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Abstract. We consider the impact of value ordering heuristics on the
search effort required to find all solutions, or proving none exist, to a
constraint satisfaction problem in k-way branching search. We show that
when the variable ordering heuristic is adaptive, the order in which the
values are assigned to variables can make a significant difference in all
measures of search effort. We study in depth an open issue regarding
the relative merit of traditional value heuristics, and their complements,
when searching for all solutions. We also introduce a lazy version of k-way
branching and study the effect of value orderings on finding all solutions
when it is used. This paper motivates a new and fruitful line of research
in the study of value ordering heuristics for proving unsatisfiability.

1 Introduction

The entire search space of a constraint satisfaction problem (csp) is explored
when one is interested in finding all solutions, counting the number of solutions,
or proving that the problem is unsatisfiable. The latter case may also appear as
a sub-problem while solving a satisfiable problem when a globally inconsistent
assignment to a subset of the variables is being explored. While most research
in the area of search heuristics has focused on variable ordering, the question
of determining which value should be assigned to the current variable has not
received much attention. One reason is that it has been generally accepted that
when the entire search space of a csp is explored by a search algorithm that back-
tracks chronologically, the order in which the values are selected does not affect
its search effort, e.g. the number of visited nodes, or the number of failures [4].
A well-known theorem states that this is true for both static and dynamic vari-
able ordering heuristics [4]. In the case of search algorithms that perform binary
branching recent work has shown that search effort is affected by the choice
of value ordering [11]. However, that work was supportive of the conventional
wisdom in the case of k-way branching.

In the case of search algorithms that perform k-way branching we advance
the conventional wisdom related to the role of value ordering heuristics in the
context of csps. We show that the conventional wisdom only applies when non-
adaptive static/dynamic variable ordering heuristics are used. However, when
adaptive dynamic variable ordering heuristics are used, value ordering heuristics



can make a significant difference in the search-effort of a chronological backtrack
search algorithm, including the mac [9] algorithm, even when the entire search
space is explored using k-way branching. Furthermore, we show that static value
ordering heuristics can make a difference in terms of the number of support
checks for algorithms that maintain arc consistency during search even for k-way
branching, even when there is no difference in the search effort. A preliminary
investigation of how value ordering can affect the search to find all solutions is
reported in [8]. Here, we present a more extensive investigation and explain how
value ordering can affect search effort when using k-way branching.

We also introduce a lazy version of k-way branching whereby instead of se-
lecting and assigning a value to a variable, a value is selected and removed from
the domain of the selected variable. We show that postponing the assignment
decision can help in reducing the number of failures. We further perform a de-
tailed analysis and also demonstrate the effect of value ordering heuristics on the
search effort when using lazy k-way branching. Finally, we perform a detailed
study of value ordering heuristics and their corresponding anti-heuristics with
respect to their relative efficiency. We demonstrate that one can dramatically
out-perform the other depending on the context. A major contribution of this
paper is that it motivates a new and fruitful line of research in the study of value
ordering heuristics for proving unsatisfiability.

Although binary branching is theoretically more efficient than k-way branch-
ing [6], in practice the latter can be more efficient than the former on many
classes of problem [1]. Our goal is not to compare the relative merits of differ-
ent branching schemes but to show that value orderings can have a significant
impact under all branching schemes. We show the various ways in which value
ordering heuristics affect the various elements of search which contribute to an
overall effect. The results presented in this paper complement and complete the
analysis of the effects of value ordering on branching strategies introduced by
Smith and Sturdy in [11] on binary branching.

2 Background

A csp, P, is a triple (X , C, D) where X is a set of variables and C is a set of
constraints. Each variable X ∈ X is associated with a finite domain, which is
denoted by D(X). We use n, d and e to denote the number of variables, the
maximum domain size, and the number of constraints respectively. Each con-
straint is associated with a set of variables on which the constraint is defined.
We restrict our attention to binary csps, where the constraints involve two vari-
ables. A binary constraint CXY between variables X and Y is a subset of the
Cartesian product of D(X) and D(Y ) that specifies the allowed pairs of values
for X and Y . We assume that there is only one constraint between a pair of
variables. A value b ∈ D(Y ) is called a support for a ∈ D(X) if (a, b) ∈ CXY .
Similarly a ∈ D(X) is called a support for b ∈ D(Y ) if (a, b) ∈ CXY .

