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Abstract. The expressiveness of Distributed CSP has been recently enhanced
to include global constraints. Careful reformulation of contractible global con-
straints has been shown to improve efficiency. In this paper, we first show that
explained global constraints further improves the efficiency in distributed prob-
lems, sometimes by over two orders of magnitude. We then propose maintain-
ing GAC concurrently for any global constraint, without reformulation. We show
empirically that concurrent GAC significantly reduces both message passing and
computation time, achieving an order of magnitude improvement on some dis-
tributed meeting scheduling problems.

1 Introduction

The distributed constraint satisfaction problem models decision problems where phys-
ically distributed agents control different decision variables. To solve the problems, the
agents must perform local computation and exchange messages, to communicate value
choices, inferred no-goods, algorithm control decisions or problem descriptions. One
of the main reasons for the success of centralized constraint programming is the use of
global constraints, in which a relation between a group of variables comes equipped
with powerful filtering algorithms, which quickly infer consequences of value assign-
ments and greatly reduce search. Implementing global constraints in Distributed CSP
has been less successful, because the distributed control over the variables has led to de-
layed filtering. If Distributed CSP is to be more widely applied to real problems, more
effective filtering for global constraints in distributed problems is required.

Three ways to represent global constraints in DisCSP have been recently proposed
[3]. The nested representation of contractible global constraints offers significant im-
provements over the other approaches. In addition, propagating unconditional no-goods
(that is, values that cannot be in a solution, regardless of other choices) while enforcing
generalized arc-consistency (GAC) was also shown to offer an improvement.

Here, we propose two further improvements to the handling of global constraints
in Distributed CSP, implemented in ABT.1 First, we use explained global constraints,
which allows us to generate more efficient no-goods– that is, given an ordered partial

1 We focus on ABT, since it is the only DisCSP algorithm (apart from MACA [34]) we know
of that has been extended to maintain arc consistency. Our methods are applicable to any
algorithm, but without global constraint filtering would provide little benefit.



assignment of values to variables, we identify the earliest inconsistent subset [13, 8].
Each agent evaluating a constraint maintains a copy of the domains of all other vari-
ables in the constraint, and whenever it receives either a value assignment or a no-good,
it maintains GAC on these domains. Secondly, we introduce a full representation of
each global constraint by each agent constrained by it. This allows us to maintain GAC
concurrently at each agent. Our aim is to trade off this potentially redundant filtering
for faster identification of no-goods, and reduce search and message passing.

We evaluate our algorithms empirically on a set of benchmarks from the literature,
including random problems, quasi-groups with holes, and distributed meeting schedul-
ing problems. We demonstrate that the use of explained constraints significantly im-
proves performance over previous methods on the harder problems, sometimes achiev-
ing over two orders of magnitude reduction in both non-concurrent computation and
messaging. We then show that concurrent filtering offers another significant improve-
ment when added to explained constraints, achieving up to an order of magnitude im-
provement on the meeting scheduling problems in both non-concurrent computation
and messaging, without requiring any reformulation. Finally, we consider the total com-
putation load over all agents, and we show that, surprisingly, concurrent filtering can re-
duce the total effort – it appears that early identification of relevant no-goods outweighs
any redundant filtering.

This paper is structured as follows. Section 2 gives the necessary background on
centralized CSP, global constraints, and distributed CSP. It then discusses the use of
global constraints in distributed CSP. We present our use of explained global constraints
on DisCSP in Section 3, followed by a comparison to previous work. Section 4 intro-
duces concurrent filtering using the full representation of global constraints. We report
experimental results in Section 5. Finally, we conclude the paper in Section 6.

2 Background and Related Work

2.1 Centralised CSPs and global constraints

The constraint satisfaction problem is a triple (X ,D, C), where X is a set of variables
{x1, . . . , xn},D = {D1, . . . , Dn} is a set of domains, where Di is a finite set of values
from which one value must be assigned to variable xi, and C is a set of constraints.
A constraint C(X) ∈ C, on the ordered subset of variables X = (xj1 , . . . , xjk), is
C(X) ⊆ Dj1 × · · · × Djk , and specifies the tuples of values which may be assigned
simultaneously to the variables in X . |X | is the arity of C(X), and X is its scope. A
tuple τ = (vj1 , . . . , vjk) ∈ C(X) is a support for C(X), and τ [xi] is the value of xi in
τ . We denote by Ci ⊆ C all constraints that involve xi. A solution is an assignment to
each variable of a value from its domain, satisfying all the constraints.

