
Creating Personalized Documents: An Optimization Approach

Lisa Purvis
Steven Harrington

Xerox Corporation
800 Phillips Road, 128-27E

Webster, NY 14580
{lpurvis | sharrington}@crt.xerox.com

Barry O’Sullivan
Eugene C. Freuder

Cork Constraint Computation Centre
Department of Computer Science
University College Cork, Ireland

{b.osullivan | e.freuder}@cs.ucc.ie

ABSTRACT
The digital networked world is enabling and requiring a new
emphasis on personalized document creation. The new, more
dynamic digital environment demands tools that can reproduce
both the contents and the layout automatically, tailored to
personal needs and transformed for the presentation device, and
can enable novices to easily create such documents. In order to
achieve such automated document assembly and transformation,
we have formalized custom document creation as a multiobjective
optimization problem, and use a genetic algorithm to assemble
and transform compound personalized documents. While we
have found that such an automated process for document creation
opens new possibilities and new workflows, we have also found
several areas where further research would enable the approach to
be more broadly and practically applied. This paper reviews the
current system and outlines several areas where future research
will broaden its current capabilities.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Applications and Expert Systems –
office automation; I.7.2 [Document and Text Processing]:
Document Preparation – Desktop publishing; I.7.4 [Document
and Text Processing]: Electronic Publishing; F.2.2 [Analysis of
Algorithms and Problem Complexity]: Nonnumerical
Algorithms and Problems – Sorting and searching, Routing and
layout;

General Terms
Algorithms, Performance, Design, Experimentation.

Keywords
Genetic algorithm, constraint-based reasoning, multiobjective
optimization, constrained optimization, automated layout,
document design.

1. INTRODUCTION
The digital networked world is a sea of information. Individuals
need this information in different forms, at different times, on
different devices. While there is a lot of information, only a
portion of it is relevant to each individual at a particular time, and
the information needs of an individual change over time.
Businesses are also finding that personalized information is more
effective in keeping customers, both in e-commerce and
traditional settings. The new, more dynamic digital environment
demands tools that can automatically create documents, tailored
to personal needs and transformed for the presentation device.

We have formalized the creation of personalized documents as a
multiobjective optimization problem, and use a genetic algorithm
to automatically assemble such documents. We begin in Section
2 by providing a motivation for our work, and background on
other approaches to custom document creation. In Section 3, we
describe our formulation of the problem as multiobjective
optimization solved with a genetic algorithm, along with
empirical results that illustrate the complexities of the
multiobjective search space, and the techniques we have applied
to address those complexities. In Section 4 we describe those
areas that remain on our future research agenda, and then
conclude in Section 5 with a summary.

2. MOTIVATION / RELATED WORK
2.1 Variable Information Documents
In the printing world, personalized documents are often called
“variable information” documents. Such documents contain areas
that are common across a set of documents, as well as areas that
are “variable”. Simple examples of such documents are bills and
statements, which contain different information for each
individual (e.g. account number, address, name), as well as
information that is the same for everyone (e.g. company logo).
Variable documents are also beginning to become more complex
documents such as brochures and catalogs, which include variable
images and color.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DocEng’03, November 20-22, 2003, Grenoble, France.
Copyright 2003 ACM 1-58113-724-9/03/0011…$5.00.

In traditional variable information (VI) document creation
applications, the creation is accomplished by an expert in graphic
arts, databases, layout, document design, etc. This expert
document creator develops an overall layout for the document that
includes slots for the variable data. The creator also finds or
creates appropriate content pieces, and specifies rules for how to

mailto:lpurvis | sharrington}@crt.xerox.com
mailto:b.osullivan | e.freuder}@cs.ucc.ie

fill in the custom slots with this content, or places the content in a
database and then links the slots to particular fields in the
database. The VI application then creates a document for each
customer by inserting the data for the customer into its linked slot.
These types of templates are typically called “lick and stick”,
because the template has “art holes” which are defined by the
document creator, and then the variable data is placed into those
art holes to form different instances of the document.

The resulting set of documents is typically quite similar: each
custom slot has one piece of content of about the same size, and
the general layout is the same for all instances, regardless of the
available content pieces. Thus, the traditional process not only
requires extensive time and expertise from the document creator,
but it also does not respond dynamically to varying amounts or
types of content pieces, or to different output devices.
Furthermore, the template creator is responsible for ensuring that
the final document will adhere to good design principles, and is
therefore aesthetically pleasing.

It is with these limitations in mind that we began our research to
automate the process of creating a personalized document. With
such an automated approach, we can open up the space of
personalized document workflows to the novice, as well as enable
the documents themselves to be more dynamic and transform
themselves for different individuals and different devices.

