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Invited Talk: On Mixed Probabilistic and
Deterministic Graphical Models

Rina Dechter

School of Information and Computer Science
University of California, Irvine, CA 92697

dechter@ics.uci.edu

Abstract. The talk will address algorithms for reasoning over knowledge-
bases that can express both uncertain information and hard constraints.
The need to accommodate both types of information is motivated by
real-life applications, especially those involving planning and decision-
making. Specifically, I will focus on the ”mixed network”, a new frame-
work which integrates probabilistic networks and constraint networks.



Task Management under Change and Uncertainty
Constraint Solving Experience with the CALO Project

Pauline M. Berry, Karen Myers, Toḿas E. Uribe, and Neil Yorke-Smith

Artificial Intelligence Center, SRI International, Menlo Park, CA 94025, USA.
{berry,myers,uribe,nysmith }@ai.sri.com

Abstract The goal of CALO (Cognitive Assistant that Learns and Organizes) is
to design an automated personal assistant to support a busy high-level knowledge
worker. Operating in an inherently dynamic and uncertain domain, CALO relies
on constraint technology in several components of its architecture. We outline
the challenges and opportunities presented by constraint solving in the presence
of change and uncertainty, embodied in CALO’s personalized time management
and task reasoning and execution systems.

1 Introduction

Consider the challenge of developing intelligent agents that assist a human by perform-
ing and managing tasks on her behalf. Such agents, operating in the real world, must
handle change and uncertainty as a matter of course. This is the challenge of devel-
oping CALO (Cognitive Assistant that Learns and Organizes), an automated assistant
hat will support a busy knowledge worker, such as a lab director or senior manager.1

CALO should be able to perform routine office tasks for its user (e.g., arrange meet-
ings, complete online forms, file email), manage open-ended processes (e.g., purchase
a computer, arrange a conference), and anticipate and act on future needs of its user.

The cognitive assistant domain is inherently dynamic and uncertain. The user her-
self works in the evolving real world, with limited knowledge; with estimated, outdated
or inaccurate information; interacting with colleagues; and encountering events outside
her control, sometimes unpredicted. Moreover, users may change their minds, have in-
consistent or mutually unachievable desires, and not be able or willing (or have the
time) to communicate with their assistants.

In the following sections, we concentrate on two components of CALO where
change and uncertainty impact the use of constraints technology: the personalized time
management system, and the task reasoning and execution system.

Advantages of Constraints. We have found that using constraints in a system like
CALO has a number of natural advantages. (1) Constraints have a well-defined, often
intuitive semantics, which can be aligned with the ontology used in the system’s knowl-
edge base. (2) Constraints can capture qualitative and quantitative preferences and costs.
(3) Constraints offer a declarative representation that is easy to produce and consume
by different modules, including the human interface. (4) Constraints support notions of
relaxation and explanation. (5) Finally, of course, constraints are supported by a large
set of algorithms, solvers, and tools.

1 www.ai.sri.com/project/CALO



2 Personalized Time Management

Time management is intensely personal. Many people, especially busy knowledge work-
ers, are reluctant to relinquish control over the management of their own time. More-
over, individuals have different preferences and practices regarding how they schedule
their time, how they negotiate appointments with others, and how much information
they are willing to share when doing so. They also have different needs and priorities
regarding the reminders they should receive.

The Personalized Time Manager (PTIME) assistant [1] is a CALO component with
the goal of managing an individual’s temporal commitments over an extended period of
time, while recognising and adapting to the differences between individuals. Interaction
between the human user and the system is central to this goal. The scheduling solutions
found by the system should be informative, and the user–system dialogue should im-
prove the quality of future interactions.

Requirements. At the heart of PTIME is a constraint-based scheduler. Solving the ba-
sic constraint problem is straightforward for small and medium instances, given present
scheduling practice and available constraint technology. However, the basic problem is
complicated by a number of factors, many due to change or uncertainty in one form or
another. The following are some of the requirements for PTIME that go beyond pure
constraint solving.

User requestsAt any moment the user can present new calendaring requests to PTIME.
These include scheduling a new meeting, rescheduling existing ones, or adjusting loca-
tions and participants, while minimising perturbation on the user’s schedule.

PreferencesAs described above, individuals have intense preferences over their time.
These encompass not only when to schedule meetings—preferences on temporal and
non-temporal constraints—but also the amount of autonomy the user permits PTIME.
The user may not be able to articulate all her preferences, and may not be able or willing
to communicate them to CALO; thus information is incomplete.