A global constraint captures a relation over an arbitrary number of variables. For
example, the ALLDIFF constraint states that the values assigned to the variables in its
scope must all be different [22]. Filtering algorithms which exploit the specific structure
of global constraints are one of the main strengths of constraint programming [23]. A
value vi ∈ Di, xi ∈ X is generalized arc-consistent (GAC) with respect to C(X) iff
there exists a support τ for C(X) such that vi = τ [xi], and for every xj ∈ X , xi 6=xj ,



τ [xj ] ∈ Dj . Variable xi is GAC if all its values are GAC with respect to every constraint
in Ci. A CSP is GAC if all its variables are GAC. During search, any value v ∈ Di that
is not GAC can be removed from Di.

Global constraint C(X) is binary-decomposable without extra variables [4] if it
is equivalent to a conjunction of binary constraints involving only variables in X .
ALLDIFF is binary-decomposable. For example, ALLDIFF(x1,x2,x3,x4) is equivalent
to (x1 6=x2) ∧(x1 6=x3) ∧ (x1 6=x4) ∧ (x2 6=x3) ∧ (x2 6=x4) ∧ (x3 6=x4). Global con-
straint C(X), where X = (xj1 , . . . , xjk+1

), is contractible [16] iff for any support
(vj1 , . . . , vjk , vjk+1

) for C(X), then (vj1 , . . . , vjk) is a support for C(xj1 , . . . , xjk).
ALLDIFF is a contractible constraint, since the projection of the supports for
ALLDIFF(x1, x2, x3, x4) onto (x1, x2, x3) are also supports for ALLDIFF(x1, x2, x3).
However, EXACTLY(k,X, v) that specifies that value v is assigned exactly to k vari-
ables in X is not contractible [2].

An explanation is a subset of the original constraints of the problem plus a set of
decision constraints (variable assignments) made during the search which together are
sufficient to justify domain reductions [13, 11]. Explanations were originally intro-
duced [14] to improve intelligent backtracking, allowing the search to jump back to
the cause of a failure. Computing an explanation for a reduction caused by binary con-
straints is relatively simple, but is more complex for a global constraint, where the ex-
planation will depend on the chosen filtering algorithm. For example, for the ALLDIFF
constraint [23], the filtering algorithm is based on computing a residual graph con-
structed from the maximum matching on the variable-value bipartite graph and from
the possible values of variables in the constraint. [25] shows how to generate corre-
sponding explanations: given the residual graph, the removal of an arc starting from
a vertex belonging to a strongly connected component S1 to a distinct strongly con-
nected component S2 is explained by all missing arcs from a descendant component of
S2 to an ancestor component of S1 (since any one of these arcs would merge S1 and
S2 into the same strongly connected component). Other global constraints have also
been explained [14, 24, 13, 11, 27, 8, 9, 10], with the explanations used to improve the
efficiency of backjumping.

2.2 Distributed CSPs

Distributed CSP (DisCSP) [37] models problems where distinct agents control differ-
ent variables. DisCSP is a 4-tuple (A,X ,D, C), where X ,D and C are as above, and
A is a set of agents {A1, . . . , Aa}, where each variable xi ∈ X is controlled by a
single agent in A. During a solution process, only the agent which controls a vari-
able can assign a value to this variable. Without loss of generality, we assume each
agent controls exactly one variable (a=n), so we use the terms agent and variable
interchangeably and no longer distinguish between Ai and xi. Each agent Ai knows
all constraints relevant to its variable (Ci) and the domains of other variables involved
in these constraints (its neighbours). A variety of problems have been tackled using
DisCSP, including tracking in sensor networks [1], distributed resource allocation [20]
and distributed meeting scheduling [18]. Many different algorithms have been pro-
posed, including asynchronous backtracking [36, 5], asynchronous forward checking



1 2 3 4

x1 zzZzzZ
x2 zZzzZz
x3 zzZzzZ
x4 zZzzZzq

q
q
q

A = {A1, . . . , A4}
X = {x1, . . . , x4}
D = {D1, . . . , D4},
where Di = {1, 2, 3, 4}
C = {c1, . . . , c7}

c1 :|x1 − x2 |6= 1

c2 :|x1 − x3 |6= 2

c3 :|x1 − x4 |6= 3

c4 :|x2 − x3 |6= 1

c5 :|x2 − x4 |6= 2

c6 :|x3 − x4 |6= 1

c7 : AllDiff(X)

Fig. 1: The distributed n-queens problem (where n = 4)

[19], asynchronous aggregation [29], dynamic programming [21], partially centralised
search [17], and dynamic ordering [28, 39, 31].