For example, consider a document such as the catalog page shown
in Figure 1A. In personalizing the document for a different
individual, we may wish to remove some of the elements because
they are not relevant to that individual. When we remove the
elements as shown in Figure 1B, the original design of the
document no longer works well. Our system can fix the bad
design to create the new layout shown in Figure 1C.

Figure 1A, 1B, 1C. Original catalog page, changed to remove
some content, and then redesigned to be aesthetically pleasing

again.

2.2 Related Constraint-Based Document
Creation Research
There has been work in the creation of documents using
constraint-based approaches. Dengler et al use a constraint-based
approach to generate diagrams [6]. Another related work is in the
adaptation of synchronized multimedia presentations [18], where
extensions to HTML are explored that enable adapting web

documents to different conditions and user needs. Graf has
developed a constraint-based layout framework called LayLab
[11], and applied it to various applications such as flowchart
layout and pagination of yellow pages. Kroener has explored the
combination of several AI techniques (constraint processing
included) to achieve dynamic document layout [12]. The
constraints research group at the University of Washington has
explored constraint-based document layout for the web [3].

The main difference between these efforts and the one described
here is that the multiobjective optimization methodology attempts
to optimize the document layout according to a set of design
constraints, in addition to finding a layout that satisfies certain
spatial and physical style constraints. This in turn enables the
approach to accommodate varying design preferences.

The constraints necessary to represent aesthetic design qualities
are non-linear in nature, as well as “soft”, and thus an approach
using the typical simplex algorithm is not possible here. Being a
multiobjective problem, this also means that a single optimum
such as computed by the simplex algorithm isn’t practical. We
have chosen to use a genetic algorithm to solve our multiobjective
optimization problem since genetic algorithms work with
populations of solutions, and thus multiple pareto-optimal
solutions can be found in a genetic population in a single run.
Furthermore, genetic algorithms have been shown to be
particularly successful in problems that are difficult to formulate
mathematically (e.g. non-linear or poorly understood objectives
such as “design” objectives), and on problems that exhibit
multimodality, discontinuity, randomness, and noise [7].

3. DOCUMENT CREATION AS
MULTIOBJECTIVE OPTIMIZATION
Over the last few years, much research has been devoted to
applying genetic algorithms in multiobjective optimization
problems [4]. Real-world problems typically involve
simultaneous consideration of multiple performance criteria.
These objectives are often in conflict with one another, such that
advancement in one objective causes deterioration in another.
The genetic algorithm has been found to be robust in the face of
such ill-defined problem landscapes.

The document creation problem is a good example of such a
difficult, multiobjective optimization problem. In document
design there are multiple design objectives that are typically
desired. The tradeoffs and interactions between these design
objectives create a large and complex search space. The large
problem space and real-life efficiency requirements preclude a
complete algorithm from being practical. Thus we opted for the
genetic algorithm approach that has promise in terms of flexibility
and efficiency.

3.1 Modeling a document as a genome
Our methodology specifies the document, its content components,
its layout requirements, and its desired aesthetic criteria as
elements of a multiobjective optimization problem. Solving this
problem results in an automated document layout for the set of
content components that satisfies not only certain primitive
content and layout constraints, but also advantageously fulfills

desired design properties that provide a way to ensure that the
generated document is well designed.

As such, we model each of the document parameters that can be
modified as genes in the genome. As an example, consider the
document template shown in Figure 2. This document template
specifies that the positions and sizes of both areaA and areaB can
be changed.

Figure 3. Solution Satisfying Basic Layout Constraints

What we needed was a means to find a solution that not only
satisfied the basic content and layout constraints, but that was the
“best” solution according to some aesthetic design criteria.
We began by encoding some of the basic design criteria that one
might find in any book on basic design principles [19]. We
encoded such principles as alignment, balance, legibility,
compactness, text and image balance, etc. Each design criterion
measures one aspect of the document. For instance, the alignment
criterion provides scores that indicate how well the edges of the
elements within a document align to one another. Each criterion
ranges from 0 to 1, with 1 being a perfect, maximized score for
that particular design quality. For instance, the documents shown
in Figure 4 range in alignment value from close to 0 for the most
unaligned, to close to 1 for the most aligned.

Figure 2. Example Document Template

Thus, the genes in this example are: areaA-topLeftX, areaA-
topLeftY, areaB-topLeftX, areaB-topLeftY, areaA-width, areaA-
height, areaB-width, areaB-height. The resulting genome
contains these eight genes.

We also model each of the desired design qualities as objectives
to maximize. If more than one design quality is desired (as is
typically the case), the problem becomes a multiobjective
optimization problem. In this case, we sum the individual
objective function scores to produce the overall optimization
score for a particular solution. We can furthermore weight each
of the desired qualities with a priority, so that the overall
optimization score becomes a weighted sum of the individual
objective function scores.