A value a ∈ D(X) is called arc-consistent (ac) if for every variable Y con-
straining X the value a is supported by some value in D(Y ). A csp is ac if for



every variable X ∈ X , each value a ∈ D(X) is ac. We use ac(P) to denote
the csp obtained after applying arc consistency. If there exists a variable with
an empty domain in P then P is unsatisfiable and it is denoted by P = ⊥.
Maintaining Arc Consistency (mac) after each decision during search is one of
the most efficient and generic approaches to solving csps. A solution of a csp
is an assignment of values to all the variables that satisfies all the constraints.
A csp is satisfiable if and only if it admits at least one solution; otherwise it is
unsatisfiable. In general, determining the satisfiability of a csp is NP-complete.

Branching Strategies. A branching strategy defines a search tree. The well-
known branching schemes are k-way branching, binary branching [10] and split
branching. In k-way, when a variable X with k values is selected for instantiation,
k branches are formed. Here each branch corresponds to an assignment of a value
to the selected variable. In binary branching, when a variable X is selected, its
values are assigned via a sequence of binary choices. If the values are assigned in
the order v1, v2, . . . , vk, then two branches are formed for the value v1, associated
with X = v1 and X 6= v1 respectively. The left branch corresponds to a positive
decision and the right branch corresponds to a negative decision. The first choice
creates the left branch; if that branch fails, or if all solutions are required, the
search backtracks to the choice point, and the right branch is followed instead.
Crucially, the constraint X 6= v1 is propagated, before selecting another variable-
value pair. In split branching, when a variable X is selected, its domain is divided
in to two sets: {v1, . . . , vj} and {vj+1, . . . , vk}, where j = dk/2e. Two branches
are formed by removing each set of values from D(X) respectively.

Variable Ordering Heuristics. When a dynamic variable ordering is used the
selection of the next variable to be considered at any point during search depends
on the current node of the search tree. Examples of dynamic variable ordering
heuristics are: dom/deg [2] and dom/wdeg [3]. The dom/deg heuristic selects a
variable which has the smallest ratio of the current domain size to the original
degree of the variable, while the dom/wdeg heuristic selects a variable which
has the smallest ratio of the current domain size to the weighted degree of the
variable. The dom/wdeg heuristic is adaptive while the dom/deg is non-adaptive.
By adaptive we mean that the heuristic measure of a variable at a given node
of the search tree is dependent on previous experience with the search process.
For a non-adaptive variable ordering, the heuristic measure at a particular node
in the search tree is same before and after backtracking to the node. However,
this is not necessarily true for an adpative variable ordering heuristic.

Value Ordering Heuristics. A value ordering heuristic is used to select a
value from the domain of a variable to instantiate that variable during search.
Three value ordering heuristics are total-cost, cruciality, and promise, which are
primarily based on selecting the least constrained value for a variable and are
proposed in [5]. The heuristic total-cost associates each value from the domain of
a variable with the sum of incompatible values in the domains of the other vari-
ables. The values are then considered in the increasing order of this count. The



heuristic cruciality differs slightly from total-cost. It aggregates the percentage
of the incompatible values in future domains. The heuristic promise associates
each value with the product of the number of compatible values in the domain
of each variable. The value with the highest product is chosen subsequently. For
all these heuristics, the compatibility of each value a in the domain of a variable
x is tested with each value b in the domain of each variable y constrained with x.
This process requires O(nd2) support checks in the worst-case after each variable
selection during search. Several value ordering heuristics including min-conflict
are presented in [4], which is, in fact, the same as the total-cost of [5].

3 Impact of Value Orderings on MAC

In this section we show that value ordering heuristics can affect the search effort
(i.e. the number of visited nodes, failures etc.) of a backtrack search algorithm
that forms k-way branching when the entire search space of a csp is explored.