The original algorithm for DisCSP was Asynchronous Backtracking (ABT) [36, 5].
ABT is an asynchronous algorithm executed autonomously by each agent in the prob-
lem, and is guaranteed to converge to a global consistent solution (or detect inconsis-
tency) in finite time. Each agent proposes values for its own variable to other agents,
and reports no-goods. Agents operate asynchronously, but are subject to a known
total priority order, ≺. For simplicity, we assume ≺ is the lexicographic ordering
(A1, A2, . . . , An), with A1 having highest priority. ≺ induces a directed acyclic graph,
and constraints are directed according to ≺.

ABT uses the priority ordering to control the asynchronous search. Each agent se-
lects an assignment for its variable that is consistent with known choices of higher pri-
ority neighbours, and then sends its selected value across the directed arcs to its lower
priority neighbours. When no value is possible for a variable, the inconsistency is re-
ported to a higher priority agent closest in the ordering, in the form of a no-good. The
higher agent then adds the no-good to its constraint store. For a non-binary constraint
C(X) (arity > 2), only the lowest agent in the ordering in the scope of the constraint
will evaluate C(X), and only when it is totally instantiated [7, 3].

Fig. 1 shows a model of a distributed n-queens problem using an ALLDIFF con-
straint. The goal is to put 4 queens on the board such that no queen attacks another
queen. There is an integer variable xi for every row i. There are four agents, each of
which controls one queen in one row. The domain of each xi is Di = {1, 2, 3, 4}.
There exists a global ALLDIFF constraint (i.e., ALLDIFF(x1, x2, x3, x4)) that forbids
the queens being placed in the same column. There is a binary constraint (e.g., c1) be-
tween each pair of queens that forbids those queens being placed on the same diagonal
(i.e., |xi − xj | 6= | i− j | ∀i, j6=i ∈ {1..4}).

2.3 Global Constraints in distributed CSPs

[3] formulated three different ways to model a global constraint in a DisCSP.
Direct Representation: applicable to all global constraints. The direct representa-

tion of the constraint C(X) is a single copy of C(X) to be evaluated by the lowest
agent in its scope, Ai. Directed links from other agents in C(X) to Ai are established.



In the example of Fig. 1, A1 starts with no constraints. A2 evaluates constraint c1, A3

evaluates c2 and c4, while A4 evaluates all other constraints (i.e., c3, c5, c6 and c7).
Nested Representation: restricted to contractible global constraints. The

nested representation of the constraint {C(xj1 , . . . , xjk)} is the set of constraints
C(xj1 , . . . , xjm) | m ∈ 2..k. In the example of Fig. 1, constraint c7 will be represented
by 3 different constraints: (c7) ALLDIFF(x1, x2, x3, x4), (cn8 ) ALLDIFF(x1, x2, x3),
and (cn9 ) ALLDIFF(x1, x2). Constraints c1 to c7 will be evaluated by the same agents
as in the direct representation. cn8 is evaluated by agent A3 and cn9 by agent A2.

Binary Representation: restricted to binary-decomposable global constraints. The
binary representation of a constraint C(X) is the set of constraints in its binary decom-
position. In the example of Fig. 1, constraint c7 will be represented by 6 constraints:
(cb8) (x1 6=x2), (cb9) (x1 6=x3), (cb10) (x1 6=x4), (cb11) (x2 6=x3), (cb12) (x2 6=x4) and (cb13)
(x3 6=x4). c1 to c6 will be evaluated by the same agents as in the direct representation.
Agent A2 will evaluate cb8, agent A3 will evaluate cb9 and cb11 and A3 will evaluate cb10,
cb12 and cb13.

In addition, in order to take advantage of the standard filtering algorithms for global
constraint in DisCSPs, [3] proposed ABT-UGAC (ABT with unconditional GAC).
ABT-UGAC maintains a limited form of GAC restricted to unconditional deletions
(values removed by a no-good with an empty precondition). In a preprocessing step,
the DisCSP is made GAC. Unconditional GAC is then enforced in ABT as follows.
When receiving a no-good with an empty precondition justifying the removal of its
value, an agent Ai can unconditionally delete its value from Di. This deletion may then
propagate, and cause further deletions (see [3] for details).

