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Abstract. Constraint-based local search is an important paradigm in
the field of constraint programming, particularly when considering very
large optimisation problems. We are motivated by applications in ar-
eas such as telecommunications network design, warehouse location and
other problems in which we wish to select an optimal set of locations
from a two dimensional plane. The problems we are interested in are
so large that they are ideal candidates for constraint-based local search
methods. Maintaining the objective function incrementally is often a key
element for efficient local search algorithms. In the case of two dimen-
sional plane problems, we can often achieve incrementality by exploiting
computational geometry. In this paper we present a novel approach to
solving a class of placement problems for which Voronoi cell computation
can provide an efficient form of incrementality. We present empirical re-
sults demonstrating the utility of our approach against the current state
of the art.

1 Introduction

We are motivated by applications in areas such as telecommunications network
design, warehouse location and other problems in which we wish to select an
optimal set of locations from a two dimensional plane. Local search algorithms
have proved very efficient in this area and we are interested in the design of ef-
ficient incremental mechanisms involving closest point problems. We investigate
a restriction of this class of problems in which the cost of allocating a client to
a facility is assumed to be proportional to Euclidean distance. This assumption
initially comes from a practical problem encountered by the authors and focused
on the design of resilient long-reach passive optical networks [10]. This restriction
is however relevant in other application domains, in particular spatial clustering
problems such as the one tackled in [12]. The core problem in this application1

is referred to as the Single Coverage Problem and defined as follows:

? This work is supported by Science Foundation Ireland Grant No. 10/CE/I1853.
1 We simply present the core problem (which remains NP-complete even if the other

constraints of the real application are not considered) to facilitate the process of
establishing connections between our problem and problems studied in the literature.



Definition 1 (The Single Coverage problem). Given a constant κ and a
set S = {pi|1 ≤ i ≤ m} of points in a two dimensional space where each point
pi is associated with a weight bi, the Single Coverage problem (SCP) is to decide
whether there exists a set W ⊂ S of cardinality p such that the weighted sum of
the distances from the points in S −W to their closest points in W is less than
or equal to κ, i.e.,

∑
pi∈S−W bi ×minpj∈W dij ≤ κ.

S is referred to as the set of clients and W as the set of facilities. Moreover,
dij denotes the Euclidean distance between the points pi and pj . The single
coverage problem is strongly related to location problems in a plane such as
the uncapacitated warehouse location problem (UWLP) [5]. Typically, the SCP
differs from the UWLP in three respects: the transportation cost is proportional
to the Euclidean distance (although this is usually the case in practice, UWLP
does not make any assumption about the transportation costs); there is no fixed
cost of opening a warehouse; and the number of opened warehouses is bounded
by p. Another, and even closer, problem is the p-median problem [8]. This latter
problem only differs from SCP because the similarity or dissimilarity measure
used by p-median problems is not restricted to the Euclidean distance. A vast
literature deals with location problems in the plane, the survey [6] presents
spatial clustering problems.

State of the art algorithms for solving large-scale p-median (k-medoid) or
uncapacitated warehouse location problems rely on local search. Genetic algo-
rithms [9], and tabu search in particular have been very successful [11]. We
describe in Sections 2 and 3 a local search algorithm for the single coverage
problem directly inspired by this previous work. In particular the incremental-
ity of the neighborhood has been described in detail [11, 16, 15, 1]. In Section
4, we present a novel approach to improving the complexity of the incremen-
tal algorithms presented in the previous section when the cost is proportional
to Euclidean distance. We present the empirical evaluation in Section 6. The
approaches are evaluated using two sets of experiments. In the first set of ex-
periments we investigated the behavior of the proposed algorithms on randomly
generated data, particularly focusing on benchmarking the primitive operations.
In the second set, we considered eight SCP cases where half of them corresponded
to real cases coming from network operators in Ireland and UK and the other
half corresponded to cases randomly generated. Our experimental evaluation
confirmed the superiority observed in the complexity analysis.

2 The Tabu Search

We denote the set of current facilities by W and the current set of clients/nodes
by C = S −W . We use i as an index for clients whereas j refers to facilities.

Neighborhood. The neighborhood is defined by moving a facility from one loca-
tion to another. This move is performed in two steps, a facility is closed first and
another one is opened. Closing a facility involves removing a point pj from W .



