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ABSTRACT 
The digital networked world is enabling and requiring a new 
emphasis on personalized document creation.  The new, more 
dynamic digital environment demands tools that can reproduce 
both the contents and the layout automatically, tailored to 
personal needs and transformed for the presentation device, and 
can enable novices to easily create such documents.  In order to 
achieve such automated document assembly and transformation, 
we have formalized custom document creation as a multiobjective 
optimization problem, and use a genetic algorithm to assemble 
and transform compound personalized documents.  While we 
have found that such an automated process for document creation 
opens new possibilities and new workflows, we have also found 
several areas where further research would enable the approach to 
be more broadly and practically applied.  This paper reviews the 
current system and outlines several areas where future research 
will broaden its current capabilities.  

Categories and Subject Descriptors 
I.2.1 [Artificial Intelligence]: Applications and Expert Systems – 
office automation; I.7.2 [Document and Text Processing]: 
Document Preparation – Desktop publishing; I.7.4 [Document 
and Text Processing]: Electronic Publishing; F.2.2 [Analysis of 
Algorithms and Problem Complexity]: Nonnumerical 
Algorithms and Problems – Sorting and searching, Routing and 
layout; 

General Terms 
Algorithms, Performance, Design, Experimentation. 

Keywords 
Genetic algorithm, constraint-based reasoning, multiobjective 
optimization, constrained optimization, automated layout, 
document design. 

1. INTRODUCTION 
The digital networked world is a sea of information.  Individuals 
need this information in different forms, at different times, on 
different devices.  While there is a lot of information, only a 
portion of it is relevant to each individual at a particular time, and 
the information needs of an individual change over time.  
Businesses are also finding that personalized information is more 
effective in keeping customers, both in e-commerce and 
traditional settings.  The new, more dynamic digital environment 
demands tools that can automatically create documents, tailored 
to personal needs and transformed for the presentation device.     
     
We have formalized the creation of personalized documents as a 
multiobjective optimization problem, and use a genetic algorithm 
to automatically assemble such documents.  We begin in Section 
2 by providing a motivation for our work, and background on 
other approaches to custom document creation.  In Section 3, we 
describe our formulation of the problem as multiobjective 
optimization solved with a genetic algorithm, along with 
empirical results that illustrate the complexities of the 
multiobjective search space, and the techniques we have applied 
to address those complexities. In Section 4 we describe those 
areas that remain on our future research agenda, and then 
conclude in Section 5 with a summary.   
 

2. MOTIVATION / RELATED WORK 
2.1 Variable Information Documents 
In the printing world, personalized documents are often called 
“variable information” documents.  Such documents contain areas 
that are common across a set of documents, as well as areas that 
are “variable”.  Simple examples of such documents are bills and 
statements, which contain different information for each 
individual (e.g. account number, address, name), as well as 
information that is the same for everyone (e.g. company logo).  
Variable documents are also beginning to become more complex 
documents such as brochures and catalogs, which include variable 
images and color.    
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otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
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In traditional variable information (VI) document creation 
applications, the creation is accomplished by an expert in graphic 
arts, databases, layout, document design, etc.  This expert 
document creator develops an overall layout for the document that 
includes slots for the variable data.  The creator also finds or 
creates appropriate content pieces, and specifies rules for how to 
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fill in the custom slots with this content, or places the content in a 
database and then links the slots to particular fields in the 
database.  The VI application then creates a document for each 
customer by inserting the data for the customer into its linked slot.  
These types of templates are typically called “lick and stick”, 
because the template has “art holes” which are defined by the 
document creator, and then the variable data is placed into those 
art holes to form different instances of the document. 
 
The resulting set of documents is typically quite similar:  each 
custom slot has one piece of content of about the same size, and 
the general layout is the same for all instances, regardless of the 
available content pieces.  Thus, the traditional process not only 
requires extensive time and expertise from the document creator, 
but it also does not respond dynamically to varying amounts or 
types of content pieces, or to different output devices.  
Furthermore, the template creator is responsible for ensuring that 
the final document will adhere to good design principles, and is 
therefore aesthetically pleasing. 
 
It is with these limitations in mind that we began our research to 
automate the process of creating a personalized document.  With 
such an automated approach, we can open up the space of 
personalized document workflows to the novice, as well as enable 
the documents themselves to be more dynamic and transform 
themselves for different individuals and different devices. 
 