Execution Not everything occurs as planned: travel is delayed, meetings overrun, re-
sources become unavailable. From the information CALO acquires about current exe-
cution, PTIME must reschedule, with the criteria of minimising perturbation and max-
imising likelihood of successful execution.

Relaxation Frequently, a meeting request cannot be satisfied without relaxing some
constraints or violating some of the user’s preferences.

Explanation An important requirement for CALO is that it be able to explain its own
behaviour to its user. When a request cannot be satisfied, PTIME should be able to
explain why this was the case, and present alternatives.

Interactivity The PTIME interface, shown in Figure 1, presents a view of the user’s
calendar, together with an interface for mixed-initiative decision making. For instance,
if a meeting request is unsatisfiable, deciding whether and how to relax the request
becomes a dialogue between the system and the user [2].



Figure 1. Development view of the PTIME user interface

Learning Over time, PTIME must learn and adapt to the user’s preferences, which may
themselves change. At present, PTIME can learn from explicit instruction (“I prefer
morning meetings, except on Monday”), or implicitly, from the user’s selection from a
set of presented solutions to the CSP (“I prefer scheduleA to scheduleB”) [3].

Distributed schedulingBy its nature, satisfying a multi-person meeting request is a dis-
tributed negotiation problem over each potential participant. PTIME faces incomplete
information on the preferences and schedules of others.

Solutions. The present constraint model in PTIME consists of prioritised finite domain
constraints (FD), and disjunctive temporal constraints with semiring-based preferences
(DTPP) [9]. There is a multi-criteria objective function, giving a soft constraint opti-
misation problem (COP). A sequence of COPs is solved, as the user interacts with the
system to meet a calendaring request to her best satisfaction.

Although the COP is not large in size, and the mixed-initiative setting permits up to
500ms, say, for its solving, efficiency is important. This is due to the multiple COPs that
must be solved for relaxation, explanation, negotiation, and rescheduling. Currently,
solving is achieved by an FD-DTPP hybrid within a branch-and-bound search.

The present approach to change and uncertainty in PTIME is largely reactive. Our
future work is to provide more robust schedules by proactive reasoning over the execu-



tion of tasks. In particular, we are considering learned probabilities on meeting occur-
rences and expected durations, and models of contingent events [6,11].

3 Task Reasoning and Execution

Ultimately, CALO assists its user by performing tasks on her behalf. These can range
from keeping track of the user’s commitments and providing reminders, to collabo-
rating with the user in a mixed-initiative fashion, to fully autonomous completion of
tasks explicitly delegated by the user, to proactive undertaking of activities that CALO
determines will be beneficial (according to the permitted level of adjustable autonomy).

At the heart of CALO’s ability to act is aTask Managerthat initiates, tracks, and
executes activities and commitments on behalf of its user, while remaining responsive
to external events. The Task Manager component of CALO is based on a reactive exe-
cution system calledSPARK[5].

SPARK is an agent framework grounded in a model of procedural reasoning. It is
based on the Belief-Desire-Intention (BDI) model of agency [10], which has become
the predominant architecture for the design of cognitive agents. SPARK has been de-
veloped to support the construction of large-scale, practical agent systems, and contains
sophisticated mechanisms for encoding and controlling agent behaviour. At the same
time, SPARK has a well-defined semantic model that is intended to support reasoning
about the agents’ knowledge and execution in a dynamic environment.

Constraint technology enables the temporal and resource reasoning of the Task
Manager, together with parts of SPARK’s deliberation over cognitive states. Both oper-
ate under the same requirements listed above for PTIME. Ongoing work includes:

Reasoning over commitmentsAction depends on knowing how to act, having the nec-
essary means, and having sufficient time. Tasks are represented as hierarchical process
models with simple deadlines. Richer temporal information will be represented as a
Simple Temporal Network, augmented with information on expected (remaining) dura-
tion, probability of success, contingent events [6], and a profile of resource usage [4].
An important challenge is rapid incremental computation, suited to SPARK’s reactive
execution paradigm and the soft real-time demands on CALO’s responses.

Guidance and goal selectionAction follows decision on what to do. The Task Man-
ager receives potential goals from the user, or raises them proactively. These, together
with their deadlines and resource requirements, must be balanced against existing com-
mitments in the light of user-statedguidance[8]. The various criteria may mutually
conflict. The deliberation is modelled as a soft multi-criteria constraint optimisation
problem over SPARK’s cognitive states and the set of potential and current goals [7].