The genetic algorithm allows us to explore the search space of
possible documents, evolving towards the one that best meets the
desired design objectives.

3.2 Design Qualities as Objectives
In our initial work, we attempted to use a complete systematic
search algorithm to solve the document layout problem. Thus, we
didn’t include design objectives, but rather only had simple
lower-level layout constraints that were required to be satisfied,
such as left-of, right-of, left-align, top-align, width < 350, etc.
We quickly learned that while such a system could find layouts
that satisfied the constraints, the solutions weren’t necessarily
well designed, and thus typically weren’t acceptable.
As an example, consider the document shown in Figure 3. We
had specified simple content and layout constraints: we wanted a
title, a number of images about food, and an advertisement.
Furthermore, we wanted the title to be above the images, and the
images above the advertisement, we wanted the three content
areas to be the same width, and none of the content items could
overlap one another. The result adheres to the constraints, but
there are problems in that the images are all sandwiched together,
the document isn’t balanced, etc.

Figure 4. Examples of Alignment Scores

3.3 Optimizing Design Qualities
We then combine the individual scores for each design quality
into an overall measure of how “optimal” the document is for all
of the design measures combined. We currently use a simple
weighted sum to compute the overall score. For example, if we
are optimizing the document layout based on the qualities of
balance and alignment, and each are weighted the same, we

obtain the scores as shown in Figure 5, with the document on the
right side considered best because it has the higher total score.

Figure 5. Example of Two Equally Weighted Objectives

If, however, we weight Balance 5 times higher than Alignment,
the document on the left is considered best (score of 4.6733
versus 4.4209).
We also have “required” constraints in our document layout
problem, which describe properties that must be satisfied in the
resulting solution. Such required constraints specify, for example,
that document elements cannot overlap, and must stay within the
page margins.
The interaction between these required and desired properties
results in a complex search space. Furthermore, as the number of
competing objectives increases and less well-behaved objectives
are considered, the problem rapidly becomes increasingly
complex [8]. In our empirical testing, we have verified that our
application domain indeed exhibits many of the difficult
behaviors of a typical multiobjective optimization problem. This
has enabled us to take advantage of several existing techniques to
improve the behavior of our approach. It has also made clear
those areas that are in need of further research for more
improvement. The next section details how these typical difficult
behaviors are exemplified in our automated document creation
application domain, and how approaches from existing literature
have helped mitigate those behaviors.

3.4 Methodologies for Solving Constrained
Optimization Problems
The tradeoffs and intricacies of measuring which solutions are to
be considered the “best” are common characteristics of the
multiobjective optimization problem that makes its solving
difficult.

In most optimization problems, there is a significant distinction
between the search space and the feasible search space [14]. In
solving constrained optimization problems, we search for a
feasible optimum. During the search process, we must deal with
various feasible and infeasible individuals. Much work has been
done on addressing the issue of how to handle infeasible
individuals within evolutionary computation techniques. Many
different paradigms have emerged. For example, maintaining the
feasibility of individuals in the population by means of
specialized operators, imposing restrictions such that any feasible

solution is “better” than any infeasible solution, considering
constraints one at a time in a particular linear order, repairing
infeasible solutions, and penalizing individuals that fail to meet
the constraints.

3.4.1 Death Penalty Approach
The simplest of all strategies is the “death penalty” method, which
rejects infeasible individuals. This method works reasonably well
when the feasible search space F is convex and it constitutes a
reasonable part of the whole search space S. Otherwise, such an
approach has been found to have serious limitations [14]. For
example, in problems where the ratio between the sizes of F and S
is small and an initial population consists of infeasible individuals
only, it might be essential to improve them (as opposed to ‘reject’
them). Moreover, quite often the system can reach the optimum
solution easier if it is possible to “cross” an infeasible region.

We have found all of the above to be true in our empirical testing
within our automated document creation domain. To illustrate
the point, consider our three “hard” constraints: that document
elements must be within the margins (C1), elements cannot
overlap (C2), and elements must fit into their designated region
(C3) (e.g. text cannot overflow a region). Examples of each of
these constraints being violated are shown in Figure 6.

Figure 6. Examples of Hard Constraint Violations

The first example shows the text and the image overlapping,
thereby violating constraint C1. The second image shows the text
flowing outside the margin boundaries (shown by a dashed line),
thereby violating constraint C2. The third and fourth images
show two pages of the document, where the text does not fit into
the region, and thus overflows onto the second page, thereby
violating constraint C3.

When we used a death penalty method to reject documents that do
not meet all of these hard constraints, our performance suffered.
In fact, on all but the simplest of documents, the genetic algorithm
failed to do anything at all – no initial solutions were generated
(since none satisfied all of the constraints), and our termination
criterion of stopping after 50 generations of no change was
achieved without finding any solutions.

