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Abstract. Constraint programming is a technology which is now widely used
to solve combinatorial problems in industrial applications. However, using it re-
quires considerable knowledge and expertise in the field of constraint reasoning.
This paper introduces a framework for automatically learning constraint networks
from sets of instances that are either acceptable solutions or non-desirable assign-
ments of the problem we would like to express. Such an approach has the poten-
tial to be of assistance to a novice who is trying to articulate her constraints. By
restricting the language of constraints used to build the network, this could also
assist an expert to develop an efficient model of a given problem.

1 Introduction

Over the last 30 years, considerable progress has been made in the field of Constraint
Programming (CP). However, the use of CP still remains limited to specialists in the
field. Modelling a problem in the constraint formalism requires significant expertise
in constraint programming. Indeed, humans usually find it difficult to articulate their
constraints. While the human user can recognize examples of where their constraints
should be satisfied or violated, they cannot articulate the constraints themselves. How-
ever, by presenting examples of what is acceptable, the human user can be assisted in
developing a model of the set of constraints she is trying to articulate. This can be re-
garded as an instance of constraint acquisition. One of the goals of our work is to assist
the, possibly novice, human user by providing semi-automatic methods for acquiring
the user’s constraints.

Furthermore, even if the user has sufficient experience in CP to encode her prob-
lem, a poor model can negate the utility of a good solver based on state-of-the-art fil-
tering techniques. For example, in order to provide support for modelling, some solvers
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provide facilities for defining constraints extensionally (i.e., by enumerating the set of
allowed tuples). Such facilities considerably extend the expressiveness and ease-of-use
of the constraints language, thus facilitating the definition of complex relationships be-
tween variables. However, a disadvantage of modelling constraints extensionally is that
the constraints lose any useful semantics they may have which can have a negative im-
pact on the inference and propagation capabilities of a solver. Therefore, another goal of
our work is to facilitate the expert user who wishes to reformulate her problem (or a part
of it that is suspected of slowing down the resolution). Given sets of accepted/forbidden
instantiations of the (sub)problem (that can be generated automatically on the initial
formulation), the expert will be able, for instance, to test whether an optimised con-
straint library associated with her solver is able to model the (sub)problem in a way
which lends itself to being efficiently solved.

However, constraint acquisition is not only important in an interactive situation in-
volving a human user. Often we may wish to acquire a constraint model from a large
set of data. For example, given a large database of tuples defining buyer behaviour in
a variety of markets, for a variety of buyer profiles, for a variety of products, we may
wish to acquire a constraint network which describes the data in this database. While
the nature of the interaction with the source of training data is different, the constraint
acquisition problem is fundamentally the same.

Our contribution is an algorithm (named CONACQ), that extends version space ma-
chine learning techniques [3] to deal with the specificity of learning constraints. It takes
solutions (positive instances) and non solutions (negative instances), called a training
set, as input, and generates a (set of) constraint network(s) consistent with the training
set. Using version spaces we can maintain the whole set of possible ‘target’ networks
during the learning process. This set is represented by the more tighter (specific bound)
and looser (general bound) networks consistent with the training data. We adapted the
classical version space technique to maintain a reasonably low space complexity. In the
following, we just give an overview of the learning framework, and discuss preliminary
experiments and the issues they raise. A comprehensive description of the CONACQ al-
gorithm can be found in [1].

2 The Fundamental Problem

As a starting point, we assume that the user knows the set of variables of her problem
and their domains of possible values. She is also assumed to be able to provide or
classify both positive (a solution) and negative (non-solution) examples. Therefore, the
available data are the set � of the variables of the problem, their domains � , a subset���

of the solutions of the problem, and a set
���

of non-solutions.
In addition, from the ’assisting the expert’ perspective, the aim is to encode the prob-

lem efficiently, using only efficient constraint relations between these variables; i.e. a
library of constraints with efficient propagation features is assumed to be known. Indi-
cations can also be given revealing the possible location of the constraints, by defining
variables between which constraints must be found (learned), or by restricting ourselves
to binary constraints only. These semantical and structural limitations define the induc-
tive bias:



Definition 1 (Bias). Given a set � of variables and the set � of their domains, a bias �
on � ��� ��� is a sequence ��� � �	�
�
�	���
�
� of local biases, where a local bias ��� is defined
by a sequence ���������
����� � of variables, and a set ��������� of possible relations on
��������� � � .

The set �����
��� of relations allowed on a set of variables ������������� can be any library
of constraints of arity � �������������
� .
Definition 2 (Membership of a Bias). Given a set � of variables and the set � of
their domains, a sequence of constraints  "!#�%$ � �	�
�
�
�&$ � � belongs to the bias �'!
��� � �	�
�
�
��� � � on � ��� �(� if )*$ ��+  ,����������$ � ��!-���.����� � � and �0/213�%$ � � + ����� � � . We
note  + � .

The problem consists in looking for a sequence of constraints  belonging to a given
bias � , and whose solution set is a superset of

� �
containing no element of

���
.

Definition 3 (Constraint Acquisition Problem). Given a set of variables � , their do-
mains � , two sets

� �
and

� �
of instances on � , and a bias � on � ��� ��� , the constraint

acquisition problem consists in finding a sequence of constraints  such that:

 + � ,
)4/ � + � � , / � is a non solution of � ��� �5�6 7� , and,
)4/ � + ��� , / � is a solution of � ��� �8�6 7� .

