we must update the weights between the input units and the hidden units.

For this, we need to compute the error in the outputs of the hidden units. (This is the back-propagation!) Consider a
particular hidden unit hj . The idea is that hj is responsible for a fraction of the sum of the ∆ok

for each of the output
nodes 〈o1, . . . , ok, . . . , ol〉. Specifically,

∆hj
, g′(inhj

) ×
k=l∑

k=1

whj ,ok
∆ok

(Again, the derivation of this is beyond the scope of this course.)

2



The formula for making weight adjustments is then much as before:

wsi ,hj
:= wsi,hj

+ α × si × ∆hj

We use this update rule to update all the weights between all the input units and all the hidden units.

The code for back-prop is below. (You don’t need to understand it in detail. You need to understand the basic ideas
from above. The code shows you how they fit together.)

for (each epoch, e)
{ /* Within each epoch, we deal with each example in turn.

*/
for (each ex in the set of examples)
{ exampleInput = ex.getInput();

targetOutput = ex.getTargetOutput();
/* Compute the actual output we get for this example input.
*/

output = net.activate(exampleInput);
/* Compute error at output layer and update weights

between hidden layer and output layer.
*/

for (int k = 0; k < numOfOutputs; k++)
{ err[k] = targetOutput[k] - output[k];

deltaO[k] = outputUnit[k].getGradient() * err[k];
/* Adjust each incoming weight.
*/

for (int j = 0; j < numOfHiddenUnits; j++)
{ net.setOutputLayerWeight(j, k,

net.getOutputLayerWeight(j, k) +
theLearningRate * net.getHiddenUnit(j).getOutput() *
deltaO[k]);

/* The weight times deltaO can be added into deltaH for
use below.

*/
deltaH[j] += net.getOutputLayerWeight(j, k) * deltaO[k];

}
}
/* Compute error at hidden layer and update weights

between input layer and hidden layer.
*/

for (int j = 1; j < numOfHiddenUnits; j++)
{ /* The sum of the weights and the output layer delta terms

are already in deltaH. So just multiply by the gradient.
*/

deltaH[j] *= hiddenUnit[j].getGradient();
/* Adjust each incoming weight.
*/

for (int i = 0; i < numOfInputs; i++)
{ net.setHiddenLayerWeight(i, j,

net.getHiddenLayerWeight(i, j) +
theLearningRate * exampleInput[i - 1] * deltaH[j]);

}
} // end of one example within an epoch

3

} // end of an epoch
} // end of all epochs

3 Example

I used the algorithm to learn a net to compute exclusive-or. The architecture of the net (excluding extra units in place
of thresholds) was: two input units (sensors), three hidden units and one output unit.

Four examples were presented to the net (see below). I used a learning rate of 0.35. I trained the net until its total
error on the training examples was no greater than 0.1. The number of epochs required to achieve this was surprisingly
high. Obviously, exactly what happens in any particular use of the algorithm depends on the initial randomly-chosen
weights. But it seems that between 2500 and 5000 epochs are needed!

The diagram shows what happened on one occasion when I ran the algorithm. The first diagram shows the random
weights. The second diagram shows the weights after training. On this occasion, training required 3378 epochs.

s2

s1

s0 = 1

h0 = 1

h1

h2

h3

o1

s2

s1

s0 = 1

h0 = 1

h1

h2

h3

o1

Before

After

s0,h1 = -0.14
s1,h1 = -0.42
s2,h1 = -0.13
s0,h2 = -0.09
s1,h2 = 0.47
s2,h2 = -0.07
s0,h3 = -0.07

h0,o1 = -0.17

h2,o1 = 0.23
h3,o1 = -0.39

h1,o1 = -0.24

s0,h1 = -0.82
s1,h1 = 0.12
s2,h1 = 2.63
s0,h2 = -2.17
s1,h2 = 5.47
s2,h2 = -3.54
s0,h3 = -3.64
s1,h3 = 3.3
s2,h3 = 1.76

h0,o1 = -1.51
h1,o1 = -3.54
h2,o1 = 7.4
h3,o1 = -5.82

s1,h3 = 0.47
s3,h3 = -0.04

The table shows the actual outputs of the net after it has been trained.

4



example input target output actual output
〈0, 0〉 0.1 0.12
〈0, 1〉 0.9 0.87
〈1, 0〉 0.9 0.88
〈1, 1〉 0.1 0.13

Question. Why did I use target outputs of 0.1 instead of 0 and 0.9 instead of 1?

By the way, I got equally good results with a net that had only 2 units in its hidden layer. I also tried a net with only
one hidden unit but I had to terminate the program — presumably it was not able to converge.

4 Gradient Descent Search

Where do the update rules come from? What’s going on in the back-prop algorithm?

The idea of this algorithm (and many supervised learning algorithms) is to minimise the total error. In fact, when
deriving the update rules, we don’t use the sum of the errors, we use the sum of the square of the errors. Why?
Because some of our errors are positive numbers and others are negative numbers, and if we simply summed them,
some would cancel out others, giving an underestimate of the total error. If we square them first, all numbers involved
in the sum are positive.

Imagine that, for each possible combination of weights, we could compute the total error and that we plotted these
values on a graph. That’s hard to visualise in general because, if there are n weights in the net, we need a (n + 1)-
dimensional graph. So, to help visualisation, in the left-hand diagram below, we pretend that our net has only one
weight in it, and we plot the different error values for different weight values. (The right-hand diagram attempts a
3-dimensional effort where error is plotted against two different weights.)

Err

w1

w2

Err

w1

If we are presently at some point on this line, then we want to change the weight in such a way as to reduce the error.
The gradient of the line with respect to the weight shows how the error would change if we made a small change to
that weight.

(In general, where we consider more than one weight, if we are presently at some point in this n-dimensional space,
the gradient of the error surface with respect to each weight shows how the error would change if we changed that
weight. And this is given by the partial derivative of the error function with respect to that weight.)

Each weight is changed by an amount proportional to the slope with respect to that weight and in such a way as to
cause the error to decrease. This has the effect of moving the error in the direction of the steepest descent. Hence, we
say that this learning algorithm carries out gradient descent search in the space of weights.

So, the sum of the squares of the errors is given by:

Err ,

k=l∑

k=1

(targetok
− outputok

)2

5

We then derive (by differentiation) the change in the error with respect to a weight between the hidden layer and the
output layer. This is what we get:

δErr
δwhj ,ok

= −outputhj
× ∆ok

We then derive the change in the error with respect to a weight between the input layer and the hidden layer. This is
what we get:

δErr
δwsi,hj

= −si × ∆hj

These are the quantities we use in the update rules.

6


