
Genetic Algorithms

1 Background

Where do the rules of a production system come from? There are several options. The option we’re going to look at
here is: an agent might have obtained them through a process of evolution.

There are two observations:

• Successive generations can differ from previous ones. Children inherit characteristics of their parents. But
combining and mutating these characteristics introduces variation from generation to generation.

• Less fit individuals are selectively eliminated (‘survival of the fittest’).

Thus it is possible for individuals in successive generations to perform better than those in previous ones.

Programs that emulate this process are referred to as Genetic Algorithms (GAs) or Evolutionary Algorithms. In this
lecture, we use GAs to evolve programs (in our case, production systems). This is referred to as Genetic Programming
(GP) or Evolutionary Programming.

2 Genetic Algorithms

Generation 0 is a population of randomly generated individuals.

Repeat a large number of times:

Evaluate each individual by using it on the task for which it is being evolved and scoring its performance on
this task using a fitness function. (Typically, average performance on a number of randomly generated
tasks is used.)

Generation (i + 1) is created from generation i.

• A number of individuals in generation (i + 1) will be generated by copying. Specifically, a propor-
tion of generation i are picked using tournament selection (see below) and are copied directly into
generation (i + 1).

• A number of individuals in generation (i+1) will be generated by crossover operations. Specifically,
to generate each of these individuals, a mother and father are chosen (using tournament selection)
from generation i. A random subpart of the mother is switched with a random subpart of the father,
hence producing two new children.

• A number of individuals in generation (i + 1) will be generated by mutation operations. Specifically,
a parent is chosen (using tournament selection) from generation i. A random subpart is replaced by
some new random subpart.

Pick the fittest individual from the final generation.

In crossover, the children may or may not be fitter than their parents. But the hope is that tournament selection will
supply reasonably fit parents, and the children might have some fitness advantage if they incorporate parts of these fit
parents.

Mutation is a more random process and is used sparingly. But it is worth including because it might help to produce
an essential feature that was missing in the original population.
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Tournament selection is used in GAs to pick individuals from a population. Suppose you want to pick 20 individuals
from 100. Pick a small number of individuals (typically fewer than 10) randomly (with replacement) from the 100.
Keep the fittest one. Do this again and again until you have got your 20. (There are alternatives to tournament selection
which we won’t cover here. Tournament selection may have the advantage that it reduces the likelihood of crowding.
Crowding occurs when some individual that is fitter than others gets to reproduce a lot, so that copies of this individual
and variants of this individual take over the population. Tournament selection, on the other hand, tends to maintain
diversity.)

You can see that to run a GA, you will need to decide on the values of a large number of parameters.

3 Genetic Programming

Genetic Programming is an application of Genetic Algorithms to the task of evolving software. In Genetic Program-
ming, the individuals will be programs; and, in our case, they will be production systems.

How will we represent programs in a way that supports crossover and mutation? We need compact representations
that can be operated on efficiently. But we also prefer it if each randomly generated individual in generation 0 and
each individual we obtain in generation (i + 1) from crossover or mutation is a syntactically and semantically correct
program (i.e. it can be executed without crashing), otherwise we could have problems when evaluating its fitness.
Given that GP is a process that uses random change, this can be hard to arrange.

Two approaches are common. Programs can have bit-string representations or they can have tree representations. Bit-
string representations are very common for GAs in general; tree representations are probably more common for GP.
We’ll look at both representations and use them for production systems.

3.1 A bit-string representation for production systems

Suppose we have m propositions, p0, . . . , pm and l actions a0, . . . , al. Each rule will be represented by a bit-string
comprising m bits to represent the rule’s condition and dlog2 le bits to represent the rule’s action. For example, if we
have 8 propositions (m = 8), we need 8 bits for the rule’s condition. And if we have 5 actions then we need 3 bits for
the rule’s action (l = 5 so we need dlog2 5e = 3 bits). (2 bits could only encode 4 different actions; 3 bits can encode
8 different actions.) Each of the agent’s possible actions can then be assigned a unique binary identifier, e.g.:

TURN LEFT 000
TURN RIGHT 001
MOVE 010
NULL ACTION 011

...
...

Now consider the following rule:
if p0 then TURN LEFT

The condition of this rule can be represented as the following bit-string 1#######000. In these bit-strings, we use 0
(false ) and 1 (true ), as you’d expect, but we also allow # to represent Don’t Care (so they’re not really bit-strings). So
the string 1####### says that p0 must be true and we don’t care about the other propositions. Given that TURN LEFT
is encoded by 000 (above), the rule as a whole is represented as

1#######000

The rule
if p1 then TURN RIGHT
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is similarly represented by
#1######001

The rule
if ¬p0 ∧ ¬p1 then MOVE

is represented by
00######010

The production system as a whole would be represented by the concatenation of these strings, and probably some extra
bits to ‘pad’ the string out so that it meets some length requirement, e.g.:

1#######000#1######00100######010#################################

Question What would be the representation for the following rule?

if p3 ∧ p4 ∧ ¬p0 ∧ p7 then NULL ACTION

(A mathematical observation is that this representation allows only rule conditions that are in conjunctive normal
form, i.e. they comprise propositions or the negation of propositions conjoined (ANDed) together. It does not allow
disjunction in rule conditions. No expressiveness is lost, however, because the rules themselves are implicitly disjoined
and so the effect of a disjunction can be had through multiple rules. For example, the rule:

if p0 ∨ p1 then MOVE

can be equivalently represented by two rules:

if p0 then MOVE

if p1 then MOVE

The price is a less compact representation.)

The great advantage of bit-string representations is they give easy implementation of genetic operations. In crossover,
you take two bit strings; you choose a random position in them; and you swap their tails from this point. For example,
suppose we choose position 8, then applying crossover to these two bit-strings:

101##10111#0

001##11001##

produces
101##10101##

001##11011#0

In mutation, you simply choose a random position and flip the bit to another value. For example, if we choose position
8:

101##10111#0

could become
101##10101#0

These are illustrated graphically below:
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1 # 1 1 1 1 # 010 # 0

0 0 # 1 0 0 1 # #1 # 1

1 # 1 1 1 1 # 010 # 0

Crossover Mutation
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(In fact, what we are depicting here is single-point crossover. There are alternatives such as two-point crossover and
uniform crossover. But we will not cover these here.)

Of course, when we’re evaluating the fitness of new production systems, we must decide what to do when the parts
of the bit-string that are supposed to encode actions do not refer to one of the l actions. (You could use a default or
randomly-chosen action, you could reject this individual immediately on syntactic grounds, or, when evaluating the
individual, you can assign a zero fitness.)

3.2 A tree representation for production systems

Programs and production systems can be represented as trees. In general, the internal nodes would be functions,
operators, predicates, connectives and commands. The leaf nodes would be constants or variables.

We saw, in the previous lecture, that our production systems are already stored as trees. In crossover, a randomly-
chosen subtree of the mother and a randomly subtree of the father are switched. In mutation, a randomly-chosen
subtree of the parent is replaced by a randomly-generated new subtree:
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Crossover Mutation

Again, you must decide how to avoid the evolution of syntactically or semantically incorrect programs; or, if you do
allow the evolution of such programs, you must decide how you will evaluate them.

4 Closing Remarks

We’ve been looking at the evolution of production systems. But GAs in general, and GP in particular, are used
throughout AI to evolve all sorts of individuals: programs in various languages, digital circuits, similarity measures,
etc.
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