Opening a facility involves adding a point pi from C to W . The objective function
is evaluated by ensuring that clients are always connected to their closest facil-
ities. This invariant is maintained throughout the search. This neighborhood
is used by the main algorithm for k-medoid, namely the Partitioning Around
Medoids (PAM) algorithm [8]. However, PAM does not include an incremental
evaluation of the moves. Therefore we distinguish the two steps (opening and
closing) to develop an incremental scheme using [11] for each of these steps sepa-
rately. This incremental evaluation of the moves is achieved by maintaining ∆+

i

(the variation of cost due to adding pi in W (opening a facility)) and ∆−i (the
variation of cost due to removing pi from W (closing a facility)).

Search. The initial p facilities are chosen randomly. The tabu mechanism is very
simple. It prevents a point that was a facility in the last t iterations, where t
is the length of the tabu-list, from becoming a facility again. The tabu-list is
denoted T in Algorithm 1. The first improving move found is performed. If no
improving move exists, the facility to close is chosen randomly and the new best
location for this facility is opened. After a number of non-improving iterations,
the search is restarted from p random facilities.

Algorithm 1 presents the general scheme of the tabu search. It assumes that
two methods are available for opening and closing a facility (resp. OpenFacility
and CloseFacility) while incrementally maintaining the value of the objective
function (denoted obj) and ∆+. It is not useful to maintain ∆− incrementally
for this specific neighborhood, where all opened nodes are closed to evaluate
each move (Line 8 is only using ∆+). ∆− would be useful in a more general
context when the closing and opening operations can be done independently,
e.g., warehouse location. This algorithm is very like the PAM algorithm; the
only difference would be that PAM is selecting the best move rather than the
first improving one. However our algorithm is enhanced with the incremental
mechanisms, and the tabu metaheuristic, introduced in warehouse location for a
similar neighborhood. We believe it is the best starting point for our application
and purpose.

3 Incremental Neighborhood

Maintaining the objective function incrementally is a key element for efficient
local search algorithms [11]. When moving a facility from one location to another,
only a small subset of the clients are reallocated: clients that have lost their
current closest facilities and clients that have gained a new closest facility. The
cost is not affected by the other clients. Optimal incremental algorithms have
been published for opening and closing operations in the context of warehouse
location [16, 11, 15]. We present [11] in detail as we will build upon it. The data
structures needed to develop the incremental approach and maintain ∆+ and ∆−

are the following: a1i is the closest facility to client i so that a1i = arg minpj∈W dij ;
a2i is the second closest facility to client i so that a2i = arg minpj∈W |pj 6=a1i dij ;
Qi is a priority queue storing all the current facilities W ordered by increasing
distance from i. Consequently a1i and a2i are the first two elements of this queue.



Algorithm 1 TabuSearch()

1. Initialize W randomly, C = S −W,

3. While (end condition not reached)

4. p∗j = −1, bestDelta =∞, cobj = obj
5. For each pj ∈W − T and as long as bestDelta > 0
6. CloseFacility(pj) // updates obj and all ∆+

i incrementally

7. pibest = arg min{pi∈C−T}(∆
+
i )

8. If (∆+
ibest + (cobj − obj)) < bestDelta

9. p∗j = pj, bestDelta = ∆+
ibest + (cobj − obj)

10. OpenFacility(pj) // updates obj and all ∆+
i incrementally

11. If (bestDelta > 0)

12. p∗j = a random point in W − T
13. CloseFacility(p∗j)
14. OpenFacility (arg min{pi∈C−T}(∆

+
i ))

15. update tabu list T

The variations of the objective function due to closing and opening a facility
i are initialized as follows:

∆−i =
∑

pj∈S|a1j=pi

bj × (dj,a2j − dji) (1)

∆+
i = −

∑
pj∈C

bj ×max(0, dj,a1j − dji) (2)

When closing a facility i, we need to add to the objective function the cost of
disconnecting each point connected to pi and re-connecting them to their second
closest facility. Therefore, we add dj,a2j and remove dji. Similarly when opening a

facility i, each point pj of C that is closer to this new facility than to its current
closest facility (dj,a1j > dji) needs to be disconnected and re-connected decreasing

the objective function by the quantity dj,a1j −dji. Notice that ∆+
i is at most zero

(opening never degrades the overall objective function) and ∆−i is at least zero
(closing always degrades the overall objective function). In what follows we will
refer to dj,a2j − dji as the contribution of pj by which ∆−i increases. Similarly,

we will say that dj,a1j − dji is the contribution of pj by which ∆+
i decreases. For

the sake of clarity we will assume that all the bi are equal to 1 in the following;
the algorithms presented remain identical with general weights. It is simply a
matter of multiplying the distance by the weight.