3.4.2 Penalty / MultiObjective Optimization
Approach

If we repaired some individuals in the initial population in order
to have something feasible to start with, we typically got only the
repaired individuals as solutions, with the genetic algorithm only
able to make slight, insignificant improvements on these
artificially repaired individuals, as shown in Figure 7. The graph
shows several example runs where the initial repaired individual’s
score was improved only once during the course of the run, and
then remained stationary for the remainder of the run.

One way to allow infeasible individuals to contribute is to
penalize them rather than throw them away. We adopted a
multiobjective optimization method (equivalent to penalty
approaches) [9], where the objective functions oj and constraint
violation measures ck constitute a (j+k)-dimensional vector ν:

ν: (o1, o2, o3, …oj, cj+1, cj+2, …ck).

Figure 7. Behavior of GA Using Initially Repaired

Individuals.

This caused the solutions to always be very much like the repair
algorithm initially produced them – meeting the constraints, but
otherwise not very good. That is, the remaining “soft” constraints
were not optimized effectively. Figure 8 shows some of the
results of such runs, showing that while the hard constraints are
satisfied, the soft constraints such as appropriate image sizes and
good balance are not.

Our problem attempts to maximize the components of ν, and thus
intuitively we are rewarding individuals that satisfy the
constraints and penalizing those that do not.

We analyzed the performance of the GA when moving just one,
two, or all three of our “hard” constraints into the vector ν as
constraint violation measures ck, which measure how close we are
to satisfying the constraint. When moving just one of the hard
constraints into the vector, we already found that the genetic
algorithm’s productivity was improved. By productivity, we
mean on average, how many improved solutions the genetic
algorithm is finding per generation. With just one hard constraint
moved into the vector, we got an average of .11 solutions per
generation versus .07 when all were hard constraints, indicating
that indeed we were improving the diversity and productivity of
the search. Of course, not all of these solutions were feasible,
averaging at only 8.5% of those solutions encountered during the
run as being feasible, and only 50% of the end result of the run
being a feasible solution.

When we moved two of the hard constraints into the vector, the
situation further improved. We were getting even more
productivity from the genetic algorithm (average of .16 solutions
per generation), and 12.5% of those solutions encountered during
the run were feasible, and 68.7% of the runs ended on a feasible
solution.

Finally, moving all three of the hard constraints into the vector
gave the best results, with an average productivity of .21 solutions
per generation, and 39% of the solutions encountered being
feasible, and 100% of the runs ending on a feasible solution.
Furthermore, when all three hard constraints were considered as
objective measures (weighted higher than the rest of the non-
constraint objectives), the first feasible solution was found much
earlier in the run than in the other two scenarios: the feasible
solution was found on average with 76.4% of the run left, versus
23.8% for 1 hard constraint, and 22.2% for 2 hard constraints.

Another benefit of using the objective approach was that the
scores obtained were higher – when all three hard constraints
were considered as objectives, we got a highest average score of
.956, versus a score of .774 when two constraints were considered
as objectives, and a score of .678 when one constraint was
considered an objective. These results are summarized in Figure
9 Note that all of our test runs were done with a termination
criterion of 50 generations without change, a population size of
100, crossover rate of 1.0, mutation rate of 0.1, and replacement
rate of 0.7.

Figure 8. Examples of Artificially Repaired Individuals

Our empirical results, therefore, support the hypothesis that
limiting the search to the feasible part of the search space does not
always enhance search. Furthermore, our experiments also
support the correlating hypothesis that GAs optimize by
combining partial information from all of the population, and that
thereby allowing infeasible individuals to provide information
rather than just throwing them away should improve performance.

Figure 9. Results from soft/hard Constraint Tests

Our empirical results support the fact that in highly constrained
problem situations, the death penalty approach provides poor
results. In using the multiobjective optimization method where
all of the constraints and objectives are part of the overall
objective vector, a feasible solution is found faster, and the runs
result in higher scores.

3.4.3 Individual Constraint / Objective Influence on
Behavior of the Genetic Algorithm
During our empirical testing of the death penalty versus
multiobjective/penalty approach, we also noticed that including
different constraints / objectives could make the genetic algorithm
behave very differently.

While examining the behavior of the genetic algorithm with each
‘hard’ constraint enabled in turn, we got a sense for which of our
three constraints made it most difficult for the genetic algorithm
to find a solution.

In our tests, the NoOverlap constraint appeared to be the most
difficult to satisfy for the genetic algorithm. It had the highest
average number of generations to convergence out of our 3

constraints, as well as the lowest average score, the lowest
percentage of final solutions that ended up as feasible solutions,
and the lowest “productivity” (i.e. average number of solutions
per generation). The next hardest was the StayInMargins
constraint, with the StayInRegion faring slightly better. These
results are summarized in Figure 10.