4 Conclusion

Change and uncertainty are real and pressing aspects for a cognitive assistant such as
CALO. They arise not only from the situations in which CALO operates, but also from
the demands of its user. Constraint-based models and constraint solving provide key



functionality for several components of the CALO architecture. In such a context, we
must address dynamism, evolving requirements, incomplete knowledge, and ill-known
outcomes head on. The case is made for sustained research in these areas, to develop
more expressive CSP-based modelling frameworks and solving algorithms; and for sys-
tems that make these advances available in practice.

The cognitive assistant domain features other aspects beyond change and uncer-
tainty that are just as demanding of the constraint solving. These include execution
in the real world, mixed-initiative problem solving and interactivity, user preferences,
learning, and distributed reasoning. Here again constraint technology is evolving. The
case is made for an effort to provide constraint systems—whether languages or toolkits—
that can help simultaneously address all these aspects.

Acknowledgement.We recognise all the members of the CALO project, and thank K. Conley
for technical assistance. This material is based upon work supported by the Defense Advanced
Research Projects Agency (DARPA), through the Department of the Interior, NBC, Acquisition
Services Division, under Contract No. NBCHD030010.
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1 Introduction

The annual Trading Agent Competition includes a Supply Chain Management
game [1], in which agents must win contracts, obtain supplies, and produce
goods, in competition with five other agents. In this position paper, we out-
line the problem domain, explaining why we believe it is a suitable testbed for
reasoning about change and uncertainty in constraint optimisation, and we de-
scribe our initial attempts to design and implement a constraint-based agent to
participate in the competition.

2 TAC SCM

The Trading Agent Competition Supply Chain Management games simulates
a dynamic competitive supply and production environment. Multiple customers
issue requests for quotes for the sale of PCs, including a quantity, a due date, and
a lateness penalty. A number of production agents make bids for the contract,
and for each request, a winning bid is selected. The winning agent must then
manufacture the PCs, or provide them from stock, and ship them to the customer
by the due date. In order to manufacture the PCs, the agent must procure raw
material from suppliers. Again, requests for quotes (including delivery dates)
are issued by the agent, the suppliers respond with offers, and an appropriate
offer is selected. Each agent is limited by the capacity of its assembly line, and
must select each day which set of products are to be manufactured. An agent
has unlimited storage capacity, but must pay an inventory holding cost for each
component and each finished PC. Failure to meet a due date on an order results in
financial penalties. Each agent has an unlimited overdraft, but must pay interest
at a rate higher than that received for a positive balance. The game consists of a
year of 220 trading days, and each simulated day lasts for 15 seconds in real time.
The aim of the game is to have the largest bank balance at the end of the year.
The simulation is implemented in Java, and is controlled from a central server,
to which remote agents must be connected. Basic Java agents are provided for



initial use. The competition consists of several rounds, and each round consists
of many individual games. The participants in each round are ranked by their
average closing bank balance.

The game clearly involves resource management, it is dynamic, and it in-
volves significant uncertainty. There are in total 16 different PC configurations
possible, each with a different set of components, and each requiring a different
number of production cycles. The configurations are divided into three categories
(low, medium and high) based on their expected price. Each day, the agent must
decide which production cycles to devote to producing which configurations,
based on the current set of actual and expected orders, and on the states of
component and finished-goods inventory. Customer demand is uncertain - each
day, the demand for configurations in each of the three cateogies varies based on
a poisson distribution around a target which is varied as a random walk. The
due dates and penalties (and maximum prices) are selected uniformly at random
over an interval. Thus when scheduling production, an agent cannot know with
certainty how many future orders will be available. Further, each day the agent
makes offers, but does not receive results until the following day. The success
rate will depend on the bids of the other agents. Thus each day the agent has
an upper bound on the number of contracts which may be received tomorrow,
but the actual contracts are not known with certainty until the following day.
Daily reports on the maximum and minimum prices paid for each configuration
are available. Every twenty days, the agent receives a market summary report,
detailing the average prices. There is also uncertainty on the supplier side. An
agent issues requests for the supply of components, and on the following day
learns what offers have been made by the suppliers. The suppliers have limited
resources, and will quote prices based on capacity, demand and the agent’s repu-
tation, and hence price depends both on random variables and on the behaviour
of the other competing agents. Finally, the actual production capacity of the
suppliers varies under a random walk from day to day, and so it is possible that
the suppliers over-commit and deliver the components late.