3.1 Closing a Facility

Algorithm 2 presents the incremental maintenance of the data structures, in
particular ∆+ and ∆−, when closing a given facility pj .

For each client pi of C, the priority queue, Qi, is maintained (Line 2). The
previous values of the closest and second closest facilities of pi are saved in o1i



Algorithm 2 CloseFacility(pj)

1. For each pi ∈ S do
2. remove pj from Qi

3. o1i = a1i , o
2
i = a2i

4. a1i = Qi.getF irst(), a
2
i = Qi.getSecond()

5. If (o1i 6= a1i ) ∨ (o2i 6= a2i ) do

6. ∆−
o1
i

= ∆−
o1
i

− (d
i,o2

i
− d

i,o1
i
)

7. ∆−
a1
i

= ∆−
a1
i

+ (d
i,a2

i
− d

i,a1
i
)

8. If (o1i 6= a1i ) do
9. For each pk ∈ S such that di,k < d

i,a1
i

do

10. If (di,k < d
i,o1

i
) ∆+

k = ∆+
k − (d

i,a1
i
− d

i,o1
i
)

11. Else ∆+
k = ∆+

k − (d
i,a1

i
− di,k)

12. W = W − {pj}, C = C ∪ {pj}

and o2i respectively (Line 3). The closest and second closest facilities of pi are
then updated in a1i and a2i using Qi respectively (Line 4). Lines 5 to 11 deal
with the update of ∆+ and ∆−. When a facility pj is closed either the closest
facility of pi can change, or the second closest facility of pi can change, or none
of them changes. Only the points pi which have a new closest or second closest
facility can trigger the changes of the values of ∆−. Line 6 simply removes from
∆− the previous contribution of pi to its old closest facility and Line 7 adds the
new contribution of pi to its new closest facility.

Lines (8–11) update ∆+
k with respect to the contribution of i. From Equa-

tion (2) recall that the contribution of i for ∆+
k can change only when the closest

facility of i changes, i.e., when o1i 6= a1i (Line 8) and when di,k < di,a1i (Line 9).
Therefore, the iteration is performed on a pre-computed list of points k sorted
by distance from i as long as the criteria di,k < di,a1i holds. If k is closer to i than

o1i (i.e., di,k < di,o1i ), as shown in Figure 1(a), then it follows that the contri-

bution of i to ∆+
k is non-zero. Therefore, the previous contribution, di,o1i − di,k,

should be replaced by the new contribution di,a1i − di,k, which is effectively the

difference between di,a1i − di,o1i (Line 10). If k is not closer to i than o1i as shown

in Figure 1(b) then the contribution of i to ∆+
k is 0. Therefore, ∆+

k is updated
with the new contribution of i (Line 11).

io1
i

a1
i

k

(a) i was already contributing to ∆+
k

io1
i

a1
i

k

(b) i was not contributing to ∆+
k

Fig. 1. The two scenarios for a node i that contributes to ∆+
k in Algorithm 2. The old

association is drawn with a dashed line, the new one is drawn with a continuous line
and the potential association is drawn with a dotted line.



Algorithm 3 OpenFacility(pj)

1. For each pi ∈ S do
2. add pj to Qi

3 → 7. identical to Algorithm 2

8. If (o1i 6= a1i ) do
9. For each pk ∈ S such that di,k < di,o1i

do

10. If (di,k < di,a1
i
) ∆+

k = ∆+
k + (di,o1i

− di,a1
i
)

11. Else ∆+
k = ∆+

k + (di,o1i
− di,k)

12. W = W ∪ {pj}, C = C − {pj}

We now consider the complexity of Algorithm 2 for closing a facility. Updat-
ing one priority queue is done in O(log(p)), using an implementation based on
heaps, and this has to be done for all points thus Lines 1-2 imply a O(m log(p))
complexity. Updating ∆− is then done in constant time whereas updating ∆+

is achieved in time linear in the number of points pi whose closest facility
has changed. This complexity is optimal as it is necessary to consider all the
updated points, and they cannot cancel out since di,a1i is always increasing
(di,a1i ≥ di,o1i ). The pre-computed lists of points sorted by distance from any

other points (Line 9) requires O(m2) space which can be an issue when solving
very large problems. However, in practice the cost is dominated by the update
of the priority queues [11]. The update of ∆+ is costly but only done on a small
subset of S whereas the priority queues have to be updated for the m−p points.