Figure 10. Comparison of Hard Constraints

Due to these differences in behaviors between the constraints, we
therefore hypothesize that determining the appropriate set of
constraints (minimal set, that allows the algorithm to be the most
productive) is an important area for future research, which we will
discuss further in Section 4.

3.4.4 GA Behavior After Finding First Feasible
Solution
Another behavior that became apparent during our empirical tests
using the multiobjective approach (i.e. no hard constraints) was
the desirable behavior of quickly finding a feasible solution, and
then spending the rest of the time optimizing the other (non-
constraint) objective measures. This behavior can be seen in the
examples graphed in Figure 11. Note that this behavior is in
contrast to the behavior noted with the death penalty approach,
where the GA was not able to improve the artificially created
feasible individuals.

Figure 13. Sample Run with High Weight on Natural Image
Size Figure 11. GA Continually Improves Early Feasible

Individuals The run shown in Figure 12 clearly favors those solutions that are
better at filling the page, at a sacrifice of other objectives such as
balance and appropriate image sizes, while the run shown in
Figure 13 favors those solutions that keep the images the proper
size, rather than fill up the page. If allowed to run long enough,
the genetic algorithm does attempt to find a solution that
optimizes both objectives. However, in the short run its focus is
on the objective(s) with the highest weights.

We furthermore noted that the genetic algorithm could be made to
explore very different regions of the search space while looking
for the first feasible solution. The genetic algorithm was
influenced in its search by the weightings on the other non-
constraint objectives. It typically started out with a first feasible
solution that also favored the most important non-constraint
objective. This then influenced the remainder of its search,
resulting in potentially very different results depending on the
weightings of the objectives.

In a real-life, online problem solving environment, the complexity
of the multiobjective problem often prevents one from waiting
until the genetic algorithm completes its run. Rather, an answer
might be desired as soon as is practically possible. Thus, the first
focus of the algorithm after achieving a feasible result is
important, since the genetic algorithm will likely be stopped for
an answer soon after that initial feasible result is found. The
genetic algorithm will get potentially vastly differing results
depending on which objective it focuses on after its initial
successful find of a feasible solution. The weights on each
individual objective also make a large difference in which
objective gets the next focus.

Consider the example initial iterations shown in Figure 12, where
the genetic algorithm was set up with a high weight on the
objective for filling up the page. We can see that while
attempting to satisfy the highly-weighted “constraint” objectives
(noOverlap, stayInMargins, stayInRegion), the solutions it is
finding are those which also best address the next most-highly
weighted criterion, in this case how much of the page is filled.

The preferred weighting of the objectives is therefore very
important, especially if we intend to ask for an early result from
the GA, before it has had time to complete its run and optimize all
of the objectives completely.

It is, however, a large challenge to model the utility function that
describes the relative importance of each objective. It has been
stated that incorporating designer preferences within a
multiobjective evolutionary algorithm (MOEA) approach is a
crucial area for further research [7]. The commonly used
weighting scheme, which ranks the multiple objectives in terms of
their importance to one another, requires in-depth information
concerning various tradeoffs and valuations of each solution. This
data is not commonly fully available in practice. Furthermore, in
dynamic and personalized systems, the preferences might change
over time, from designer to designer, and even from solution to
solution.

Figure 12. Sample Run With High Weight on Filling the Page

In Figure 13 we show the initial intermediate results of the genetic
algorithm when set up with a high weight on maintaining the
appropriate image sizes. As you can see, the results are quite
different.

Thus, another of our areas for future research is in gathering
preference information from the designer during the optimization
process. This will enable the system to respond to dynamically
changing preferences, and alleviates the designer from having to

specify all preferences a priori. It furthermore will enable a more
directed search to useful portions of the tradeoff surface of the
solution space.

4. FUTURE RESEARCH AGENDA
As we described in our empirical results, we found that how the
constraints are specified (hard versus soft, which ones are
considered as “hard” constraints, etc.) makes a large difference to
the performance of the genetic algorithm. Thus, one area for
future research is to acquire the problem constraints accurately
from the user using automated constraint acquisition techniques,
as will be described in section 4.1.
We also found that using the constraints as highly weighted
objectives rather than “hard” constraints results in better
performance. It allows the GA to focus itself on improving the
other objectives after finding an initial feasible result. However,
given that the initial intermediate results can be vastly different
according to which other objectives are weighted highest, in real-
time scenarios it is important that the weights accurately reflect
the desires of the user. Modeling user desires within
multiobjective evolutionary algorithms is an emerging area of
research. We describe in Section 4.2 our goal of addressing the
expression of preferences using a tradeoff generation
methodology.
Lastly, the way in which the appropriate tradeoffs and constraints
can be generated or acquired may be made simpler by allowing
the user to specify which of several examples best exemplifies his
desires. Thus, a third area for future research is in applying case-
based reasoning techniques to ease the task of understanding user
desires as well as generating appropriate tradeoffs. We provide
some background on the applicability of case-based reasoning in
this context in section 4.3.