[3] showed that the direct representation is the least efficient, while the nested one
performs best. ABT-UGAC always improves the performance.

3 Maintaining GAC in ABT

In ABT, the lowest priority agent in the scope X is in charge of evaluating a global
constraint C(X) when it is fully instantiated [7, 3]. This method of evaluating global
constraints is a major weakness of representing global constraints in ABT. First, it does
not take advantage of the global constraints’ filtering power. Both nested and direct
representations only use global constraints as checkers instead of using their filtering
algorithm to prune inconsistent values. Second, it produces chronological backtracks
because the deduced no-good will contain all assignments of the agents on the global
constraints. Thus, it creates unnecessary work for the agents because it does not address
the real reason for the failure.

For example, in the direct representation of the problem of Fig. 1, agent A4 will
not evaluate constraint c7 until all assignments of variables x1, x2 and x3 are received.
Thus, agent A4 may receive the assignments x1 =1∧x2 =1∧x3 =1. In this situation,
A4 will send a no-good x1 =1∧x2 =1→ x3 6=1 to A3. Then, A3 will change its value
to 4 because 2 is removed by c4 and 3 by c2. The new assignment (x3 =4) will lead to
another deadend in A4 with the following no-good (x1 =1 ∧ x2 =1→ x3 6=4). Once it
receives this no-good,A3 discovers the real reason for the failure (i.e., x1 =1→ x2 6=1).
Thus, unnecessary work is performed when using this evaluation mechanism.



Instead of evaluating a constraint only when it is fully instantiated, we propose
maintaining GAC each time an event occurs on a variable involved in a constraint in
the agent’s constraint store. In order to get more precise no-goods we use explained
global constraints, so that all domain reductions are justified [13, 8], and when a dead-
end occurs, we will get more informative no-goods. For ALLDIFF, we implement the
explained filtering algorithm described previously [23, 25]. For ATMOST(k,X, v) and
ATLEAST(k,X, v), we modify the implementations of [14] as below, and then use both
methods together for the EXACTLY(k,X, v) constraint.

ATMOST(k,X, v): whenever a constrained variable xi ∈ X is assigned the oc-
currence value (v) or its domain is reduced to the occurrence value (Di = {v}),
we label it as ’sure’ (sure(i) = true). A ‘sure’ variable can be either assigned (i.e,
xi = v | xi ∈ X ∧ sure(i)) or unassigned (i.e, Dj = {v} | xj ∈ X ∧ sure(j)).
If the number of ‘sure’ variables equals the number of occurrences (k), the value v
will be removed from the domain of all other variables in X . These removals are ex-
plained by the union of the set of decision constraints of ‘sure’ assigned variables xi
(i.e., xi = v | xi ∈ X ∧ sure(i)) with the union of the explanations that reduces the
other sure variable domains to v (i.e., Dj = {v} | xj ∈ X ∧ sure(j)).

ATLEAST(k,X, v): all constrained variables xi ∈ X that can be assigned v are
labelled as ’possible’ (possible(i) = true). If a variable xj ∈ X can not be assigned
v its ’possible’ flag is false (possible(j) = false). Whenever the number of ‘possible’
variables equals the number of occurrences (k), the domains of all these ‘possible’
variables are reduced to v (i.e., Di = {v} | xi ∈ X ∧ possible(i)). These reductions
are explained by the union of explanations that justify the removal of v from the domain
of other variables (i.e., v /∈ Dj | xj ∈ X ∧ ¬possible(j)).

To maintain GAC, some minor changes to ABT are required. First, when an agent
Ai receives a message containing an assignment or a no-good, it updates its AgentView
with the given assignment. The AgentView of an agent stores the most up-to-date as-
signments of its higher neighbours [5]. Then, Ai adds the received constraint (assign-
ment or no-good) to its constraint store (no-goods inconsistent with the AgentView
are removed to keep the space complexity polynomial [5]). Next, Ai maintains GAC.
Second, whenever an agent Ai assigns a value to its variable (xi = vi) it adds its as-
signment to its constraint store (Ci). Next, it maintains GAC. When agent Ai maintains
GAC using explained constraints each domain reduction is justified by a precise expla-
nation. Thus, whenever a dead-end occurs, the no-good that will be generated will be
more precise (a subset of the AgentView). However, if non-explained constraints are
used, whenever a dead-end occurs, the generated no-good contains all assignments in
the AgentView.2 If the domain of a variable is emptied while maintaining GAC, agent
Ai generates a new no-good from the explanations stored for value removals of that
variable. If the generated no-good contains the assignment of agent Ai (i.e., vi is not
consistent after maintaining GAC), Ai tries to assign another value to xi. If no value
is possible for xi or if the generated no-good doesn’t contain its assignment, Ai back-