3.2 Opening a Facility

The update of ∆− is identical to Algorithm 2. The update of ∆+ is very similar.
As mentioned above, the contribution of pi to ∆+ only needs to be updated when
di,a1i is updated, i.e., when (o1i 6= a1i ). However, in this case the contribution of

pi to a given ∆+
k is reduced either partially or completely since a node is being

opened. Line 10 refers to the case where pi remains as a contributor. In this case
we just update its contribution by taking into account that a1i is di,o1i−di,a1i closer
than di,o1i . In Line 11 we remove the contribution of pi completely. Finally, in
Line 12, W and C are updated accordingly.

4 A New Incremental Algorithm

The incremental algorithm presented in the previous section is dominated by the
O(m log(p)) cost of updating the priority queues. In practice very few points of
S are likely to have a new closest or second closest facility. The left part of
Figure 2 shows an example of opening a new facility pj . Facilities are indicated
by plain circles and points by crosses. The points for which pj is the new closest
facility are shown in squares whereas the points for which pj is the new second
closest facility are shown in circles. Only a very small number of points of the



Fig. 2. Example of opening a facility pj on left. Facilities are shown as plain circles,
points as crosses and the points having pj as their closest (resp. second closest) facility
are shown in a square (resp. a circle). Example of the Voronoi cell of pj (V(pj)) on right.
The boundary of the cell is indicated by the dashed nodes so B(pj) = {1, 4, 6, 7, 9} .

m points of S are affected. In this paper we focus on approaches that do not
maintain the priority queues Qi. The set of points for which a1i and a2i need to
be maintained, is computed directly using computational geometry techniques.

We begin with a simple approach. We define the radius rj of a facility j as
the maximum distance between the facility and any of its points that it covers.
The radius of each facility can be maintained easily. If a new facility j is opened
then the closest and the second closest of only those points i that are within the
reach of maxj∈W (rj) may change. Using the sorted list of nodes i by increasing
distance from node j, we only have to iterate over those points i for which
di,j ≤ maxj∈W (rj) rather the complete set S.

This approach already takes advantage of Euclidean distance and we will
see below how the space and time complexities of Algorithms 2 and 3 can be
improved by exploiting computational geometry techniques. Closest point prob-
lems are common in computational geometry [14, 3]. A strongly related work
is [13], which relies on triangulation to speed up the PAM algorithm but does
not present complexity results and ignores the optimal incremental schemes that
have been developed to improve PAM [11, 16, 15, 1]. A more relevant reference
is [7] which proposes to improve the k-means algorithm by using geometric rea-
soning based on kd-trees to speed-up the allocation of each point to its closest
cluster. Our work is specific to the p-median/warehouse location problem rather
than k-means and the proposed method tries to build upon known optimal in-
cremental algorithms by improving them in the context of Euclidean distances.

4.1 The Closest Points to a New Facility

Firstly we focus on updating a1i when opening a new facility. The question we
would like to answer efficiently is: determine the points in S which are closer
to a given point pj (the facility we would like to open) than to any other points
of a given specific set (the facilities W ). This set is precisely characterized by



the Voronoi cell [3] of pj regarding W denoted V(pj). A point q lies in V(pj) if
and only if dist(q, pj) < dist(q, pk) for all pk ∈ W . The right part of Figure 2
shows how a Voronoi cell is built. For any two points pj and pk we can define the
bisector (see [3], Chapter 7) as the perpendicular bisector of the line segment
pjpk. This bisector splits the plane into two half-planes: one containing the point
pj and another containing the point pk. V(pj) can be seen as the intersection of
the half-planes containing pj obtained by bisecting pjpk for all pk ∈W .