4.1 Constraint Acquisition
Variable information document creation requires considerable
communication amongst experts representing many diverse
functions in the design of a document. For example, graphic
artists may wish to define constraints on acceptable color
combinations, while marketing experts may specify constraints on
the style of presentation of material for a particular market
segment. Furthermore, the input of end-users and customers is
also required. This can give rise to significant communication
difficulties since experts are often not able to “speak the same
language”. This has consequences for each expert’s ability to
articulate their requirements.
To overcome these difficulties, humans often make use of
examples. In particular, humans can present and recognize
examples of a requirement being satisfied or violated; however,
they cannot appropriately articulate the requirement itself. For
example, a customer may be trying to specify a constraint to a
graphic artist without being able to use the correct technical terms
for the relevant concepts. By pointing out to the artist examples
of what is acceptable, the customer can be assisted in finding the
right term for what he is trying to articulate. This can be regarded
as an instance of interactive constraint acquisition. The customer
cannot articulate his constraint but, by interacting with the artist,
his examples of what he would accept or reject help to define his
constraint. However, the problem with using examples as a way

of articulating requirements is that we rely on our communication
partner’s ability to generalize correctly from them.
A number of the authors have already begun studying interactive
constraint acquisition using techniques from the field of Machine
Learning [16]. This work has also been motivated from
experiences from the field of design and product development
[17]. The approach that has been adopted for acquiring constraints
from examples is based on version space learning [15]. Critical to
version space learning is the notion of an hypothesis space of
constraints over which a general-to-specific ordering is known.
Figure 14 presents an hypothesis space of constraints that can be
used to acquire simple geometric constraints.
Informally, the hypothesis space in Figure 14 has a general-
specific ordering, from the top to the bottom, over a set of
constraints. Each node of the hypothesis space is a conjunction of
the nodes that are below it and connected to it. For example,
Vertical is a conjunction of Top and Bottom. This means that if a
user accepts both Top and Bottom, Vertical is also acceptable. If
the user accepts both Right and Top, Orthogonal is acceptable.
As a consequence of Orthogonal being acceptable, Right, Left,
Top and Bottom are also, by definition, acceptable. As examples
are given to an acquisition system, the hypothesis space can be
used to generalize the examples in order to converge on the target
concept by posing queries to the user.

Right Left Bottom Diag. Up Diag. Down

Horizontal Vertical

Orthogonal

Anywhere

Diagonal

Top

Figure 14. An example version space for placement
constraints.

Our current work in this area is focused on acquiring sets of
constraints from a minimum number of interactions (examples
and queries).

4.2 Automated Tradeoff Generation
Typically in multiobjective optimization, one is searching for the
set of nondominated, equally efficient solutions, known as the
Pareto-optimal set [9]. In order to select a “most-appropriate”
solution from all of the non-inferior alternatives, a decision
process is necessary, along with some representation of the user’s
desires. Three broad classes of preference methods within
multiobjective problems exist: a priori articulation of preferences,
a posteriori articulation of preferences, and progressive
articulation of preferences.
In a priori articulation, the user expresses preferences in terms of
an aggregating function, which combines individual objective
values into a single utility value. This is the typical weighted-sum

approach that we have been using up until now. In a posteriori
articulation of preferences, the decision-maker is presented with a
set of candidate non-inferior solutions, and then chooses from that
set. In progressive articulation of preferences, decision-making
and optimization occur at interleaved steps. At each step, partial
preference information is supplied by the decision-maker to the
optimizer, which in turn generates better alternatives according to
the information received [9].
We hypothesize that in a real-time, online setting, the progressive
articulation approach is the most attractive, as it would enable one
to quickly guide the GA towards the most preferable areas of the
solution space, as well as incorporate preferences that change
over time. There is of yet very little work in the area of
explicitly handling preferences within evolutionary multiobjective
problems [5].
Many real systems, however, involve reasoning about
preferences. In such systems, a situation can be reached where all
the desires/objectives cannot be achieved. At this point we could
consider “tradeoffs” between the preferences and objectives in the
problem. For example, when designing a document, we might
reach a point where the desired balance cannot be achieved for a
given alignment score. However, the user or system could accept
a tradeoff: “it is more important to have a well aligned document
than one which is balanced”. Ideally, we would like the system to
suggest appropriate tradeoffs to the user. Some of the authors
have begun studying the issues associated with modeling and
generating tradeoffs in interactive systems [10]. In that work
tradeoffs were modeled as additional crisp constraints. More
recent work has extended the approach to tradeoff generation to
include soft constraints and preferences [2].
In the context of variable information document creation we
envisage using tradeoff generation to relax the notion of linear
combination of design qualities in the objective function to a
more customized objective. One consequence of applying
tradeoff generation in this context is that we modify the basis
upon which our GA evaluates fitness. This modifies the search
space that the algorithm explores. In addition, the effect of hard
constraints can be relaxed in a principled manner. Overall, we
have a more differentiating tool for finding more satisfactory
documents that meet the most important criteria to the maximal
degree and the others to a satisfactory degree.