For example, consider a document such as the catalog page shown 
in Figure 1A.  In personalizing the document for a different 
individual, we may wish to remove some of the elements because 
they are not relevant to that individual.  When we remove the 
elements as shown in Figure 1B, the original design of the 
document no longer works well.  Our system can fix the bad 
design to create the new layout shown in Figure 1C.   

 
 
Figure 1A, 1B, 1C.  Original catalog page, changed to remove 
some content, and then redesigned to be aesthetically pleasing 

again. 

 

2.2 Related Constraint-Based Document 
Creation Research 
There has been work in the creation of documents using 
constraint-based approaches.  Dengler et al use a constraint-based 
approach to generate diagrams [6].  Another related work is in the 
adaptation of synchronized multimedia presentations [18], where 
extensions to HTML are explored that enable adapting web 

documents to different conditions and user needs.  Graf has 
developed a constraint-based layout framework called LayLab 
[11], and applied it to various applications such as flowchart 
layout and pagination of yellow pages.  Kroener has explored the 
combination of several AI techniques (constraint processing 
included) to achieve dynamic document layout [12].  The 
constraints research group at the University of Washington has 
explored constraint-based document layout for the web [3].   
 
The main difference between these efforts and the one described 
here is that the multiobjective optimization methodology attempts 
to optimize the document layout according to a set of design 
constraints, in addition to finding a layout that satisfies certain 
spatial and physical style constraints.  This in turn enables the 
approach to accommodate varying design preferences. 
 
The constraints necessary to represent aesthetic design qualities 
are non-linear in nature, as well as “soft”, and thus an approach 
using the typical simplex algorithm is not possible here.  Being a 
multiobjective problem, this also means that a single optimum 
such as computed by the simplex algorithm isn’t practical.  We 
have chosen to use a genetic algorithm to solve our multiobjective 
optimization problem since genetic algorithms work with 
populations of solutions, and thus multiple pareto-optimal 
solutions can be found in a genetic population in a single run.  
Furthermore, genetic algorithms have been shown to be 
particularly successful in problems that are difficult to formulate 
mathematically (e.g. non-linear or poorly understood objectives 
such as “design” objectives), and on problems that exhibit 
multimodality, discontinuity, randomness, and noise [7].     

3. DOCUMENT CREATION AS 
MULTIOBJECTIVE OPTIMIZATION 
Over the last few years, much research has been devoted to 
applying genetic algorithms in multiobjective optimization 
problems [4]. Real-world problems typically involve 
simultaneous consideration of multiple performance criteria.  
These objectives are often in conflict with one another, such that 
advancement in one objective causes deterioration in another.  
The genetic algorithm has been found to be robust in the face of 
such ill-defined problem landscapes.   

The document creation problem is a good example of such a 
difficult, multiobjective optimization problem.  In document 
design there are multiple design objectives that are typically 
desired.  The tradeoffs and interactions between these design 
objectives create a large and complex search space.  The large 
problem space and real-life efficiency requirements preclude a 
complete algorithm from being practical.  Thus we opted for the 
genetic algorithm approach that has promise in terms of flexibility 
and efficiency. 
 

3.1 Modeling a document as a genome 
Our methodology specifies the document, its content components, 
its layout requirements, and its desired aesthetic criteria as 
elements of a multiobjective optimization problem.  Solving this 
problem results in an automated document layout for the set of 
content components that satisfies not only certain primitive 
content and layout constraints, but also advantageously fulfills 



desired design properties that provide a way to ensure that the 
generated document is well designed.   

 

As such, we model each of the document parameters that can be 
modified as genes in the genome.  As an example, consider the 
document template shown in Figure 2.  This document template 
specifies that the positions and sizes of both areaA and areaB can 
be changed. 

 

Figure 3.  Solution Satisfying Basic Layout Constraints 
 
What we needed was a means to find a solution that not only 
satisfied the basic content and layout constraints, but that was the 
“best” solution according to some aesthetic design criteria. 
We began by encoding some of the basic design criteria that one 
might find in any book on basic design principles [19].  We 
encoded such principles as alignment, balance, legibility, 
compactness, text and image balance, etc.  Each design criterion 
measures one aspect of the document.  For instance, the alignment 
criterion provides scores that indicate how well the edges of the 
elements within a document align to one another.  Each criterion 
ranges from 0 to 1, with 1 being a perfect, maximized score for 
that particular design quality.  For instance, the documents shown 
in Figure 4 range in alignment value from close to 0 for the most 
unaligned,  to close to 1 for the most aligned.  