If the sets
� �

and
� �

, called the training data, are provided by an interaction with
the user, then the acquisition problem can be regarded as the modelling phase for the
user’s problem. Otherwise, it can be regarded as an assistance to the expert for an auto-
matic reformulation of her problem.

As stated in the introduction, a version space does not only provide one consistent
hypothesis, but all constraint sequences belonging to a bias that are consistent with the
training data:

Definition 4 (Version Space). Given � ��� �(� a set of variables and their domains,
� �

and
� �

two training data sets , and � a bias on � ��� ��� , the version space is the set:
9 !;:
 +�<>= � � �@?,A01�� ��� �5�6 7�B� � �8C ?,A01�� ��� �5�6 7�D!FE�G

3 Experiments and Observations

We report here on some preliminary experiments to evaluate the learning capabilities of
our approach. Rather than focusing on techniques for minimising the number of inter-
actions, our focus here is on studying a number of properties of the CONACQ algorithm
which provide motivation for our research agenda.

We performed experiments with a simulated teacher, which plays the role of the
user, and a simulated learner. The teacher has the knowledge of a randomly generated
(target) network, represented by the triple HJILKM��NO�P$RQ , defining a problem involving
50 variables with domains :.ST�	�U� N�G , and a number $ of constraints. Each constraint is
randomly chosen from the bias :.H��P!V�	Q��
W��TX!V�
Y�G . The teacher provides the learner
with solutions and non solutions. The learner acquires a version space for the problem
using the CONACQ algorithm [1].



3.1 Experiment 1: Effect of the order of the instances

In this following experiment, we assess aspects of the runtime characteristics of the
CONACQ algorithm. In particular, we study computing time and the size of the version
space while varying the order in which examples are presented. Instances from a set

�
of size 100 are given by the teacher to the learner based on a H ILKM��NM�&ILK Q network.
The set

�
contains 10 positive and 90 negative instances.

Table 1 presents the time needed by the learner to acquire the version space,
9

, for
the example set while varying the arrival time of the 10 positive instances. The positive
instances were presented at the beginning (a), middle (b), and end (c) of the interaction
between teacher and learner.

Table 1. Effect of the timing of the introduction of positive instances

Introduction date for positives 0 (a) 50 (b) 90 (c)
Computing time (in sec.) 3.3 5.1 8.6�������	� 
�� �

2,234 2,234 2,234

We observe that “the sooner, the better” seems to be the good strategy for the in-
troduction of positive instances. Indeed, the specific bound rises quickly with positive
instances, reducing the size of the version space. Because of that, the CPU time needed
is also reduced when positive instances arrive at the beginning. But we can see that the
final size of the version space is not affected by the order of the instances. This is due
to the commutativity property of version spaces.

3.2 Experiment 2: Partial instances

In some cases, the user can reject an instance while justifying it by a negative sub-
instance. For example, in a real-estate setting the customer (teacher) might reject an
apartment citing the reason that “this living-room is too small for me”. The estate agent
(learner) knows that the violation is due to the variables defining the living room, which
can being very helpful for handling negative examples. The usefulness of such justified
rejections can be measured by providing our learner with partial instances. In the fol-
lowing experiment (Table 2), the teacher provides the learner with 90 partial negative
instances (after 10 complete positive ones) in the training data. We consider partial in-
stances involving 2, 5, 10 variables, and report the size of the version space and of the
set of clauses (effective space used to represent the general bound) after 100 instances
have been given.

Table 2. Effect of the partial instances

Nb of variables involved in instances of 
�� 50 10 5 2�������	� 
�� �
2,234 2,233 2,225 2,144� ���

( ����� meta-variables) 7.6 6.1 3.2 0

We observe that partial instances speed up the process of convergence of the version
space. The smaller are these partial instances, the more helpful they are. This opens a



promising way of helping the learning process: asking the user to justify why she rejects
some instances can assist in reducing the length of the dialog with the teacher. This is a
critical issue if we are learning in an interactive setting from a human user.

4 Aspects of our Research Agenda

In this paper we have presented an approach to acquiring models of constraint satisfac-
tion problems from examples. There is significant scope for research in this area. Here
we give some insights into some aspects of our research in this area.

Standard version space learning algorithms are senstive to noise in the training data
and, as a consequence, are brittle to false positives and negatives provided to the algo-
rithm. However, some recent work from the machine learning community gives us a
basis for making our approach more robust to such errors [2].

Another issue for which we did not show experiments because of space limitations,
is that of implicit constraints and redundancy. An implicit constraint is one that does
not belong to a network but that could be detected by inference. For example, if we
have � � !�� � and � � !���� in a network � , the constraint � � !���� is an implicit
constraint for � . The general phenomenon of constraints that can be inferred by other
constraints can prevent the version space from converging to the smallest possible one.
Applying some levels of local consistency seems to be a promising approach for im-
proving the reduction of the version space, by adding implicit constraints to the learned
network. When we will deal with partial instances, this will have some interesting im-
plications, such as the effect that the order in which examples are provided has on the
representability of a particular problem in the given constraint language.

Finally, we considering the effect that various models of interaction can have on
the speed with which we can learn the target problem, particularly from the perspective
of minimising the number of interactions with the user. Some preliminary results have
already been reported on this issue [4, 5].
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