Although the underlying constrained resource allocation problem is relatively
simple, it is an online problem with uncertainty in the availability of resources.
Further, the agents have some ability to make decisions on how the problem
should change over time (by choosing which contracts to initiate), but that
process is subject to significant uncertainty, caused partly by the game parame-
ters, and partly by the presence of other agents acting in the game. Effective
resource management therefore requires us to reason about both the changes
and the uncertainty, and the competition provides a real and effective testbed.

3 Designing a constraint-based agent

We have designed and implemented an agent using Java and OPL, to compete
in TAC-SCM 2005. Each trading day, we break the problem down into three
decisions: (i) which PCs to manufacture, (ii) which components to request and
order, and (iii) which PC orders to bid for and at what price. For (i), we are



initially taking a simple approach. We only schedule orders which have been
confirmed, and each day, from the confirmed orders, we select jobs in order of
due date that have the necessary components in stock, and schedule them until
the production cycles are used up. For (ii), we attempt to order all components
in advance. We maintain an expected order rate for each category of PC, which
is updated each day based on the history of orders. Based on the quotes we
received on the previous day, we make orders each day with long due dates to
bring the component stocks up to the level required for the expected finished
goods orders. In addition, we make short due date purchases to correct any errors
in our previous estimates for both customer orders and supplier lead-times - that
is, to bring stocks up to the levels required to fulfill confirmed orders.

Most of our effort has focused on deciding which bids to make each day, and
on what prices to offer. We represent this as a constraint optimisation problem
subject to uncertainty. Our aim is to select bids and prices to maximise our
expected revenue, given component, inventory, lateness and interest costs, and
given constraints on component availability and production capacity. However
the success of any given bid depends on the actions of the other agents, and we
are not given detailed information on their behaviour - we see only the minimum
and maximum order prices for the previous day, and every twenty days we see
the average order price for that period. Rather than try to reason explicitly
about the behaviour of the other agents, we model the market conditions for
each product as random variables, and we try to learn the probability of a bid
price being accepted. We then use these probabilities in our optimisation model,
and use expected production requirements and expected profits. Our aim is then
to choose the bids and prices that maximise our expected profits, while ensuring
that our expected demand does not exceed our capacity or supplies. It is possible
that we succeed on too many bids, and then our production scheduling must
decide which orders to satisfy.

This model is implemented in OPL Studio, and is embedded inside a Java
agent. Each day, the agent updates its probability estimates for the success
of different bids, its inventory, and its models of the suppliers; decides upon
the day’s production and delivery schedule; reads the RFQs from customers;
runs the OPL model to make the bids; orders components from suppliers; and
finally issues requests for quotes to suppliers for tomorrow’s orders. The agent
is currently participating in the competition, and appears to be robust and
profitable, although not one of the leading agents. Future work will concentrate
on improving the production scheduling and the management of supplies.

4 Conclusion

The Trading Agent Competition Supply-Chain Management game is a real time
simulation of a competitive, dynamic and uncertain marketplace. As such, it
provides an effective testbed for practical implementations of constraint solving
under uncertainty. We have outlined our constraint-based agent for participat-



ing in the competition, and we will report on its final performance during the
workhsop.
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Abstract. In previous work, the notions of Open, Interactive and Dy-
namic CSP have been independently defined. Open constraint satisfac-
tion is a new model where values are incrementally gathered during prob-
lem solving. Domains are assumed unbounded. Interactive constraint
satisfaction also deals with partially known domains, assuming implic-
itly that domains are finite. Dynamic constraint satisfaction deals with
problems of dynamic nature (as configuration design or model compo-
sition) where variables, domains and constraints are subject to frequent
changes. In this paper, we study the relationship between these three
models, showing that Interactive CSP can be seen as a particular case
of Open and Dynamic. We have applied two algorithms, FOCSP (de-
veloped for Open) and LC (developed for Dynamic) to solve Interactive
CSP. We provide experimental results of this evaluation.

1 Introduction

In previous work, a new model called Open CSP [2], integrates information gath-
ering and problem solving. This model starts solving a CSP from a state where
all domains are possibly empty, and it dynamically asks for values while the
CSP has not been solved. This process stops as soon as a solution is found.
With a similar motivation, the Interactive CSP model [3] deals with problems
with partially defined domains. It is implicitly assumed that the domains are fi-
nite, while in Open CSP domains remain unbounded. In a dynamic environment,
tasks usually change. As a consequence, CSPs that represent these tasks evolve,
and variables, domains and constraints may change over time. The Dynamic
CSP model [1] was defined to solve CSP in such dynamic environments.