Definition 2 (Boundary of pj). The boundary of pj, B(pj), is the set of fa-
cilities pk such that the bisector of pjpk coincides with one of the line segments
of the Voronoi cell of pj.

Computing one Voronoi cell is based on computing the intersection of p half-
planes which can be done in O(p log(p)) [3]. This, however, does not give us the
actual points of S contained in the cell. We propose two approaches to compute
the actual points of S, the first one is very simple but requires O(m2) space
while the second one remains in O(m) space.

Approach based on the radius. The first approach does not require any special
data structure. It is based on the upper bound on the distance between the newly
opened facility j and the nodes which will have j as their facility. The Voronoi
cell of pj is a convex polygon which is associated with a set of (corner) points.
The minimum and the maximum distances between j and any of the corner
points of the Voronoi cell is denoted by rmin and rmax respectively. Any point
whose distance from j is less than rmin will definitely have j as its new facility.
Any point whose distance from j is more than rmax will not be affected by the
new facility. Any point whose distance from j is between rmax and rmin could
possibly be affected. Therefore one has to iterate over all the points i whose
distance from j is less than or equal to rmax. This is easy if we have access to
the points sorted in the increasing distance from j which requires O(m2) space.

Approach based on a kd-tree. The second approach is based on the use of a
common data structure in computational geometry, namely, a kd-tree [2]. A kd-
tree for two dimensional data points is a binary tree data structure where at
each node the space is partitioned horizontally or vertically. The two children of
each node correspond to two regions of the space.

The kd-tree is built once and contains the points of S, the subdivision of
the space is made alternatively on the x and y coordinates of a point of S and
continues until all regions contain no more than one point. A balanced kd-tree
(a tree such that each leaf node is more or less at the same distance to the root)
can be easily built by inserting the points in a specific order, simply by choosing
at each step the median of the points sorted on the corresponding coordinate.
In a balanced kd-tree, obtaining one point of S contained in a rectangular area
(a range query parallel to the axis used for partitioning the space in the kd-tree)
can be done in O(

√
m) and finding all points of S contained in a rectangular area

costs O(
√
m+ k), where k is the number of points in the corresponding area [3].



The tree is traversed as long as the region of a node intersects the area. When a
leaf is reached, the corresponding point is added in the list of points to return.
Similarly, when the area fully contains the region of a node, all points contained
in the subtree rooted at this node are added in the answer to the query.

When the area of the Voronoi cell is not a rectangle but an arbitrary convex
polygone, checking the intersection with the rectangular region of a node can be
done in O(h) time where h is the size of the boundary of the cell, i.e., h = |B(pj)|.
However, in this latter case, the O(

√
m) is not guaranteed. In order to express the

complexity, we consider the enclosing rectangle of the Voronoi cell as the query.
Let k be the number of points in the cell. The Voronoi cell can be enclosed in a
rectangle containing k

′
points (k

′
> k) in which case the overall complexity is

O(plog(p) +
√
m+k

′
). In practice we apply the algorithm using the Voronoi cell

itself to obtain more pruning in the tree.

4.2 Updating the Two Closest Points when Opening a Facility

We now focus on updating a1i and a2i when opening a new facility. We extend
the previous idea to find the set of points that have either a new closest or a
new second closest facility. The question we would like to answer efficiently is:
determine the points in S for which a given point, pj (the facility we would like
to open), is one of their two closest neighbors regarding a given specific set (the
facilities W ). Determining such a set exactly is slightly harder since the points
of the set may not necessarily be enclosed in a convex polygon. Characterizing
such a set involves the computation of the Voronoi cell of each facility of B(j),
which will increase the complexity.

We generalize the previous ideas so that the same scheme applies by replacing
the concept of Voronoi cell with a set V ′(pj) containing the set of points q for
which pj is closer than their second closest neighbor in W . In order to do so
we suggest a simple convex approximation based on the concept of Extended
Voronoi cell.

Definition 3 (Extended Voronoi cell). Given a point pj, the extended Voronoi
cell V2(pj) is defined as the Voronoi cell of pj associated with the set of facilities
W − B(pj).

Figure 3 illustrates an extended Voronoi cell. Similarly the concept of bound-
ary can be extended and we will denote B2(pj) the boundary of the extended
Voronoi cell of pj .

Lemma 1 (V ′(pj) ⊆ V2(pj)).