Figure 2.  Example Document Template 

 
Thus, the genes in this example are:  areaA-topLeftX, areaA-
topLeftY, areaB-topLeftX, areaB-topLeftY, areaA-width, areaA-
height, areaB-width, areaB-height.  The resulting genome 
contains these eight genes.  

We also model each of the desired design qualities as objectives 
to maximize.   If more than one design quality is desired (as is 
typically the case), the problem becomes a multiobjective 
optimization problem.  In this case, we sum the individual 
objective function scores to produce the overall optimization 
score for a particular solution.  We can furthermore weight each 
of the desired qualities with a priority, so that the overall 
optimization score becomes a weighted sum of the individual 
objective function scores. 

 

The genetic algorithm allows us to explore the search space of 
possible documents, evolving towards the one that best meets the 
desired design objectives. 

3.2 Design Qualities as Objectives 
In our initial work, we attempted to use a complete systematic 
search algorithm to solve the document layout problem.  Thus, we 
didn’t include design objectives, but rather only had simple 
lower-level layout constraints that were required to be satisfied, 
such as left-of, right-of, left-align, top-align, width < 350, etc.  
We quickly learned that while such a system could find layouts 
that satisfied the constraints, the solutions weren’t necessarily 
well designed, and thus typically weren’t acceptable. 
As an example, consider the document shown in Figure 3.  We 
had specified simple content and layout constraints:  we wanted a 
title, a number of images about food, and an advertisement.  
Furthermore, we wanted the title to be above the images, and the 
images above the advertisement, we wanted the three content 
areas to be the same width, and none of the content items could 
overlap one another.  The result adheres to the constraints, but 
there are problems in that the images are all sandwiched together, 
the document isn’t balanced,  etc. 

Figure 4.  Examples of Alignment Scores 
 

3.3 Optimizing Design Qualities  
We then combine the individual scores for each design quality 
into an overall measure of how “optimal” the document is for all 
of the design measures combined.  We currently use a simple 
weighted sum to compute the overall score.  For example, if we 
are optimizing the document layout based on the qualities of 
balance and alignment, and each are weighted the same, we 



obtain the scores as shown in Figure 5, with the document on the 
right side considered best because it has the higher total score. 
 

 
Figure 5.  Example of Two Equally Weighted Objectives 

 
If, however, we weight Balance 5 times higher than Alignment, 
the document on the left is considered best (score of 4.6733 
versus 4.4209).  
We also have “required” constraints in our document layout 
problem, which describe properties that must be satisfied in the 
resulting solution.  Such required constraints specify, for example, 
that document elements cannot overlap, and must stay within the 
page margins.    
The interaction between these required and desired properties 
results in a complex search space.  Furthermore, as the number of 
competing objectives increases and less well-behaved objectives 
are considered, the problem rapidly becomes increasingly 
complex [8].  In our empirical testing, we have verified that our 
application domain indeed exhibits many of the difficult 
behaviors of a typical multiobjective optimization problem.  This 
has enabled us to take advantage of several existing techniques to 
improve the behavior of our approach.  It has also made clear 
those areas that are in need of further research for more 
improvement.  The next section details how these typical difficult 
behaviors are exemplified in our automated document creation 
application domain, and how approaches from existing literature 
have helped mitigate those behaviors.  

3.4 Methodologies for Solving Constrained 
Optimization Problems 
The tradeoffs and intricacies of measuring which solutions are to 
be considered the “best” are common characteristics of the 
multiobjective optimization problem that makes its solving 
difficult.   

In most optimization problems, there is a significant distinction 
between the search space and the feasible search space [14].  In 
solving constrained optimization problems, we search for a 
feasible optimum.  During the search process, we must deal with 
various feasible and infeasible individuals.  Much work has been 
done on addressing the issue of how to handle infeasible 
individuals within evolutionary computation techniques.   Many 
different paradigms have emerged.  For example, maintaining the 
feasibility of individuals in the population by means of 
specialized operators, imposing restrictions such that any feasible 

solution is “better” than any infeasible solution, considering 
constraints one at a time in a particular linear order, repairing 
infeasible solutions, and penalizing individuals that fail to meet 
the constraints.      