This paper considers the relation among Open, Interactive and Dynamic CSP
approaches. We show that an Interactive CSP can be seen as a particular case of
Open CSP, and also as a particular case of Dynamic CSP. Therefore, algorithms
developed for Open or Dynamic models can be used for Interactive CSP.

The paper is organized as follows. First, we briefly describe Open, Interac-
tive and Dynamic CSPs. Then, we show how Interactive CSPs can be seen as
particular cases of Open and Dynamic CSPs, respectively. We provide an ex-
perimental evaluation of Interactive CSP using three algorithms, one from each
class, on random problems, in terms of number of queries and search effort.
� Partially supported by the Spanish REPLI project TIC-2002-04470-C03-03.



2 Open, Interactive and Dynamic CSPs

Open CSP. Imagine you want to configure a PC using web data sources. Query-
ing all the possible PC parts in all data sources on the web is just not feasible.
We are interested in querying the minimum amount of information until finding
a solution. Since the classical CSP approach (querying all values before search
starts) is not applicable here, the new Open CSP approach [2] was proposed.
Solving an Open CSP implies obtaining values for the variables, one by one. If
the collected information does not permit to solve the problem, new values are
requested. The process stops when a solution is found.

The failure Open CSP (FOCSP) algorithm [2] solves Open CSP, based on the
idea that we gather new values only when the current known part of the problem
has no solution. In that case, it contains a smaller subproblem that already has
no solution, and the whole problem can be made solvable only by creating a
solution to that subproblem. Then, an additional value should be found for
one variable (the failed variable) of that subproblem, and search restarts. This
algorithm is proven correct and complete, no matter unbounded domains.

Interactive CSP. Very related with Open CSP is the Interactive CSP model
introduced by [3]. An Interactive CSP (ICSP) has partially known domains for
its variables. When solving an Interactive CSP, new values are requested, until
finding a solution or proving that no solution exists. The main difference with
Open CSP is that Interactive CSP implicitly assumes that variable domains are
finite.

In this model, it is possible to use heuristically some of the known constraints
to guide the acquisition of new values. This feature depends on the concrete
application to solve, but no specific condition is requested on the basic model.
The interactive forward checking (IFC) algorithm is proposed. When a domain
become empty, it launches a specific request for additional values that would
satisfy the constraint on that variable. In this process, the algorithm may request
all values of a variable, assuming finite domains.

Dynamic CSP. A Dynamic CSP [1] is a finite sequence 〈CSP(0), CSP(1),. . .〉 of
CSP instances, where each CSP(i) differs from the previous one by the addition
or removal of some constraints (all possible changes of a CSP can be expressed
in terms of constraint additions or removals). Solving a Dynamic CSP implies
solving each instance of the sequence. The first instance is solved from scratch,
and it is always possible to apply this method to any subsequent one. However,
this approach is inefficient and may cause instability between solutions of consec-
utive instances. For this reason, when solving dynamic CSP one wants to reuse
as much as possible the solving episodes of previous instances.

There are several solving approaches for Dynamic CSP solving. We consider
the local changes (LC) algorithm [4], which tries to repair a previous solution.
When the assignment of a variable becomes inconsistent with a previous solution,
the inconsistent part of that solution is modified, keeping the assignment of that
variable, until consistency is restored. If this is not possible, other values for the
considered variable are tried.



3 Relationship between models

In this section we study the relationship between Open, Interactive and Dynamic
CSP models. The relation between these 3 models is shown in figure 1.

Interactive CSP as Dynamic CSP. An Interactive CSP can be seen as
a particular case of Dynamic CSP, as follows. In Interactive CSP, the operation
that passes from a problem instance to the next one is acquire value, getting
a new value for a particular variable. Then, the variable domain is extended
with that value, and the relational part of constraints involving such variable
are enlarged with the allowed tuples that contain the new value. This process
can be modelled in Dynamic CSP as follows. Adding a new value is equivalent
to removing a unary constraint which disallowed this value in the domain of the
corresponding variable, so that value is now available. Enlarging the constraints
in which the variable is involved is equivalent to replacing (removing plus adding)
the previous constraints by the enlarged ones.

At first glance one may think that this approach requires to know all the
values of the domains from the beginning, to form the variable domains of the
Dynamic CSP. However, this is not the case. It is enough to know the maximum
number of values for each variable, say di for vi. Initially, the problem state is as
follows. The domain of vi is a set of di dummy values {dummy1, . . . , dummydi}.
When value a is found, it replaces a dummy value, say dummy1, in the variable
domain (that now becomes {a, dummy2, . . . , dummydi}), and in the constraints.