3.1 State-of-the-Art on Heuristic Interactions

Frost and Dechter [4] claim that value orderings have no impact on the search
effort of a backtrack search algorithm, when all solutions of a csp are searched,
which includes when no solution exists. This claim has been made both for
static and dynamic variable ordering heuristics [4]. Their argument is that when
a variable X with k values is selected, k subtrees are explored independently,
and the search spaces of these k subtrees are commutative. To find all solutions
or to prove that there are none, every subtree must be explored and therefore
the order in which values are assigned cannot make a difference in cumulative
search effort.

Smith and Sturdy [11] claim that value orderings can make a difference in the
algorithm’s search effort when binary-branching is used, and agree that value or-
dering does not make a difference when k-way branching is used. Their argument
is that in binary-branching, if a variable X and a value x1 ∈ D(X) is selected
then two subtrees are created, X = x1 and X 6= x1. If X = x1 fails, then the
constraint X 6= x1 is propagated, which can lead to further domain reduction.
This propagation can remove one or more values from the current variable’s do-
main which are not yet considered for instantiation. Hence, the order in which
the values are assigned can affect the search effort even if the entire search space
is explored.

In the following section we show that k subtrees are not always explored
independently in k-way branching. It depends on whether a dynamic variable
ordering heuristic is adaptive or non-adaptive. Notice that the heuristic measures
of variables for a non-adaptive heuristic like dom/deg and an adaptive heuristic
like dom/wdeg are changing during search. When the algorithm backtracks to
a node the heuristic measures of all variables of a non-adaptive heuristic like
dom/deg is restored to the same measures as they were before exploring that
node. However, this does not hold for a dynamic variable ordering heuristic like
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(a) An unsatisfiable csp.
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T=t 1 T=t 0

(c) rlex

Fig. 1. An unsatisfiable csp with five variables (Figure 1(a)), and search trees with
different value orderings (Figure 1(b) and Figure 1(c)).

dom/wdeg, which is adaptive. Consequently, the search spaces of k subtrees may
not necessarily be commutative. Therefore, when an adaptive dynamic variable
ordering is used for searching all solutions, k-way branching is sensitive to the
choice of value ordering heuristic.

3.2 The Role of Value Ordering: New Insights

Let us consider a trivial csp whose micro-structure is depicted in Figure 1(a).
There are five variables P , Q, R, S and T . Their domains are D(P ) = {p0, p1},
D(Q) = {q0}, D(R) = {r0, r1}, D(S) = {s0, s1} and D(T ) = {t0, t1}. There
are five binary constraints. Here an edge corresponds to a pair of values that
satisfy the constraint. For any two values ai and aj , we write ai <l aj if ai is
lexicographically smaller than aj . Notice that the csp is inconsistent. The reason
for the inconsistency is the sub-problem restricted to the variables R, S and T .

The search trees shown in Figures 1(b) and 1(c) are the results of applying the
mac algorithm. The variable ordering heuristic employed by the search algorithm
selects a variable having the maximum number of wipeouts with a lexicographical
tie breaker. Initially, the number of wipeouts associated with each variable is
set to 0. The number of wipeouts, vx, associated with a variable x is written
as x → vx. In the search trees, uninstantiated variables are enclosed in the
square brackets in the lexicographical order, e.g. [x → vx, . . . , z → vz]. The
selected variable is indicated by making it bold. Each assignment of a value to
the selected variable represents a node visited in the search tree. When a node
is underlined, it indicates a failure.

The search tree in Figure 1(b) is the result of using the lexicographical value
ordering heuristic (lex). Initially, the number of wipeouts associated with each
variable is 0, so the lexicographically smallest variable P is selected and it is
instantiated to the lexicographically smallest value p0. Enforcing ac at this point



does not remove any value from any domain. The next lexicographically smallest
variable is Q, which is then initialized to q0. Again, enforcing ac makes no change
in the domains. When the variable R is selected, each of its instantiations leads
to a domain wipeout. When R is instantiated to r0, first the domain of S is
revised against the domain of R and s0 is removed. Next, the domain of T is
revised against the domains of R and S. This results in removing t0 and t1 and
hence the domain wipeout occurs. When R is initialized to r1, there is again
a domain wipeout associated with T . The search process backtracks to P and
initializes it to p1. This again results in the domain wipeout associated with T ,
since r0 is removed from R while revising its domain against the domain of P ,
which eventually results in the domain wipeout associated with T .