3.4.1 Death Penalty Approach 
The simplest of all strategies is the “death penalty” method, which 
rejects infeasible individuals.  This method works reasonably well 
when the feasible search space F is convex and it constitutes a 
reasonable part of the whole search space S.  Otherwise, such an 
approach has been found to have serious limitations [14].  For 
example, in problems where the ratio between the sizes of F and S 
is small and an initial population consists of infeasible individuals 
only, it might be essential to improve them (as opposed to ‘reject’ 
them).  Moreover, quite often the system can reach the optimum 
solution easier if it is possible to “cross” an infeasible region. 

We have found all of the above to be true in our empirical testing 
within our automated document creation domain.   To illustrate 
the point, consider our three “hard” constraints:  that document 
elements must be within the margins (C1), elements cannot 
overlap (C2), and elements must fit into their designated region 
(C3) (e.g. text cannot overflow a region).  Examples of each of 
these constraints being violated are shown in Figure 6.   

 

 
Figure 6.  Examples of Hard Constraint Violations 

The first example shows the text and the image overlapping, 
thereby violating constraint C1.  The second image shows the text 
flowing outside the margin boundaries (shown by a dashed line), 
thereby violating constraint C2.  The third and fourth images 
show two pages of the document, where the text does not fit into 
the region, and thus overflows onto the second page, thereby 
violating constraint C3. 

When we used a death penalty method to reject documents that do 
not meet all of these hard constraints, our performance suffered.  
In fact, on all but the simplest of documents, the genetic algorithm 
failed to do anything at all – no initial solutions were generated 
(since none satisfied all of the constraints), and our termination 
criterion of stopping after 50 generations of no change was 
achieved without finding any solutions.    



3.4.2 Penalty / MultiObjective Optimization 
Approach 

If we repaired some individuals in the initial population in order 
to have something feasible to start with, we typically got only the 
repaired individuals as solutions, with the genetic algorithm only 
able to make slight, insignificant improvements on these 
artificially repaired individuals, as shown in Figure 7.  The graph 
shows several example runs where the initial repaired individual’s 
score was improved only once during the course of the run, and 
then remained stationary for the remainder of the run.  

One way to allow infeasible individuals to contribute is to 
penalize them rather than throw them away.  We adopted a 
multiobjective optimization method (equivalent to penalty 
approaches) [9], where the objective functions oj and constraint 
violation measures ck constitute a (j+k)-dimensional vector ν: 

ν: (o1, o2, o3, …oj, cj+1, cj+2, …ck). 

 
Figure 7.  Behavior of GA Using Initially Repaired 

Individuals. 

This caused the solutions to always be very much like the repair 
algorithm initially produced them – meeting the constraints, but 
otherwise not very good.  That is, the remaining “soft” constraints 
were not optimized effectively.  Figure 8 shows some of the 
results of such runs, showing that while the hard constraints are 
satisfied, the soft constraints such as appropriate image sizes and 
good balance are not. 

 

Our problem attempts to maximize the components of ν, and thus 
intuitively we are rewarding individuals that satisfy the 
constraints and penalizing those that do not.   

We analyzed the performance of the GA when moving just one, 
two, or all three of our “hard” constraints into the vector ν as 
constraint violation measures ck, which measure how close we are 
to satisfying the constraint.  When moving just one of the hard 
constraints into the vector, we already found that the genetic 
algorithm’s productivity was improved.  By productivity, we 
mean on average, how many improved solutions the genetic 
algorithm is finding per generation.   With just one hard constraint 
moved into the vector, we got an average of .11 solutions per 
generation versus .07 when all were hard constraints, indicating 
that indeed we were improving the diversity and productivity of 
the search.  Of course, not all of these solutions were feasible, 
averaging at only 8.5% of those solutions encountered during the 
run as being feasible, and only 50% of the end result of the run 
being a feasible solution.   

When we moved two of the hard constraints into the vector, the 
situation further improved.  We were getting even more 
productivity from the genetic algorithm (average of .16 solutions 
per generation), and 12.5% of those solutions encountered during 
the run were feasible, and 68.7% of the runs ended on a feasible 
solution. 