2 Note that replacing the global constraint checker with the global constraint filter does not
change the operation of ABT, apart from detecting earlier no-goods and generating more in-
formed messages.



tracks by sending the no-good justifying the failure to the closest agent in the no-good.
If Ci is GAC,Ai sends its new assignment (xi = vi) to all its lower priority neighbours.

Now, in the direct representation example, when agent A4 maintains GAC on its
constraints (i.e., c3, c5, c6 and c7) it can directly discover the no-good (i.e., x1 =1 →
x2 6=1) without the assignment of x3.

3.1 Evaluation of explained global constraints in ABT

We experimentally compare ABT(direct), ABT(nested), ABT-UGAC(direct) and ABT-
UGAC(nested) as presented in [3] (evaluating constraints when they are totally in-
stantiated) to ABT-GAC(direct) and ABT-GAC(nested) that maintain GAC thanks to
explained constraints as presented above. Algorithms are tested using the static max-
degree agent ordering. For all ABT versions we implemented an improved version of
Silaghi’s solution detection [30] and counters for tagging assignments. All experiments
were performed on the DisChoco 2.0 platform [33],3 in which agents are simulated by
Java threads that communicate only through message passing.

We reproduce the benchmark problems of [3]. Algorithms are evaluated on uniform
random binary DisCSP where some global constraints are injected. We evaluate the per-
formance of the algorithms by the total number of exchanged messages among agents
during algorithm execution (#msg) [15] and non-concurrent computation. The non-
concurrent computation is measured by the number of non-concurrent constraint checks
(#ncccs) [38], as a proxy for elapsed time. All GAC effort is counted in #ncccs, as
in [3], where for each call of the ALLDIFF propagator, which computes a maximum
matching in a graph, we increase #ncccs by the degree of that graph. For other con-
straints we increase #ncccs by the size of the data structure used in that constraint.

Uniform binary random DisCSPs are characterized by 〈n, d, p1, p2〉, where n is the
number of agents/variables, d is the number of values in each domain, p1 is the network
connectivity defined as the ratio of existing binary constraints to possible binary con-
straints, and p2 is the constraint tightness defined as the ratio of forbidden value pairs
to all possible pairs. We solved instances of two classes of constraint graphs: sparse
graphs 〈20, 5, 0.2, p2〉 and dense graphs 〈20, 5, 0.7, p2〉. We varied the tightness from
0.1 to 0.9 by steps of 0.1. For each pair of fixed density and tightness (p1, p2) we report
the average over 100 instances.

We generate two types of benchmarks: the ALLDIFF benchmark and the ATMOST
benchmark. An ATMOST(k,X, v) constraint specifies that at most k variables inX are
assigned value v. In the ALLDIFF benchmark, each binary instance includes 2 ALLDIFF
constraints, each involving 5 randomly chosen variables. In the ATMOST benchmark,
each binary instance includes 10 ATMOST(k,X, v) constraints, each involving from 3
to 10 randomly chosen variables (i.e., 3 ≤ |X| ≤ 10). The value v is randomly chosen
in the set of values in domains and its number of occurrences k = 2.4

Results are shown in Fig. 2. ABT-GAC(direct) and ABT-GAC(nested) always re-
quire fewer messages than other algorithms, achieving up to two orders of magnitude

3 http://dischoco.sourceforge.net/
4 ATMOST is not a contractible constraint [2]. To use nested representation, we changed the

number of occurrences on nested constraints.

http://dischoco.sourceforge.net/
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Fig. 2: Performance on the ALLDIFF benchmark and ATMOST benchmark (in logarith-
mic scale).
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Fig. 3: Agent A2 running ABT with different representation after receiving the assign-
ment of x1 = 1 when solving the distributed 4-queen (Fig. 1).

improvement in the harder region for the non-contractible ATMOST constraint. For
#ncccs, the results are similar, except for the sparse instances of ALLDIFF, where
ABT-GAC(direct) and ABT-GAC(nested) are improved by ABT(nested) and ABT-
UGAC(nested), and for dense instances of ALLDIFF, where ABT(nested) and ABT-
UGAC(nested) improve ABT-GAC(direct).