The search tree shown in Figure 1(c) is the result of using the reverse lex-
icographical value ordering heuristic (rlex). First P is initialized to p1 which
results in a domain wipeout. This happens while revising the domain of T . At
this point the number of wipeouts associated with T is incremented by 1. This
influences the selection of the variable T after initializing P to p0 in Figure 1(c).
However, in Figure 1(b), due to a different value ordering, when P is initialized
to p0, Q is selected instead of T , which results in a different number of nodes.

When lex is used the number of search nodes is 5 and when rlex is used
the number of nodes is 4. This difference is due to the interaction between the
variable ordering and the value ordering heuristics. When an assignment fails the
number of wipeouts associated with a variable changes. Different value ordering
heuristics may change the number of wipeouts associated with different variables.
Consequently, the ordering of the values in the previously explored subtrees may
influence the decision of selecting the next variable in the subtrees that are yet to
be explored. This shows that claims made in [4] and [11] that a search algorithm
that forms k-way branching explores k subtrees independently is not always true.
Hence, value orderings can affect the search tree of a backtrack algorithm when
adaptive dynamic variable ordering heuristics are used with k-way branching for
exploring the entire search space.

4 Impact of Value Orderings on AC

We show that static value ordering heuristics can have an impact on the efficiency
of arc consistency algorithms. We focus on the static versions of the heuristics
total-cost, cruciality and promise. The ordering based on these heuristics can be
viewed as arranging the values in increasing order of their constrainedness. This
can be advantageous while revising the domains of the variables, when trying to
make the problem ac. More specifically, putting the least constrained value at
the beginning of the domain list might help values of other domains to find their
support more quickly during revision (on average). This may save failed support
checks since the further the first support is from the start of the domain list, the
more are the failed checks required to find that support for a given value.

To illustrate this, let us consider a constraint X ≤ Y and study the revision
of D(X) against D(Y ) as shown in Figures 2(a) and 2(b). If the values in D(Y )
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Fig. 2. Visualization of the checks of the constraint X ≤ Y where dashed lines refer to
failed checks and solid lines refer to successful checks.

are arranged in 〈1, 2, 3, 4〉 order, as shown in Figure 2(a), and the search for a
support starts from 1, then the revision of D(X) against D(Y ) will require 10
support checks in total, using the revise function of AC-3. If the values in D(Y )
are arranged in 〈4, 3, 2, 1〉 order, as shown in Figure 2(b), then the revision of
D(X) against D(Y ) will require only 4 support checks in total, using the revise
function of AC-3. Obviously, different constraints may require different orderings
of values. However, these orderings can be aggregated. For example, one can use
total-cost or promise as measures to sort the values of the domain accordingly.

The fact that ordering the values can reduce support checks during revisions
and thereby improves the average revision time does not seem to have been
observed before. This is the reason that when a static value ordering heuristic
is used in a search algorithm such as mac, it can make a difference at least in
terms of support checks even when the entire search space is explored.

5 Lazy K-way Branching

In k-way branching a decision corresponds to an assignment of a value to a given
variable and its dual can be seen as removing all but one value from the domain
of the variable. An example of k-way branching is illustrated in Figure 3, where
a box denotes a variable selection and an ellipse denotes selecting and assigning
a value to the selected variable. Here X is the selected variable whose domain
is {a1, a2, a3, a4, a5} and k = 5. A (positive) decision X = a1, is equivalent to
removing a2, a3, a4 and a5 from the domain of X, or in other words enforcing a
conjunction of inequalities, i.e., X 6= a2 ∧X 6= a3 ∧X 6= a4 ∧X 6= a5.

X

X=a1 X=a2 X=a3 X=a4 X=a5

Fig. 3. k-way branching.



We propose a lazy version of the k-way branching scheme whereby instead of
enforcing all (k − 1) inequalities at once each inequality is enforced separately,
e.g., each assignment of a value in Figure 3 corresponds to a sequence of inequal-
ities in Figure 4(a). The k-way branching scheme can be seen as being optimistic
whereby, based on some heuristic measure, a most optimistic value is selected
and assigned to the selected variable. Lazy k-way branching can be seen as being
pessimistic whereby a most pessimistic value is selected and removed from the
selected variable. Postponing the instantiation of a variable may help in making
better decisions, thus reducing the number of mistakes.