Finally, moving all three of the hard constraints into the vector 
gave the best results, with an average productivity of .21 solutions 
per generation, and 39% of the solutions encountered being 
feasible, and 100% of the runs ending on a feasible solution.  
Furthermore, when all three hard constraints were considered as 
objective measures (weighted higher than the rest of the non-
constraint objectives), the first feasible solution was found much 
earlier in the run than in the other two scenarios:  the feasible 
solution was found on average with 76.4% of the run left, versus 
23.8% for 1 hard constraint, and 22.2% for 2 hard constraints.    

Another benefit of using the objective approach was that the 
scores obtained were higher – when all three hard constraints 
were considered as objectives, we got a highest average score of 
.956, versus a score of .774 when two constraints were considered 
as objectives, and a score of .678 when one constraint was 
considered an objective.  These results are summarized in Figure 
9  Note that all of our test runs were done with a termination 
criterion of 50 generations without change, a population size of 
100, crossover rate of 1.0, mutation rate of 0.1, and replacement 
rate of 0.7.  

Figure 8.  Examples of Artificially Repaired Individuals 

 

Our empirical results, therefore, support the hypothesis that 
limiting the search to the feasible part of the search space does not 
always enhance search.   Furthermore, our experiments also 
support the correlating hypothesis that GAs optimize by 
combining partial information from all of the population, and that 
thereby allowing infeasible individuals to provide information 
rather than just throwing them away should improve performance. 

 



 

 

 

 

 
Figure 9.  Results from soft/hard Constraint Tests 

 

Our empirical results support the fact that in highly constrained 
problem situations, the death penalty approach provides poor 
results.  In using the multiobjective optimization method where 
all of the constraints and objectives are part of the overall 
objective vector, a feasible solution is found faster, and the runs 
result in higher scores.   

3.4.3 Individual Constraint / Objective Influence on 
Behavior of the Genetic Algorithm 
During our empirical testing of the death penalty versus 
multiobjective/penalty approach, we also noticed that including 
different constraints / objectives could make the genetic algorithm 
behave very differently. 

While examining the behavior of the genetic algorithm with each 
‘hard’ constraint enabled in turn, we got a sense for which of our 
three constraints made it most difficult for the genetic algorithm 
to find a solution. 

In our tests, the NoOverlap constraint appeared to be the most 
difficult to satisfy for the genetic algorithm.  It had the highest 
average number of generations to convergence out of our 3 

constraints, as well as the lowest average score, the lowest 
percentage of final solutions that ended up as feasible solutions, 
and the lowest “productivity” (i.e. average number of solutions 
per generation).  The next hardest was the StayInMargins 
constraint, with the StayInRegion faring slightly better.  These 
results are summarized in Figure 10. 

 

 

 

 

 
Figure 10.  Comparison of Hard Constraints 

 

Due to these differences in behaviors between the constraints, we 
therefore hypothesize that determining the appropriate set of 
constraints (minimal set, that allows the algorithm to be the most 
productive) is an important area for future research, which we will 
discuss further in Section 4.   

3.4.4 GA Behavior After Finding First Feasible 
Solution 
Another behavior that became apparent during our empirical tests 
using the multiobjective approach (i.e. no hard constraints) was 
the desirable behavior of quickly finding a feasible solution, and 
then spending the rest of the time optimizing the other (non-
constraint) objective measures.  This behavior can be seen in the 
examples graphed in Figure 11.  Note that this behavior is in 
contrast to the behavior noted with the death penalty approach, 
where the GA was not able to improve the artificially created 
feasible individuals. 



 
 

Figure 13.  Sample Run with High Weight on Natural Image 
Size Figure 11.  GA Continually Improves Early Feasible 

Individuals The run shown in Figure 12 clearly favors those solutions that are 
better at filling the page, at a sacrifice of other objectives such as 
balance and appropriate image sizes, while the run shown in 
Figure 13 favors those solutions that keep the images the proper 
size, rather than fill up the page.  If allowed to run long enough, 
the genetic algorithm does attempt to find a solution that 
optimizes both objectives.  However, in the short run its focus is 
on the objective(s) with the highest weights.  

 

We furthermore noted that the genetic algorithm could be made to 
explore very different regions of the search space while looking 
for the first feasible solution.  The genetic algorithm was 
influenced in its search by the weightings on the other non-
constraint objectives.  It typically started out with a first feasible 
solution that also favored the most important non-constraint 
objective.  This then influenced the remainder of its search, 
resulting in potentially very different results depending on the 
weightings of the objectives.   