4 Maintaining GAC Concurrently using a Full Representation of
Global Constraints

In the direct representation each global constraint will be represented by a single con-
straint. In the nested representation a contractible global constraint will be represented
by a set of constraints, which allows concurrent processing and earlier identification
of some inconsistencies. However, the filtering in these new constraints is weaker than
that of the original constraint (ALLDIFF for example). More importantly, not all global
constraints are contractible.

We now present a new way to represent a global constraint in DisCSPs, which we
call the full representation. In the full representation, the original constraint is evalu-
ated in the DisCSP by all agents that are involved in it, using their own copies of other



agents’ domains. As with direct, the full representation is applicable to all global con-
straints. The motivation is to benefit from the strength of filtering algorithms for global
constraints and to do more concurrent computation, to detect unfruitful decisions ear-
lier, and thus decrease the number of messages and #ncccs. Much of this concurrent
pruning may be redundant, though, and so we may increase the total amount of work av-
eraged over all agents. We note that the full representation weakens the domain privacy
of lower priority agents, but is fair for all agents involved in the constraint.

In the example of Fig. 1, A1 evaluates the constraints c1, c2, c3 and c7. A2 evaluates
the constraints c1, c4, c5 and c7. A3 evaluates the constraints c2, c4, c6 and c7. A4

evaluates the constraints c3, c5, c6 and c7. Fig. 3 shows the reasoning by agent A2 after
receiving the assignment of A1 (i.e., x1 =1) when running ABT with direct, nested,
binary and full representation. Once it receives this assignment, A2 adds the constraint
cx1

: (x1 =1) to its constraint store then maintains GAC. In direct representation only
value 2 is removed from D2. Thus, A2 assigns 1 to its variable. In nested and binary
representation, two values (1 and 2) are removed from D2. Thus, A2 assigns 3 to its
variable. In full representation, two values (1 and 2) are removed from D2, and value
1 from D3 and D4. Thus, A2 tries to assign value 3 to its variable. A2 again maintains
GAC and removes value 3 from D2 because it has no support in D3 (Fig. 3 (full),
circles). It then assigns 4 to its variable, i.e., x2 = 4.

We also extend ABT-GAC with the propagation of unconditional value deletions
from [3], to get ABT-GAC+U. ABT-GAC(full) and ABT-GAC+U(full) inherit the cor-
rectness, completeness and termination of ABT(direct) and ABT-UGAC(direct) [3].
The only changes we make are adding redundant copies of constraints and allowing
agents to do more powerful correct filtering.

4.1 Theoretical Analysis

We demonstrate that ABT-GAC(full) is sound, complete and terminates.

Theorem 1. ABT-GAC(full) is sound.

Proof. (Sketch) When the state of quiescence is reached, all agents know the assign-
ments of all their higher priority neighbours. Thus, any constraint has been successfully
checked by the lowest priority agent in its scope when it is fully instantiated. Otherwise,
that agent would have tried to change its value and would have either sent an message
containing its new value or a no-good, breaking the quiescence.

Theorem 2. ABT-GAC(full) is complete.

Proof. All explanation and no-goods are generated by logical inferences from existing
constraints. Therefore, an empty no-good cannot be inferred if a solution exists.

Theorem 3. ABT-GAC(full) terminates.

Proof. ABT-GAC(full) inherits the termination of ABT [37]. We can prove by induc-
tion on the agent ordering that agents can never fall into an infinite loop . First, we
can show that agent A1, never falls into an infinite loop. Then, assuming that all agents
higher that an agent Ai (i > 2) are in a stable state, we can show that agent Ai never
falls into an infinite loop.