X

X≠a5 X≠a5 X≠a5 X≠a3 X≠a3

X≠a4 X≠a4 X≠a4 X≠a2 X≠a2

X≠a3 X≠a2 X≠a1 X≠a1

X≠a2 X≠a1 X≠a1 X≠a5 X≠a4

X≠a3

(a) Without Sharing Nodes.

X

X≠a5 X≠a1 

X≠a4

ɅX≠a2

X≠a3

ɅX≠a3

X≠a2 X≠a1

X≠a5 X≠a4

(b) Sharing Nodes.

Fig. 4. Lazy k-way branching.

An additional advantage of enforcing each inequality separately is that one
can infer dependencies between explicitly removed values of the selected variable
as a result of making (negative) decisions, and the implicitly removed values
of the selected variable as a result of enforcing local consistency, such as arc
consistency in the case of MAC. These dependencies can be exploited to reduce
the number of decisions. For example, let us assume that a3 is removed from
D(X) when arc consistency is enforced after taking the negative decisions X 6= a5

and X 6= a4 in the first branch of Figure 4(a), which is shown by shading the
decision node X 6= a3. One can infer the following implication: X 6= a5 ∧X 6=
a4 → X 6= a3. This effectively means that there does not exist any solution in
the resulting subproblem after selecting variable X where X = a3. Therefore,
if the decision of instantiating X to a3 has not yet been tried, then there is no
need to try it. Hence, the third branch of Figure 4(a) is not explored, which is
equivalent to X = a3. This is shown by shading all the corresponding negative
decisions: X 6= a5, X 6= a4, X 6= a2, and X 6= a1. This is an original and novel
way of reducing the number of useless branches and failures.

In k-way branching, if k branches are explored after selecting a variable, then
each value is removed at most (k − 1) times, and in algorithms like MAC, the



Algorithm 1 MACLK(P, Y )

Require: P : input csp (X , C, D); Y : current variable
1: if X = ∅ then
2: solution found
3: else
4: if Y = null then select and remove any variable X from X
5: else X ← Y
6: V ← ∅; D′ ← D
7: while P 6=⊥ ∧|V | < |D(X)| do
8: select and remove any value v from D(X)
9: V ← V ∪ {v}; P ← ac(P)

10: if P 6=⊥ then
11: if |D(X)| = 1 then MACLK(P, null) else MACLK(P,X)
12: D ← D′; D(X)← V ; P ← ac(P)
13: if P 6=⊥ then
14: if |D(X)| = 1 then MACLK(P, null) else MACLK(P, X)

work required for propagating the impact of removing a value will be repeated.
This repetition can be reduced in lazy k-way branching. Remember that in lazy
k-way branching each assignment of a value to a variable can be seen as a path
consisting of at most k − 1 negative decisions starting after the selection of the
variable and ending at a node when the variable’s domain is singleton. Instead
of having disjoint paths for each assignment of a value, as shown in Figure 4(a),
the idea is to maximize the sharing of negative decisions among different paths
in order to minimize the work required for propagation.

One way of implementing lazy k-way branching in order to share nodes (prop-
agation) is shown in Algorithm 1. Notice that MACLK requires csp P and the
current variable Y . If Y is null then a new current variable is selected (Line
4–5). After the current variable, X, is determined, a set V for storing negative
decisions is initialized to ∅, and the domains of the variables are saved in D′

(Line 8). While |V | < |D(X)| and there is no domain wipe-out, a value v is
selected and removed from D(X), it is added to the set V , and ac is enforced
(Line 7–9). When the loop is terminated and if P is not empty then the left
branch is created (Line 10–11). The right branch is created by restoring the
domains to D′ and setting D(X) to the set of values that were removed in the
loop (Line 12–14). If X is instantiated then MACLK is invoked by setting the
current variable to null, otherwise it is invoked with the current variable X.