In a real-life, online problem solving environment, the complexity 
of the multiobjective problem often prevents one from waiting 
until the genetic algorithm completes its run.  Rather, an answer 
might be desired as soon as is practically possible.   Thus, the first 
focus of the algorithm after achieving a feasible result is 
important, since the genetic algorithm will likely be stopped for 
an answer soon after that initial feasible result is found.  The 
genetic algorithm will get potentially vastly differing results 
depending on which objective it focuses on after its initial 
successful find of a feasible solution.  The weights on each 
individual objective also make a large difference in which 
objective gets the next focus. 

Consider the example initial iterations shown in Figure 12, where 
the genetic algorithm was set up with a high weight on the 
objective for filling up the page.  We can see that while 
attempting to satisfy the highly-weighted “constraint” objectives 
(noOverlap, stayInMargins, stayInRegion), the solutions it is 
finding are those which also best address the next most-highly 
weighted criterion, in this case how much of the page is filled.   

 

The preferred weighting of the objectives is therefore very 
important, especially if we intend to ask for an early result from 
the GA, before it has had time to complete its run and optimize all 
of the objectives completely.  

It is, however, a large challenge to model the utility function that 
describes the relative importance of each objective. It has been 
stated that incorporating designer preferences within a 
multiobjective evolutionary algorithm (MOEA) approach is a 
crucial area for further research [7]. The commonly used 
weighting scheme, which ranks the multiple objectives in terms of 
their importance to one another, requires in-depth information 
concerning various tradeoffs and valuations of each solution. This 
data is not commonly fully available in practice. Furthermore, in 
dynamic and personalized systems, the preferences might change 
over time, from designer to designer, and even from solution to 
solution.  

Figure 12.  Sample Run With High Weight on Filling the Page 

In Figure 13 we show the initial intermediate results of the genetic 
algorithm when set up with a high weight on maintaining the 
appropriate image sizes.  As you can see, the results are quite 
different.    

Thus, another of our areas for future research is in gathering 
preference information from the designer during the optimization 
process.  This will enable the system to respond to dynamically 
changing preferences, and alleviates the designer from having to  



specify all preferences a priori. It furthermore will enable a more 
directed search to useful portions of the tradeoff surface of the 
solution space.   

4. FUTURE RESEARCH AGENDA 
As we described in our empirical results, we found that how the 
constraints are specified (hard versus soft, which ones are 
considered as “hard” constraints, etc.) makes a large difference to 
the performance of the genetic algorithm.  Thus, one area for 
future research is to acquire the problem constraints accurately 
from the user using automated constraint acquisition techniques, 
as will be described in section 4.1. 
We also found that using the constraints as highly weighted 
objectives rather than “hard” constraints results in better 
performance.  It allows the GA to focus itself on improving the 
other objectives after finding an initial feasible result.   However, 
given that the initial intermediate results can be vastly different 
according to which other objectives are weighted highest, in real-
time scenarios it is important that the weights accurately reflect 
the desires of the user.  Modeling user desires within 
multiobjective evolutionary algorithms is an emerging area of 
research.  We describe in Section 4.2 our goal of addressing the 
expression of preferences using a tradeoff generation 
methodology.   
Lastly, the way in which the appropriate tradeoffs and constraints 
can be generated or acquired may be made simpler by allowing 
the user to specify which of several examples best exemplifies his 
desires.  Thus, a third area for future research is in applying case-
based reasoning techniques to ease the task of understanding user 
desires as well as generating appropriate tradeoffs.  We provide 
some background on the applicability of case-based reasoning in 
this context in section 4.3. 