Proof. Consider a point q outside of V2(pj). q is closer to a facility pk ∈W−B(pj)
than to pj because V2(pj) is the Voronoi cell regarding W − B(pj). q is also
necessarily closer to a point of B(pj) than to pj since q does not belong to V(pj).
Thus pj cannot be one of the two closest neighbors of q. ut

Notice that V ′(pj) 6= V2(pj). For example in Figure 3 (left), the area paved
with squares within V2(pj) contains points that are closer to 4 and 6 than to pj .



Fig. 3. On the left : Example of V(pj) the Voronoi cell of pj , the boundary of cell is
defined by the dashed nodes so B(pj) = {1, 4, 6, 7, 9}. On the right: Example of V2(pj)
the extended Voronoi cell of pj whose boundary B2(pj) = {2, 3, 5, 8} .

4.3 Updating the Two Closest Points when Closing a Facility

We consider how to update a1i and a2i when closing a facility pj . Similar to the
previous case, the set of points that have pj as their closest or second closest fa-
cility can be computed using the extended Voronoi cell of pj . In this case however
we can assume that we maintain the set of points connected to pj in a dedicated
data structure, e.g. a list. When closing pj , the closest or second closest facility
of these points has to be updated. A simple solution would be to iterate over the
current opened facilities W to find the two closest. Alternatively, this is exactly
a 2-nearest neighbors problem. One seeks to quickly identify the two nearest
neighbors in W of the points that were connected to pj . The k-nearest neighbors
is a classic problem in machine learning [2] and efficient implementations rely
on the use of kd-trees [2, 4]. Assuming that we maintain a kd-tree for the set
W , finding the two nearest neighbors of a given point can be done efficiently
in a balanced kd-tree. The worst-case complexity remains O(p) as it is easy to
construct examples where all the leaves of the tree will have to be checked. The
complexity analysis presented in [4] reports that the expected number of nodes
inspected in the tree is in O(log(p)).

4.4 Updating Algorithms 2 and 3

The complexity reported for the following algorithms does not include the com-
plexity due to maintaining ∆− and ∆+ which is optimal [11] and linear in the
number of changes of closest or second closest. We introduce three additional
data structures:

1. Sj , corresponding to the list of nodes for which facility pj is either the closest
or second closest facility.

2. KW is a kd-tree of the set W of facilities. KW is therefore dynamic and
must be updated when closing/opening facilities.

3. KS is a kd-tree of the set S of nodes. KS is static and pre-computed initially.



Algorithm 4 OpenFacility2(pj)

1. compute V2(pj)
2. compute the set of points S2 in V2(pj) using the kd-tree KS of S
3. For each pi ∈ S2 do
4. o1i = a1i , o2i = a2i
5. a1i = arg minpk∈{o1i ,pj}

di,k, a2i = arg minpk∈{o1i ,o
2
i ,pj}−{a

1
i }
di,k

6. If (o1i 6= a1i ∨ o2i 6= a2i ) Spj = Spj ∪ {pi}, So2i
= So2i

− {pi}
7 → 14. identical to Lines 5-12 Algorithm 3

15. add pj in the kd-tree KW of the facilities

Algorithm 4 is the new version of Algorithm 3 taking advantage of the ideas
based on computational geometry. The extended Voronoi cell of the facility
opened is computed first (Line 1) and the points contained in the cell (S2) are
extracted using the kd-tree KS of S (Line 2). The loop over all the points of S is
replaced by a loop over the points contained in S2. The closest or second-closest
facility of pi might now be pj but this update takes constant time; so does the
update of the Sj data structure, which is useful for Algorithm 5 when closing a
facility. Finally, the incremental maintenance of ∆− and ∆+ remain unchanged.

Line 1 takes O(plog(p)), Line 2 (assuming we are using the enclosing rectangle
of the Voronoi cell) takes O(

√
m+k

′
). k

′
is the number of points in the enclosing

rectangle so it is greater than the number of points contained in the cell (k
′ ≥ k).

Finally Line 5 is performed in O(1) and the update of KW (line 15) is done in
O(log(p)). The complexity of Algorithm 4 is O(plog(p) +

√
m + k

′
). We recall

that the complexity of the previous incremental algorithm is dominated by the
O(mlog(p)) factor which involves examining systematically all the m points.
Algorithm 4 does not have this drawback as m does not appear directly in the
complexity but only in a worst case where k

′
= m. In practice, we expect k

′
to

be much smaller than m.