Table 1: Performance on hard region of sparse 2 ALLDIFF benchmark (p1 =0.2, p2 =
0.7).

p2 = 0.7
#msg #ncccs #ccs

ABT-GAC ABT-UGAC ABT-GAC ABT-UGAC ABT-GAC ABT-UGAC
full 6 984 7 086 30 439 28 012 203 934 193 403

nested 8 173 8 605 26 099 26 859 170 798 179 706
direct 7 774 8 253 25 875 26 560 164 106 173 683

binary 7 857 8 358 28 491 29 499 188 500 198 213

Table 2: Performance on hard regions of instances with 5 ATMOST benchmark .
(p1 = 0.2, p2 = 0.7) (p1 = 0.7, p2 = 0.3)

#msg #ncccs #msg #ncccs

GAC GAC +U GAC GAC +U GAC GAC +U GAC GAC +U
full 7 352 7 755 24 847 23 927 737 854 737 590 2 534 734 2 530 072

nested 8 509 9 153 21 756 22 709 747 080 745 303 1 745 611 1 739 681
direct 7 288 7 897 21 157 22 061 752 748 752 669 1 737 450 1 733 302

5 Experimental Results

We empirically compare the full representation to direct, nested and binary representa-
tions, all implemented within ABT-GAC and ABT-GAC+U. In our experiments, we im-
posed a cut-off on #ncccs of 109 and a cut-off on #msg of 109. In almost all instances,
ABT without explanations (ABT(direct), ABT(nested) and ABT(binary)) exceeds this
limit. Moreover, it runs out of memory in many instances. Thus, here we only present
results on explained versions (ABT-GAC). For the same reason, we only show results
for ABT-GAC+U.

5.1 Uniform Binary Random DisCSPs with Global Constraints

We solved instances of two classes of constraint graphs: sparse graphs 〈20, 10, 0.2, p2〉
and dense graphs 〈20, 10, 0.7, p2〉. We varied the tightness from 0.1 to 0.9 by steps of
0.1. For each pair of fixed density and tightness (p1, p2) we report averages over 100 in-
stances. From a binary instance, we generate 4 types of benchmarks: the ALLDIFF, AT-
MOST, ATLEAST and EXACTLY benchmarks. In the ALLDIFF benchmark, each binary
instance includes 2 ALLDIFF constraints, each involving 5 randomly chosen variables.
In the ATMOST benchmark, each binary instance includes 5 ATMOST(3, X, v) con-
straints, each involving from 5 to 7 randomly chosen variables. The value v is randomly
chosen from the set of values in domains. In the ATLEAST benchmark, each binary in-
stance includes 10 ATLEAST(3, X, v) constraints, each involving from 5 to 7 randomly
chosen variables. The value v is randomly chosen from the set of values in domains.
In the EXACTLY benchmark, each binary instance includes 5 EXACTLY(3, X, v) con-
straints, each involving from 5 to 7 randomly chosen variables. The value v is randomly
chosen from the set of values in domains.
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For space reasons, we only show a selection of results. In Table 1, for sparse
ALLDIFF problems, in the harder region (p2 = 0.7), we see a small improvement
in #msg and a small deterioration in #ncccs compared to direct, for the full repre-
sentation over the explained versions of the other representations. In Table 1, we also
show the total computational effort (total number of constraint checks by all agents
#ccs), and as expected, we show a small increase. For ATMOST problems (Table 2),
the three representations are similar in #msg, but full is almost 50% poorer on #ncccs
for dense problems. On dense ATLEAST problems (Fig. 4), we see at least an order of
magnitude improvement for the full representation over the nested for both #msg and
#ncccs, while direct is consistently worst. On sparse EXACTLY problems Fig. 5, we
gain a two-fold improvement compared to direct representation. ABT-GAC+U deteri-
orates compared to ABT-GAC. It seems that extra messages needed to propagate the
unconditional removals slows the search for both representations.

5.2 Quasi-Groups With Holes

We also evaluate ABT-GAC and ABT-GAC+U on a set of satisfiable balanced quasi-
groups with holes (QGWH) instances [26, 6].5 The set contains 100 different instances.

5 http://www.cril.univ-artois.fr/∼lecoutre/benchmarks.html

http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html


Table 3: Performance on Quasi-Groups With Holes problems.
#instances solved #msg #ncccs

ABT-GAC ABT-GAC+U ABT-GAC ABT-GAC+U ABT-GAC ABT-GAC+U

full 98 99 5 882 353 5 190 937 737 296 782 601
nested 95 99 10 495 843 6 852 796 1 413 990 1 087 459

direct 96 99 10 044 646 7 060 771 1 971 401 1 380 700

binary 87† 84‡ 11 765 454 11 910 842 3 930 123 3 884 403
† ABT-GAC(binary) runs out of memory for 8 instances
‡ ABT-GAC+U(binary) runs out of memory for 11 instances

Each instance contains 106 variables and 30 ALLDIFF constraints, and as before, each
variable is controlled by a different agent. Only 71 instances were solved by all algo-
rithms, and the average performance over these instances is presented in Table 3. We
see that the binary representation in QGWH performs relatively poorly. The concurrent
filtering (i.e., full) outperforms all other strategies.