4.1 Constraint Acquisition 
Variable information document creation requires considerable 
communication amongst experts representing many diverse 
functions in the design of a document. For example, graphic 
artists may wish to define constraints on acceptable color 
combinations, while marketing experts may specify constraints on 
the style of presentation of material for a particular market 
segment. Furthermore, the input of end-users and customers is 
also required. This can give rise to significant communication 
difficulties since experts are often not able to “speak the same 
language”. This has consequences for each expert’s ability to 
articulate their requirements. 
To overcome these difficulties, humans often make use of 
examples. In particular, humans can present and recognize 
examples of a requirement being satisfied or violated; however, 
they cannot appropriately articulate the requirement itself.  For 
example, a customer may be trying to specify a constraint to a 
graphic artist without being able to use the correct technical terms 
for the relevant concepts.  By pointing out to the artist examples 
of what is acceptable, the customer can be assisted in finding the 
right term for what he is trying to articulate.  This can be regarded 
as an instance of interactive constraint acquisition.  The customer 
cannot articulate his constraint but, by interacting with the artist, 
his examples of what he would accept or reject help to define his 
constraint.  However, the problem with using examples as a way 

of articulating requirements is that we rely on our communication 
partner’s ability to generalize correctly from them. 
A number of the authors have already begun studying interactive 
constraint acquisition using techniques from the field of Machine 
Learning [16]. This work has also been motivated from 
experiences from the field of design and product development 
[17]. The approach that has been adopted for acquiring constraints 
from examples is based on version space learning [15]. Critical to 
version space learning is the notion of an hypothesis space of 
constraints over which a general-to-specific ordering is known.  
Figure 14 presents an hypothesis space of constraints that can be 
used to acquire simple geometric constraints.  
Informally, the hypothesis space in Figure 14 has a general-
specific ordering, from the top to the bottom, over a set of 
constraints.  Each node of the hypothesis space is a conjunction of 
the nodes that are below it and connected to it.  For example, 
Vertical is a conjunction of Top and Bottom.  This means that if a 
user accepts both Top and Bottom, Vertical is also acceptable.  If 
the user accepts both Right and Top, Orthogonal is acceptable.  
As a consequence of Orthogonal being acceptable, Right, Left, 
Top and Bottom are also, by definition, acceptable.  As examples 
are given to an acquisition system, the hypothesis space can be 
used to generalize the examples in order to converge on the target 
concept by posing queries to the user. 
 

Right Left Bottom Diag. Up Diag. Down 

Horizontal Vertical 

Orthogonal 

Anywhere 

Diagonal 

Top 

 
Figure 14. An example version space for placement 
constraints. 
 
Our current work in this area is focused on acquiring sets of 
constraints from a minimum number of interactions (examples 
and queries). 

4.2 Automated Tradeoff Generation 
Typically in multiobjective optimization, one is searching for the 
set of nondominated, equally efficient solutions, known as the 
Pareto-optimal set [9].  In order to select a “most-appropriate” 
solution from all of the non-inferior alternatives, a decision 
process is necessary, along with some representation of the user’s 
desires.  Three broad classes of preference methods within 
multiobjective problems exist:  a priori articulation of preferences, 
a posteriori articulation of preferences, and progressive 
articulation of preferences.    
In a priori articulation, the user expresses preferences in terms of 
an aggregating function, which combines individual objective 
values into a single utility value.  This is the typical weighted-sum 



approach that we have been using up until now.  In a posteriori 
articulation of preferences, the decision-maker is presented with a 
set of candidate non-inferior solutions, and then chooses from that 
set.  In progressive articulation of preferences, decision-making 
and optimization occur at interleaved steps.  At each step, partial 
preference information is supplied by the decision-maker to the 
optimizer, which in turn generates better alternatives according to 
the information received [9].   
We hypothesize that in a real-time, online setting, the progressive 
articulation approach is the most attractive, as it would enable one 
to quickly guide the GA towards the most preferable areas of the 
solution space, as well as incorporate preferences that change 
over time.   There is of yet very little work in the area of 
explicitly handling preferences within evolutionary multiobjective 
problems [5].   
Many real systems, however, involve reasoning about 
preferences.  In such systems, a situation can be reached where all 
the desires/objectives cannot be achieved.  At this point we could 
consider “tradeoffs” between the preferences and objectives in the 
problem.  For example, when designing a document, we might 
reach a point where the desired balance cannot be achieved for a 
given alignment score.  However, the user or system could accept 
a tradeoff: “it is more important to have a well aligned document 
than one which is balanced”. Ideally, we would like the system to 
suggest appropriate tradeoffs to the user.  Some of the authors 
have begun studying the issues associated with modeling and 
generating tradeoffs in interactive systems [10].  In that work 
tradeoffs were modeled as additional crisp constraints.  More 
recent work has extended the approach to tradeoff generation to 
include soft constraints and preferences [2]. 
In the context of variable information document creation we 
envisage using tradeoff generation to relax the notion of linear 
combination of design qualities in the objective function to a 
more customized objective.  One consequence of applying 
tradeoff generation in this context is that we modify the basis 
upon which our GA evaluates fitness.  This modifies the search 
space that the algorithm explores.  In addition, the effect of hard 
constraints can be relaxed in a principled manner.  Overall, we 
have a more differentiating tool for finding more satisfactory 
documents that meet the most important criteria to the maximal 
degree and the others to a satisfactory degree. 