Algorithm 5 CloseFacility2(pj)

1. remove pj from KW
2. For each pi ∈ Sj do
3. o1i = a1i , o2i = a2i
4. update a1i , a

2
i using a 2-nearest neighbors search in KW

5. If (o1i 6= a1i ∧ o2i 6= a2i ) Sa1
i

= Sa1
i
∪ {pi}

6. Else (o2i 6= a2i ) Sa2
i

= Sa2
i
∪ {pi}

7 → 13. identical to Lines 5-12 of Algorithm 2

14. Sj = ∅



Similarly, Algorithm 5 is the new version of Algorithm 2. The list Sj is used
to iterate over the points which had pj as their closest or second closest. The
only difference is that the update of the a1i and a2i is done by using the kd-tree
of the facilities KW since we no longer maintain the priority queues. The worst-
case complexity of the nearest neighbors search in a balanced kd-tree is O(p)
but its expected complexity is O(log(p)). Note that KW has to be re-balanced
from time to time to guarantee this complexity. The update of the kd-tree KW
is done in Line 1 and takes O(log(p)) so that the overall expected complexity
for closing a facility is O(klog(p)) with |Sj | = k.

5 Time and Space Complexities

We can distinguish three different approaches:

– BL (Base Line): the approach proposed in [11] corresponding to Algorithms
2 and 3 that iterates over all points, updates the priority queues as well as
the two closest facilities of each point when needed.

– LIBL (Less Incremental Base Line): this approach is a simple modification
of the BL that does not use geometry. It simply ignores the priority queues
in Algorithm 3 as the two closest facilities can be updated in constant time
when opening a facility and it is based on Algorithm 5 for closing a facility
but does not use the kd-tree KW to update the two closest facilities. It
simply iterates over W to update the two closest facilities.

– GEO (Geometric): the new approach proposed based on Algorithm 4 and 5.

We summarize the complexity of the three approaches in Tables 1 and 2
where m is the number of nodes, p the number of facilities, k the number of
nodes which have pj as a closest or second closest, and k

′
is an upper bound

on k useful to express the complexity (it is the number of points contained in
the enclosing rectangle of the extended Voronoi cell) as we still have k

′ ≤ m;
ignoring the linear update of ∆− and ∆+ which is identical in the three cases.

The space complexity is dominated by the pre-computed lists of points sorted
by distance (refered as proximity lists) from any other points (Line 9 of Algo-
rithms 3 and 2) which requires O(m2) space. This is an issue for solving large
problems. It can be overcomed in the case of GEO as it is simply a query in the
kd-tree KS where we seek all the points contained in a circle, centered in pi, of
radius di,a1i (Algorithm 2) or di,o1i (Algorithm 3). Various mechanisms can be
explored for BL and LIBL such as storing only a fixed limited number of points
in the lists and relying in an O(m) search in the worst case but we loose the op-
timal update of ∆− and ∆+. So overall the proximity lists require O(m2) space,

Table 1. Summary of time complexities of the different schemes

operation BL LIBL GEO

open a facility pj O(mlog(p)) O(m) O(plog(p) +
√
m+ k

′
)

close a facility pj O(mlog(p)) O(kp) expected : O(klog(p)), worst-case: O(kp)



Table 2. Summary of space complexities of the different schemes

BL LIBL GEO

space complexity O(m2 +mp) O(m2) O(m+ p)

the priority queues are consuming O(mp), the various data structures a,∆ and
S are all in O(m) and the two kd-trees, KS and KW , need respectively O(m)
and O(p) space. Notice that GEO is the only scheme that is scalable in memory
with m and p, in practice.