4.3 Case-Based Reasoning for an Easier
Specification of User Desires
The reliance on past experience that is such an integral part of
human problem solving has motivated the use of case-based
reasoning (CBR) techniques. A CBR system stores its past
problem solving episodes as cases that later can be retrieved and
used to help solve a new problem. Case-Based Reasoning is
based on two observations about the nature of the world: that the
world is regular, and therefore similar problems have similar
solutions, and that the types of problems encountered tend to
recur [13]. When these two observations hold true, it is
worthwhile to solve new problems by reusing prior reasoning.
The process by which a case-based reasoner operates has been
described by Aamodt & Plaza [1] as a cyclical process comprised
of the four Rs: RETRIEVE the most similar case(s), REUSE the
case(s) to solve the problem, REVISE the proposed solution if
necessary, and RETAIN the new solution as a new case. We can

abstract the CBR process as one of recalling an old similar
problem, and adapting that problem/solution to fit the new
situation requirements.
We believe that a CBR process holds promise for helping the user
to express his preferences and/or problem constraints, and will be
synergistic with the notions of constraint acquisition and tradeoff
generation described in the previous sections. For instance, CBR
methodologies exist for determining which examples are relevant
in which problem-solving contexts, for retrieving the appropriate
examples, for representing the examples, for maintaining a
consistent and coherent set of examples, and for learning new
examples. As we incorporate the notions of using examples to
acquire constraints and generate tradeoffs between constraints,
CBR will provide building blocks upon which to do so.

During tradeoff generation we may want to present a number of
examples to elicit the appropriate relationship between
maintaining natural image size versus allowing overlap. A case
base might contain numerous existing examples, indexed by the
constraints that are violated and/or the objective weightings. For
example, the documents pictured in Figure 15 could be existing
cases known to work well in discriminating between maintaining
natural image size and allowing overlap. Receiving information
back about which one is more preferred would help indicate the
relative importance of maintaining image size versus allowing
overlap.

Figure 15. Two cases that could elicit preferences for

NoOverlap versus Natural Image Size.

In our future research, we will explore how such case-based
examples, along with the associated CBR techniques for indexing,
retrieval, and adaptation might be used to build up the appropriate
set of constraints and to model user preferences within a
multiobjective optimization methodology.

5. SUMMARY
Personalized documents are becoming more and more important,
especially as the amount of available information continues to
explode in the digitally networked world. People need effective
ways to assemble and make sense of the vast sea of information
available at their fingertips.

We are working on a methodology to enable an automated and
easy approach to creating customized documents. We model the
problem of assembling a document from a set of components as a
multiobjective optimization problem. As such, we have
encountered the many typical challenges in applying an

optimization approach. At the same time, the various techniques
that have already been devised to address these challenges have
also been of use in our application domain.

We found that the simple death-penalty approach for handling
constrained optimization problems is not effective enough in our
tightly constrained domain. The multiobjective approach,
equivalent to penalty approaches, provides us with much better
performance. We furthermore found that the objectives and
constraints themselves can exert a great influence over the
behavior of the genetic algorithm, and thus it is important (yet
difficult) to find the right set and the right weightings for each
objective.

It is these remaining challenges that have prompted us to look
towards new techniques in constraint acquisition, tradeoff
generation, and case-based reasoning in order to broaden the
applicability of our approach to personalized document creation.
We hope that addressing these challenges will allow
multiobjective optimization to be more broadly and practically
applied, both within personalized document creation, as well as in
other application domains.

6. ACKNOWLEDGEMENTS
The collaboration between the Xerox Corporation and the Cork
Constraint Computation Centre is sponsored with a grant from the
Xerox University Affairs Committee. Barry O’Sullivan is also
supported by Enterprise Ireland under Grant SC/02/289. Eugene
Freuder is also supported by Science Foundation Ireland under
Grant 00/PI.1/C075.