4.3 Case-Based Reasoning for an Easier 
Specification of User Desires 
The reliance on past experience that is such an integral part of 
human problem solving has motivated the use of case-based 
reasoning (CBR) techniques.  A CBR system stores its past 
problem solving episodes as cases that later can be retrieved and 
used to help solve a new problem.  Case-Based Reasoning is 
based on two observations about the nature of the world:  that the 
world is regular, and therefore similar problems have similar 
solutions, and that the types of problems encountered tend to 
recur [13].  When these two observations hold true, it is 
worthwhile to solve new problems by reusing prior reasoning.   
The process by which a case-based reasoner operates has been 
described by Aamodt & Plaza [1] as a cyclical process comprised 
of the four Rs: RETRIEVE the most similar case(s), REUSE the 
case(s) to solve the problem, REVISE the proposed solution if 
necessary, and RETAIN the new solution as a new case.  We can 

abstract the CBR process as one of recalling an old similar 
problem, and adapting that problem/solution to fit the new 
situation requirements. 
We believe that a CBR process holds promise for helping the user 
to express his preferences and/or problem constraints, and will be 
synergistic with the notions of constraint acquisition and tradeoff 
generation described in the previous sections.  For instance, CBR 
methodologies exist for determining which examples are relevant 
in which problem-solving contexts, for retrieving the appropriate 
examples, for representing the examples, for maintaining a 
consistent and coherent set of examples, and for learning new 
examples.   As we incorporate the notions of using examples to 
acquire constraints and generate tradeoffs between constraints, 
CBR will provide building blocks upon which to do so.   

During tradeoff generation we may want to present a number of 
examples to elicit the appropriate relationship between 
maintaining natural image size versus allowing overlap.  A case 
base might contain numerous existing examples, indexed by the 
constraints that are violated and/or the objective weightings.   For 
example, the documents pictured in Figure 15 could be existing 
cases known to work well in discriminating between maintaining 
natural image size and allowing overlap.  Receiving information 
back about which one is more preferred would help indicate the 
relative importance of maintaining image size versus allowing 
overlap.      

 
Figure 15.  Two cases that could elicit preferences for 

NoOverlap versus Natural Image Size. 

 

In our future research, we will explore how such case-based 
examples, along with the associated CBR techniques for indexing, 
retrieval, and adaptation might be used to build up the appropriate 
set of constraints and to model user preferences within a 
multiobjective optimization methodology. 

5. SUMMARY 
Personalized documents are becoming more and more important, 
especially as the amount of available information continues to 
explode in the digitally networked world.  People need effective 
ways to assemble and make sense of the vast sea of information 
available at their fingertips.    

We are working on a methodology to enable an automated and 
easy approach to creating customized documents.  We model the 
problem of assembling a document from a set of components as a 
multiobjective optimization problem.  As such, we have 
encountered the many typical challenges in applying an 



optimization approach.  At the same time, the various techniques 
that have already been devised to address these challenges have 
also been of use in our application domain.     

We found that the simple death-penalty approach for handling 
constrained optimization problems is not effective enough in our 
tightly constrained domain.  The multiobjective approach, 
equivalent to penalty approaches, provides us with much better 
performance.  We furthermore found that the objectives and 
constraints themselves can exert a great influence over the 
behavior of the genetic algorithm, and thus it is important (yet 
difficult) to find the right set and the right weightings for each 
objective.   

It is these remaining challenges that have prompted us to look 
towards new techniques in constraint acquisition, tradeoff 
generation, and case-based reasoning in order to broaden the 
applicability of our approach to personalized document creation.  
We hope that addressing these challenges will allow 
multiobjective optimization to be more broadly and practically 
applied, both within personalized document creation, as well as in 
other application domains. 
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