Strictly speaking, this model is an extension of the standard model of Dy-
namic CSP, where all domains are known from the beginning. The existence of
dummy values which are replaced by real values as search progresses is not a big
issue for the standard Dynamic CSP model, because the domain size does not
change, and dummy values are replaced by real ones only once. This is the only
extension that the standard Dynamic CSP model requires to include Interactive
CSP.

Interactive CSP as Open CSP. An Interactive CSP can be seen as a
particular case of Open CSP. Similarly to the Open CSP model, Interactive
CSP uses partially defined data, where domains are acquired incrementally from
external agents. The main difference between these models is that Interactive
CSP does not address the problems of an open environment, in particular it
limits itself to finite domains whilst Open CSP works with unbounded domains.
Thus Interactive CSP instances can be solved with Open CSP algorithms.

Fig. 1. Relation between Open CSP, Interactive CSP and Dynamic CSP



4 Experimental Results

We applied the LC algorithm [4] defined for solving Dynamic CSPs to solve
Interactive CSP instances. Also we compare the FOCSP algorithm [2] defined
for solving Open CSP problems which solves Interactive CSP problems. Both
LC and FOCSP algorithms are compared with the IFC algorithm[3] developed
for solving Interactive CSP problems.

To compare the algorithms, we are interested in the number of checks needed
to solve the Interactive CSP and the number of accesses to information sources
until a solution is found. We generated 1000000 random Interactive CSPs, with
between 5 to 18 variables and 4 to 12 values per variable, with random con-
straints, forcing the graph to be at least connected and at most complete.
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Fig. 2. (a) Comparison of the number of checks against the number of variables. (b)
Comparison of the number of queries against the number of variables

Figure 2(a) shows the number of checks against the number of variables,
studying the performance of the algorithms when we increase the number of vari-
ables. It is shown that the LC algorithm has a much better performance that the
FOCSP and the IFC algorithms. The FOCSP algorithm redoes again the same
solving process every time a new value is added, the IFC is just a backtracking
with forward checking, while the LC algorithm uses the information from the
previous assignments (compatible assignments, incompatible assignments) for
solving without solving again the CSP from scratch as the FOCSP algorithm
does. The high number of checks of the IFC algorithm is due in part to the
acquire value phase, where the algorithm checks for a compatible value.

Figure 2(b) shows the number of queries needed to find a solution against
the number of variables. We assume that a query retrieve just a single value.
We can see that LC and FOCSP algorithms have a much better performance
than the IFC algorithm which needs to collect all values in a mediator for doing
the forward checking. Also we included the Minimal Interactive Forward Check-
ing [3] algorithm (MinIFC) which queries compatible values without collect the
complete variable domain. We notice that LC, MinIFC and FOCSP algorithms
query nearly the same number of values to find a solution. We compare all algo-



rithms with the case where we found a solution just querying a value for every
variable. We included this situation in the figure 2(b) with the line Best Case.

Figures 2(a) and 2(b) show the improvements of the LC algorithm applied to
solve Interactive CSP problems. Empirically it is shown in figure 2(a) that reuse
previous work on failed branches is better on average than detect the failed
variable and redo the problem as the FOCSP algorithm does. Also the LC is
better than backtracking with forward checking as the IFC algorithm does. It
is interesting to analyze that the number of queries of LC algorithm is always
slightly higher than the number of queries of FOCSP. This may be related with
the way values are queried by both algorithms. While consecutive queries of
FOCSP ask for values of different variables, consecutive queries of LC may ask
the complete domain of a variable. Therefore, in some cases LC may ask more
than needed to find a solution. This point is subject to current research.

5 Conclusions

In this paper we have analyzed the relation among Open, Interactive and Dy-
namic CSP. These models, different from the classical CSP, have appeared in
different moments motivated by different applications. We have shown that In-
teractive CSP can be seen as a particular class of Open CSP (restricted to finite
domains). In addition, we have also shown that Interactive CSP can be seen as
a particular class of Dynamic CSP. As consequence, algorithms used to solve
Open CSP and Dynamic CSP can be used to solve Interactive CSP. Based on
this relationship, we have applied the FOCSP algorithm (initially developed for
Open CSP) and the LC algorithm (initially developed for Dynamic CSP) com-
paring them with the IFC algorithm (developed for Interactive CSP) when they
solve Interactive CSP instances. We have found that the LC algorithm reduces
dramatically the number of checks with respect to FOCSP and IFC, just slightly
increasing the number of queries needed to find a solution with respect to the
FOCSP algorithm.