An example of sharing nodes is presented in Figure 4(b). In this example
the loop is exited after visiting the node corresponding to X 6= a4 (in the left
branch). Notice that the decision associated with the last node and all those
decisions preceding it are shared by all branches originating from this node, thus
reducing the work required for propagation. When the algorithm backtracks it
first removes all those values that are already tried as assignments to the current
variable, e.g., X 6= a1∧X 6= a2, as well as those values of X that were implicitly
removed while enforcing arc consistency, e.g., X 6= a3. This is done in Line 12 of



MACLK when D(X) is set to V , since V contains only a4 and a5. Notice that
X = a3 is never tried since it was inferred as inconsistent in the subproblem
resulting from the selection of variable X.

Similar to the lazy version of k-way branching, lazy versions of binary branch-
ing and split branching are also possible. One can infer and exploit the depen-
dencies between inequality constraints involving values of the same domain to
reduce the number of failures in a lazy version of any branching scheme. However,
this is beyond the scope of the current paper.

6 Experimental Results

The experiments were conducted using MAC as a backtrack search algorithm.
AC-3 was used as its arc consistency component which was equipped with the
residual support mechanism and revision condition [7]. We conducted exper-
iments with the static versions of min-conflict, max-conflict, cruciality, anti-
cruciality, promise and anti-promise value ordering heuristics. The information
required for these value ordering heuristics was computed prior to search as a pre-
processing step after making the problem initially arc-consistent. We also present
the results obtained by using the default ordering of the values as specified by
the problem instance which is denoted by default. Of course, these heuristics
might not be the best or might be very expensive/inapplicable for one or more
classes of problems. Nevertheless, the purpose of these experiments is not to
prove the efficiency of these value ordering heuristics, but to show that different
value ordering heuristics can have a significant impact on the search effort when
the entire search space of a csp is explored using MAC with k-way branching.
We also wish to demonstrate the effectiveness of lazy k-way branching when
compared with k-way branching.

Search effort was measured in terms of support checks (#c), visited nodes
(#n), failures (#f) and the solution time (time) in seconds. All algorithms are
written in C. The experiments were carried out as a single thread on Dual
Quad Core Xeon CPU, running Linux 2.6.25 x64, with 11.76 GB of RAM, and
2.66 GHz processor speed. We perform experiments on many instances of the
problems that were used as benchmarks in the CP solver competition of the
CPAI’05 workshop.1

Table 1 presents results for different value ordering heuristics when the
dom/deg variable ordering is used to explore the complete search space. The
search nodes for all value orderings is the same as depicted in the first column,
which is consistent with the conventional wisdom. However, there is a difference
in terms of support checks. On average fewer checks are required when values
are ordered based on a heuristic than with the corresponding anti-heuristic. The
difference in terms of checks is not significant. The reason is that a huge number
of support checks are replaced and reduced by auxiliary checks performed by the
residual support mechanism and revision condition. For example, for the queens-
knights instance qk 12 12 5 mul , 2% of the checks are saved when values are

1 http://cpai.ucc.ie/05/Benchmarks.html



Table 1. Results for exploring the entire search space with dom/deg and k-way branch-
ing. Instances are: (a) bqwh − 15 − 106 − 32 (#n = 33168), (b) frb50 − 23 − 3 − bis
(#n = 230746522 ), (c) graph12 w1 (#n=177059), (d) dual ehi − 85 − 297 − 10 (#n
377649), (e) qk 12 12 5 mul (#n 1996472).

inst default min-conflict max-conflict promise anti-promise
(a) #c 1,174,152 1,181,071 1,176,787 1,178,857 1,179,353

time 0.535 0.534 0.528 0.537 0.533
(b) #c 98,657,596,677 93,687,374,052 103,998,537,736 93,537,311,214 104,177,841,288

time 19,924.439 19,761.988 20,168.810 19,747.415 19,865.577
(c) #c 27,573,288 28,114,893 28,012,342 28,114,952 28,012,414

time 2.565 2.695 2.610 2.624 2.619
(d) #c 374,657,413 363,435,461 382,601,651 362,105,766 382,003,776

time 400.085 400.772 400.746 396.993 399.856
(e) #c 6,283,619,236 6,148,687,117 6,330,315,375 6,148,556,738 6,317,352,246

time 127.459 124.576 127.909 125.882 126.916

ordered by min-conflict when compared with that of max-conflict. However, if a
standard AC-3 is used then 14% of the checks are saved by min-conflict when
compared with max-conflict.