7. REFERENCES
[1] Aamodt A., Plaza E. Case-Based Reasoning: Foundational

Issues, Methodological Variations, and System Approaches,
AI Communications 7(i), pp. 39-59.

[2] Bistarelli S., O'Sullivan B., Modelling Tradeoffs Using Soft
Constraints, Proceedings of the ERCIM/CologNet
International Workshop on Constraint Solving and
Constraint Logic Programming, Budapest, Hungary, July
2003.

[3] Borning A., Lin R., Marriott K. Constraint-Based Document
Layout for the Web. Multimedia Systems, Vol. 8 No. 3, pp.
177-189, 2000.

[4] Coello C. A Comprehensive Survey of Evolutionary-Based
Multiobjective Optimization Techniques. Knowledge and
Information Systems Journal, Volume 1(3), 129-156, 1999.

[5] Coello C. Handling Preferences in Evolutionary
Multiobjective Optimization: A Survey. Proceedings of the
2000 Congress on Evolutionary Computation, 2000.

[6] Dengler E., Friedell M., Marks J. Constraint-Driven
Diagram Layout. Proceedings of the 1993 IEEE Symposium
on Visual Languages, 330-335, Bergen, Norway, 1993.

[7] Fleming P.J., Purshouse R.C. Evolutionary Algorithms in
Control Systems Engineering: A Survey. Control
Engineering Practice, 10, pp. 1223-1241, 2002.

[8] Fonseca, C.M., Fleming P.J. An Overview of Evolutionary
Algorithms in Multiobjective Optimization. Evolutionary
Computation 3(1): 116, 1994.

[9] Fonseca C.M., Fleming P.J. Multiobjective Optimization and
Multiple Constraint Handling with Evolutionary Algorithms
I: A Unified Formulation. IEEE Transactions on Systems,
Man, and Cybernetics, Part A: Systems and Humans, 1998.

[10] Freuder E.C., O'Sullivan B. Generating Tradeoffs for
Interactive Constraint-Based Configuration, Seventh
International Conference on Principles and Practice of
Constraint Programming - CP 2001, Short paper, pp 590-
594, Paphos, Cyprus, November 2001.

[11] Graf W.H. The Constraint-Based Layout Framework
LayLab and its Applications. Electronic Proceedings of the
ACM Workshop on Effective Abstractions in Multimedia,
1995.

[12] Kroener A. The DesignComposer: Context-Based
Automated Layout for the Internet. Proceedings of the
AAAI Fall Symposium Series: Using Layout for the
Generation, Understanding, or Retrieval of Documents,
1999.

[13] Leake, D. Case-Based Reasoning: Experiences, Lessons,
and Future Directions. AAAI Press, 1996.

[14] Michalewicz, Z. A Survey of Constraint Handling
Techniques in Evolutionary Computation Methods.
Proceedings of the 6th International Conference on
Evolutionary Programming. MIT Press, Cambridge, MA,
1995, pp. 135-155.

[15] Mitchell, Tom. Generalization as search. Artificial
Intelligence, 18(2):203–226, 1982.

[16] O’Connell S., O'Sullivan B., Freuder E.C. A Study of Query
Generation Strategies for Interactive Constraint Acquisition,
Applications and Science in Soft Computing, Advances in
Soft Computing Series, Springer Verlag, 2003.

[17] O'Sullivan B., O'Connell S., Freuder E.C. Interactive
Constraint Acquisition for Concurrent Engineering,
Proceedings of the 9th International Conference on
Concurrent Enterprising - ICE-2003, June 2003.

[18] Rousseau F., Garcia-Macias A., Valdeni de Lima J., Duda A.
User Adaptable Multimedia Presentations for the WWW.
Electronic Proceedings from the 8th International World
Wide Web Conference, 1999.

[19] Williams, R. The Non-Designers Design Book. Peachpit
Press, Berkeley, CA, 1994.

	INTRODUCTION
	MOTIVATION / RELATED WORK
	Variable Information Documents
	Related Constraint-Based Document Creation Research

	DOCUMENT CREATION AS MULTIOBJECTIVE OPTIMIZATION
	Modeling a document as a genome
	Design Qualities as Objectives
	Figure 4. Examples of Alignment Scores
	Optimizing Design Qualities
	Methodologies for Solving Constrained Optimization Problems
	Death Penalty Approach
	Penalty / MultiObjective Optimization Approach
	Individual Constraint / Objective Influence on Behavior of the Genetic Algorithm
	GA Behavior After Finding First Feasible Solution

	FUTURE RESEARCH AGENDA
	Constraint Acquisition
	Automated Tradeoff Generation
	Case-Based Reasoning for an Easier Specification of User Desires

	SUMMARY
	ACKNOWLEDGEMENTS
	REFERENCES