5.3 Distributed Meeting Scheduling Problem

The distributed meeting scheduling problem (DMSP) [18, 35] consists of a set of n
agents having a personal private calendar and a set of m meetings each taking place in
a specified location. Each agent knows the set of the k among m meetings she must
attend, and knows the traveling time between the locations where her meetings will be
held. The traveling time between two meetings mi and mj is denoted by TT (mi,mj).
The following constraints apply: (i) all agents attending a meeting must agree on when
it will occur, (ii) an agent cannot attend two meetings at the same time, (iii) an agent
must have enough time to travel from one meeting to the next.

We encode the DMSP in DisCSP as follows. Each DisCSP agent represents a real
agent and contains k variables representing the k meetings in which the agent partic-
ipates. These k meetings are selected randomly among the m meetings. The domain
of each variable contains the d × h slots when a meeting can be scheduled. A slot
is one hour long, and there are h slots per day and d days. There is an ALLEQUAL
constraint for all variables corresponding to the same meeting in different agents (con-
straint (i)). There is an arrival-time constraint between all variables/meetings belong-
ing to the same agent. The arrival-time constraint between two variables mi and mj

is | mi − mj | −duration > TT (mi,mj), where duration is the duration of ev-
ery meeting. This arrival-time constraint allows us to express both constraints (ii) and
(iii). We place meetings randomly on the nodes of a uniform grid of size g × g and the
traveling time between two adjacent nodes is 1 hour. The traveling time between two
meetings equals the Euclidean distance between their locations. To vary the tightness
of the arrival-time constraint we vary the size of the spatial grid.

Problems are characterized by 〈n, m, k, d, h, g〉, where n is the number of agents,
m is the number meetings, k is the number of meetings/variables per agent, d is the
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number of days and h is the number of hours per day, and g is the grid size. The du-
ration of each meeting is one hour. In our implementation this encoding is translated
into an equivalent formulation where we have k (number of meetings per agent) vir-
tual agents for each real agent. Each virtual agent handles a single variable but #msg
does not take into account messages exchanged between virtual agents belonging to
the same real agent [35]. We solved instances for two classes 〈20, 11, 3, 2, 10, g〉 and
〈16, 9, 5, 2, 10, g〉where we vary g from 1 to 10 by steps of 1. For each g we generated
100 instances.

In Fig. 6, for the 16-agent problems, we see a consistent order of magnitude im-
provement for the full representation over the other approaches for both #msg and
#ncccs across all grid sizes. In Fig. 7, for the larger 20 agent problems, but with fewer
meetings, we see an improvement in both measures between a factor of 5 and a factor
of 10. We also plot in the same figure the total number of constraint checks over all
agents. Surprisingly, we see a reduction in total computational effort up to a factor of 5.
It appears that the gains from more powerful filtering, more efficient no-goods and the
reduced number of messages outweighs the extra effort of the redundant filtering.

6 Conclusion

The power of filtering algorithms for global constraints is one of the main features
of the success of constraint programming. In Distributed CSPs, however, global con-
straints have received little attention, because of the distributed control of the variables
and their domains. Recently, a nested representation of contractible global constraints
was shown to reduce computational effort and communication. In this paper, we make
two contributions to the handling of global constraints in Distributed CSP. First, we
show that maintaining GAC using explained constraints significantly improves the per-
formance over the previous approaches. Secondly, we introduce a full representation
for any global constraint, allowing every agent to evaluate any constraint it is involved
in, and we use this to implement concurrent maintenance of GAC. We demonstrate
empirically that concurrent GAC on the full representation offers a further significant
improvement in both non-concurrent computation and messaging. This appears to con-
tradict recent results that suggest reducing redundancy in Distributed CSP always im-
proves performance [12, 32]. We also show that for some problems, despite the redun-
dant filtering, we reduce the total computation cost over all the agents.

Future work will focus on extending other DisCSP algorithms to include MAC and
then exploiting full concurrent GAC, and on implementing global constraints and full
concurrent GAC with distributed dynamic ordering algorithms.
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