Table 2 presents results for different problem classes when the dom/wdeg
variable ordering is used with different value ordering heuristics and the complete
search space is explored using k-way branching. We have computed the ratio with
respect to the default for each heuristic different to the default. For each instance,
the highest/lowest result is written in bold/italic. The results clearly show that
value ordering heuristics can make a significant difference in terms of the number
of search nodes and time. It is worth emphasizing that for some problems a
heuristic like min-conflict, cruciality, or promise performs better while on some
others, its corresponding anti-heuristic performs better. We did some further
investigation by solving the same instance with 2500 random value orderings.
The results for some of them are presented in Figure 5; in these plots each point
represents the probability of the search effort to solve an instance exceeding the
corresponding number of search nodes on the x-axis. It again shows that value
ordering heuristics can make a difference up to several orders-of-magnitude in
terms of search nodes when the entire search space is explored; the first two
graphs, in fact, exhibit a heavy-tail distribution in search effort.

Table 3 presents results for lazy k-way branching and k-way branching when
the entire search space was explored with different value ordering heuristics.
In the first three rows dom/deg was used while for the remaining dom/wdeg
was used. The first observation is that when different value orderings are used
in conjunction with lazy k-way branching they can result in different search
effort when the entire search space is explored. More importantly, unlike k-way
branching, the difference in the search effort is also observed for dom/deg as
shown in 2nd and 3rd rows. This is because in the lazy k-way branching scheme
a decision corresponds to selecting and removing a value, with ac being enforced
after each value removal. Therefore, depending on the order in which the values
are removed dependencies involving inequalities amongst the values of the same
domain are inferred, which are exploited to reduce the number of decisions.
Moreover, when dom/wdeg is used, the difference in the search effort is also due



Table 2. Results for exploring the entire search space with dom/wdeg and k-way branching.

instance default m
in

-c
o
n
fl

ic
t

m
a
x
-c

o
n
fl

ic
t

c
r
u
c
ia

li
ty

a
n
t
i-

c
r
u
c
ia

li
ty

p
r
o
m

is
e

a
n
t
i-

p
r
o
m

is
e

bqwh− 15− 106− 32 #c 411,235.000 2.996 1.665 1.452 2.451 1.460 2.452
(sat) #n 7,383.000 3.292 1.664 1.483 2.520 1.486 2.520

time 0.197 2.995 1.670 1.452 2.508 1.472 2.518
bqwh− 18− 141− 40 #c 602,681,284.000 2.086 1.087 1.788 0.932 1.470 0.988

(sat) #n 10,779,400.000 2.190 1.075 1.846 0.929 1.502 0.981
time 321.383 2.083 1.085 1.773 0.926 1.450 0.984

bqwh− 18− 141− 68 #c 21,995,315.000 0.942 0.786 1.595 0.740 2.129 0.929
(sat) #n 371,375.000 0.951 0.748 1.596 0.716 2.086 0.898

time 12.504 0.937 0.783 1.561 0.734 2.099 0.921
frb50− 23− 3− bis #c 81,752,058,491.000 0.960 1.082 0.960 1.082 1.012 1.106

(sat) #n 187,967,335.000 1.007 1.023 1.007 1.023 1.064 1.042
time 16,512.675 1.006 1.032 1.020 1.019 1.053 1.034

qa− 6 #c 21,950,814,589.000 1.121 1.019 1.117 1.084 1.097 1.015
(sat) #n 134,884,052.000 1.089 1.002 1.095 1.063 1.071 0.999

time 3,083.689 1.106 1.011 1.108 1.072 1.096 0.998
graph14 f28 #c 5,142,167.000 0.528 1.387 0.528 1.387 0.528 1.387

(unsat) #n 28,177.000 0.348 1.310 0.348 1.310 0.348 1.310
time 0.751 0.397 1.611 0.399 1.610 0.406 1.617

graph2 f25 #c 65,664,798.000 0.950 0.994 0.029 1.016 0.030 1.016
(unsat) #n 275,917.000 1.000 1.004 0.015 1.029 0.015 1.029

time 8.021 0.982 1.014 0.019 1.037 0.020 1.035
scen6 w1 f2 #c 19,978,058.000 1.114 0.690 1.115 0.741 1.125 0.697