6 Empirical Study

The experiments are organized into two sets.2 In the first set of experiments we
investigate the behavior of the proposed algorithms on randomly generated data.
In particular we focus in these experiments on benchmarking the two algorithms
openFacility and closeFacility. The algorithms compared are identical regarding
the incremental update of ∆+ and ∆−. They only differ in the way that the
closest and second closest facilities are identified and maintained. Therefore,
the time reported when comparing GEO, BL and LIBL are only considering
the update of the closest and second closest facilities. Instances are randomly
generated by uniformly drawing points in the plane with x and y in [0, 10000].
For each m in {2000, 5000, 10000, 20000, 40000, 80000} ten instances were
generated3. We performed 100 runs for each instance and each value of p. For
each m we consider four values of p, which are defined as percentages of m:
0.1% ,1%, 2.5% and 5%. Each run consists of picking p random points out of
the m points to define the set W , and a single random extra point: pj 6∈ W
when the facility is being opened or pj ∈W when it is being closed. In each run
we measure the time needed by the different approaches: BL, LIBL and GEO.
For each pair (m, p), 1000 queries are performed overall (100 on each of the 10
instances) and the cumulative times are reported.

As shown in Figures 4(a) and 4(b), the time of GEO increases moderately
with m in practice. This is particularly true in the closeFacility case (see Fig-
ure 4(b)). The increase observed in the openFacility case is mainly due to the
increase of points in the cell that need to be processed as m increases. In Fig-
ures 4(c) and 4(d), we also observed that LIBL does not seem to be significantly
affected by the size of p, which suggests that the advantage of GEO over LIBL
reduces when p/m increases. BL cannot scale any further because of memory
issues. Notice that the priority lists are consuming O(mp) space, which becomes
too big when m = 80000.

In the second set of experiments we considered eight SCP cases. Table 3
shows the parameters of each case. Half of the cases correspond to real cases

2 Experiments were run on Linux 2.6.25 x64 on a Dual Quad Core Xeon CPU machine
with overall 11.76 GB of RAM and processor speed of 2.66GH.

3 The large sizes considered would be more relevant for p-median problems than for
warehouse location problems.
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Fig. 4. A summary of the results from our empirical evaluation

coming from network operators in Ireland and UK. The second half corresponds
to cases that were randomly generated. In the real case there is only one in-
stance. In the random cases 10 instances were generated. For each instance we
had 10 runs. The values reported in each case correspond to the average on
all the instances over all runs. For each run we considered a threshold of 3600



Table 3. SCP cases

ir-25 ir-50 uk-125 uk-250 r1-500 r1-1000 r2-1000 r2-2000

m 1100 1100 5390 5390 20000 20000 40000 40000

p 25 50 125 250 500 1000 1000 2000

source real real real real random random random random

seconds. We observed the approaches spend a significant amount of time in the
initialization of the data structures which takes takes place each time we restart
our current implementation. We restart if after a specified number of iterations
no improvement of the best known solution has been seen. In order to have a fair
measure of the speed (i.e., number of iteration per second) of each approach, we
discounted the initialization time when computing the speed. Figure 4(e) shows
the comparison of the approaches with respect to the speed. We can see that,
even though LIBL performs quite well in the medium-size cases, GEO is the
faster approach when m is big. When looking at the evolution of the quality of
the solution we observe that the approaches tend to converge quite rapidly. In
Figure 4(f) we only show random cases since the situation of the real cases is
even more extreme. The difference observed between the approaches is mostly
due to the time they spend in finding the first solution, which is basically the
time spent in the first initialization.

7 Conclusion

We have presented a novel approach to achieve efficient and incremental evalua-
tion of the neighborhood of local search algorithms for facility location problems.
These ideas apply when the cost for allocating a client to a facility is propor-
tional to the Euclidean distance. We showed how to use computational geometry
to efficiently maintain the closest or second closest client to a facility. We also
showed how this can be integrated within existing state of the art local search
techniques for this class of problems. Any neighborhood involving the mainte-
nance of the two closest points could benefit from these ideas and the techniques
presented make sense for a constraint-based local search framework where this
type of incrementality is needed for spatial location problems. We presented
empirical results that demosntrated the utility of our approach4.

Many improvements are possible as computational geometry is a very rich
and active domain. For example, the use of range trees [3] instead of kd-trees
would lead to a O(log2(m)+k) complexity (instead of O(

√
(m)+k) for kd-tree)

for a small increase of the space complexity to O(mlog(m)) (instead of O(m)
for the kd-tree). We will explore the generalization of this work to other metric
distances or general distance matrices.

4 Our focus has been on local search approaches to SCP. However, we are certainly
aware of heuristic approaches to tackle SCP [12]. We are currently considering these
types of approaches too.
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