We think that this relationship between Open, Interactive and Dynamic CSP
is a promising avenue for research, that we will further investigate.
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Abstract. We define the distributed, continuous-time combinatorial optimiza-
tion problem. We propose a general, semantically well-defined notion of solution
stability in such systems, based on the cost of change from an already imple-
mented solution to the new one. This approach allows maximum flexibility in
specifying these costs through the use of stability constraints. We present the
first mechanism for combinatorial optimization that guarantees optimal solution
stability in dynamic environments, based on this notion of solution stability.
In contrast to current approaches which solve sequences of static CSPs, our mech-
anism has a lot more flexibility by allowing for a much finer-grained vision of
time: each variable of interest can be assigned and reassigned its own commitment
deadlines, allowing for a continuous-time optimization process. We emphasize
that this algorithm deals with dynamic problems, where variables and constraints
can be added/deleted at runtime.

Keywords:distributed AI, dynamic combinatorial optimization, solution stability

1 Introduction

Constraint satisfaction and optimization in a dynamic environment [2, 6, 7] is certainly
an important aspect of constraint reasoning. As the world is generally dynamic, so are
the problems that constraint algorithms must solve. Methods need to be devised to deal
with such changes, and provide (good) solutions even when the problem has changed,
and a previously determined solution is no longer useful. There is usually a certain
amount of change that has to be inflicted upon an old solution for it to adapt to the
new situation. Often it is impossible to change some parts of the old solution, or there
is a high cost associated with change. Examples: resources are already consumed, re-
routing trucks to serve a new customer costs extra fuel, re-assigning nurses to shifts in
a hospital, etc.

Solution stability is an important concept that captures this ”change” of solutions in
dynamic systems, and tries to minimize its effects.

2 Continuous time optimization

In dynamic systems, changes occur all the time, and optimization is a continuous pro-
cess. In some cases, it is required to decide on the values of at least a subset of the



variables of the problem, and fix them to some optimal values. A simple example is a
dynamic scheduling problem, where at some point one has to fix some tasks, and start
working on them, otherwise the system would accomplish nothing but endless schedul-
ing. Time has to be modeled explicitly, and taken into account.

Unfortunately, current approaches have a rather coarse grained vision of time: they
assume the world holds still from one execution of the algorithm to the next, allow-
ing them to solve static CSPs in each state, and minimize assignment changes from
one solution to the next. This approach clearly lacks flexibility, and is not adequate in
a multiagent system, because it means that all agents and tasks share the same rigid
deadline.

In contrast, we propose a much finer-grained approach, where we assign deadlines
to each variable of interest, thus allowing for a continuous solving process, with inde-
pendent commitment times for each variable. Thus, depending on their semantics, some
of the variables in the problem may be assigned such deadlines. Then, at the expiration
of the deadline, these variables commit to their current optimal values. In case there is
no need for a variable to be fixed at a given point in time, one can simply not assign any
deadline to it, leaving it in a ”floating” state, where it can always be freely assigned to
its (current) optimal value.

We identify two kinds of commitments:

1. Soft commitments model contracts with penalties, and can be revised if the benefit
extracted from the change outweighs its cost. Examples: a truck can be re-routed to
a longer route if it picks up an additional package along the way, which yields an
increase in revenue. A supplier may be willing to pay penalties for not delivering
on time some goods to client X , if he gets a better revenue by serving customer Y
first, etc. This kind of commitment can be modeled with stability constraints (see
definition 1). We emphasize that deadlines for soft commitment can be re-specified
at the expiration of the original ones. In fact, any variable in the system can have
assigned to it a sequence of soft-commitment deadlines, possibly followed by a
single hard-commitment deadline.

2. Hard commitments model irreversible processes, and are impossible to undo (exam-
ple: production of good X already started, and resource Y was already consumed).
When a hard commit is done, the variable is assigned to its committed value, it is
marked ”dead” and is logically eliminated from the problem. Physical elimination
can be either immediate, or postponed for efficiency reasons, to be removed simul-
taneously with other dead variables. One can design a garbage collection policy
to deal with dead variables. Hard commitments can be modelled as stability con-
straints with very large costs.

3 Solution stability based on cost

Current approaches like [6, 7, 1] define solution stability in dynamic CSP with respect
to the number of variable assignments that need to be changed in order to reach again a
consistent state upon a change in the problem. There are two approaches to achieve this
kind of stability: first approach [6] is a curative approach: once a change occurs in the
problem, they seek the new solution which is closest to the previous one, thus requiring



a minimal number of changes. The second approach [7, 1] is a proactive approach: when
generating a solution in the first place, one tries to find robust solutions, which are likely
to remain valid even upon changes in the problem, thus requiring little or no adjustment.
[1] uses a probabilistic model that tries to predict what possible changes can happen in
the future, and tries to generate solutions that are robust with respect to the predicted
changes.