(unsat) #n 52,325.000 1.084 0.627 1.084 0.674 1.107 0.654
time 0.662 1.166 0.690 1.156 0.740 1.162 0.705

dual ehi− 90− 315− 97 #c 11,283,716.000 0.280 0.961 0.283 0.228 0.219 0.977
(unsat) #n 6,288.000 0.308 1.022 0.314 0.228 0.253 1.100

time 10.166 0.235 1.024 0.234 0.206 0.160 1.069
qk 20 20 5 add #c 3,001,318,053.000 95.518 0.794 95.518 0.794 84.080 0.304

(unsat) #n 237,139.000 102.069 0.785 28.996 0.207 91.023 0.291
time 51.371 96.175 0.800 27.350 0.222 85.000 0.308

qk 20 20 5 mul(unsat) #c 4,257,470,286.000 59.509 0.602 16.949 0.149 69.584 0.171
#n 360,924.000 64.125 0.587 18.229 0.131 75.216 0.154
time 78.117 58.306 0.586 16.619 0.144 68.420 0.167

composed− 75− 1− 40− 7 #c 205,748.000 1.170 0.756 1.170 0.751 1.167 0.707
(unsat) #n 1,089.000 1.448 0.684 1.448 0.613 1.460 0.613

time 0.020 1.150 0.650 1.150 0.600 1.200 0.650
cril unsat b 1 #c 297,178,340.000 0.810 0.930 0.816 0.930 0.818 0.930

(unsat) #n 1,672,114.000 0.886 0.851 0.886 0.851 0.888 0.851
time 32.854 0.904 0.879 0.904 0.884 0.909 0.885

to the interaction between variable and value ordering heuristics as explained
in Section 3. Table 3 also confirms that lazy k-way branching can reduce the
number of failures by up to one order-of-magnitude for some instances when
compared with k-way branching. The minimum number of failures between lazy
k-way and k-way branching schemes for each value ordering is made bold in each
row of Table 3.

In some cases, despite failing more, the ratio of checks per node (#c/#n)
is less for lazy k-way branching than with that of k-way branching, e.g., see
the row corresponding to the qk 20 20 5 add instance. The reason is that when
the problem is relatively hard, more nodes are explored. Consequently more
nodes are shared among different branches. Hence, work required for constraint
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Fig. 5. Search effort for exploring the entire search space of different instances with
2500 random value ordering heuristics and dom/wdeg as a variable ordering heuristic.

propagation is also shared, which improves the trade-off between the number of
decision nodes and the work done on each of them.

Value ordering heuristics like min-conflict, cruciality, and promise are pro-
posed in the literature to find one solution quickly, and not for exploring the
entire search space. Thus, when it comes to exploring the entire search-space, it
is not surprising to see that, for some problem instances, value ordering heuris-
tics like min-conflict perform significantly better than anti-heuristics like max-
conflict, while for others it is the other way around, and for some there is only
a marginal difference in their performance. We are not aware of any work on
value ordering heuristics for finding all solutions with k-way branching in the
csp context. In fact for a long time it has been believed that value orderings do
not make any difference in the search effort of backtrack algorithm with k-way
branching. Contrary to that, we have shown results where the difference in the
search effort is up to several orders-of-magnitude because of using different value
orderings. These results raise an interesting question: what kind of value order-
ing heuristics should be used with (lazy) k-way branching and adaptive variable
ordering heuristics like dom/wdeg when it comes to exploring the entire search
space.
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7 Conclusions

Given recent developments in the area of variable ordering heuristics, the con-
ventional wisdom with respect to k-way branching and value ordering needed to
be reconsidered. We have presented an analysis in this paper demonstrating that
value ordering can make a considerable difference in search effort. We demon-
strated this phenomenon across multiple problem classes, and for two forms of
k-way branching. One of our k-way branching schemes, lazy k-way, is very novel
and merits a deeper investigation in the context of CSP solving.

A major contribution of this paper is that it motivates a new and fruitful line
of research in the study of value ordering heuristics for proving unsatisfiability.
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