We break away from this definition of stability by looking at the process from a cost
perspective. We argue that actually the number of assignments that change is irrelevant;
what matters is the total cost that is induced by these changes, once the assignments
are made. If these costs are outweighed by increases in solution quality, one can gain
from making as many changes as necessary. In the truck routing example, if rerouting
a few trucks means serving a new task that produces a benefit which far exceeds the
additional fuel costs, then we reroute the trucks, and gain the benefits. Consider also
a scheduling problem where a company makes a schedule for a lot of small intercon-
nected tasks that lead to the assembly of a product which is supposed to be delivered at
a specified time. The manufacturing process starts, but there is a change (e.g. a machine
breaks down). Keeping the old schedule valid as much as possible (as it happens when
stability is defined as minimizing assignment changes) may lead to the final delivery
date being pushed back for 2 months, thus costing the company big penalties. Working
from the cost perspective can mean that almost all tasks from the old schedule could be
rescheduled, but the final objective (on time delivery) is attained.

We introduce these costs of changing variable assignments through stability con-
straints in Definition 1. Notice that with this definition, one can accurately specify not
only that it costs something to change one assignment, but also how much it costs to
replace it with any other assignment. In practice, this allows for accurate modeling of
all possible contingencies. For example, it is obvious that re-routing a truck through
route A is more expensive if the truck is now located in a city far away, than if the truck
were located in a nearby city.

Definition 1. A stability constraint σi is a pseudo-binary constraint on Xi. The seman-
tics of such a constraint is simple: if Xi is assigned to v1

i , then σi(v1
i → v2

i ) denotes
how much it costs to change Xi’s value to v2

i .

Definition 2. Formally, a discrete continuous time multiagent constraint optimization
problem (CMCOP) is a tuple < X ,D,R,S, T >:

– X = {X1, ...,Xm} is the set of variables/solving agents;
– D = {d1, ..., dm} is a set of domains of the variables, each given as a finite set of

possible values.
– R = {r1, ..., rp} is a set of relations, where a relation ri is a function di1 × .. ×

dik → R
+ which denotes how much utility is assigned to each possible combination

of values of the involved variables.
– S = {σ1, ..., σm} is a set of stability constraints
– T = {t1, ..., tm} is a set of commitment deadlines: times until the corresponding

variable has to commit to a value. Deadlines can be for hard or soft commitments.



Formally, we define the new optimal solution like this:

X ∗
new = argmaxX

(∑
rl∈R

rl(X ) −
∑
σi∈S

σi(X old → X )

)
(1)

where the first sum is the utility of the new solution, and the second sum is the cost one
has to pay for changing the current assignments to the new ones.

For uncommitted variables, the cost is 0: they can simply choose their new optimal
values, without any cost. Hard-committed variables cannot change their values anymore
(one can think of it as an infinite change cost).

Thus, what we need to optimize is the difference between the new utility and the
cost associated with changing the soft-committed variables.

4 RSDPOP: a self-stabilizing protocol for MCOP

For dynamic environments, self stabilizing algorithms([3]) are particularly well suited,
since they guarantee some desired behavior even when there are changes in the problem.
The RSDPOP algorithm from [4] is a self-stabilizing algorithm that works for dynamic,
distributed CMCOP problems. RSDPOP guarantees stabilization in the optimal solution
of the optimization problem. It is composed of 3 concurrent self-stabilizing protocols,
that are initialized and then run concurrently:

– self-stabilizing protocol for DFS tree generation: its goal is to create and maintain
(even upon faults/topology changes) a DFS tree maintained in a distributed fashion

– self-stabilizing protocol for propagation of utility messages: bottom-up utility prop-
agation along the DFS tree

– self-stabilizing protocol for propagation of value assignments: based on the util-
ity information obtained during the previous protocol, each node picks its optimal
value and informs its children (top-down along the DFS tree).

RSDPOP is actually an extension of a basic self-stabilizing algorithm for distributed
optimization (SDPOP, see [5]). RSDPOP basically adds solution stability reasoning to
SDPOP.

For detailed descriptions, correctness proofs, complexity analisys and experimental
results, please refer to [5, 4].

5 Experimental evaluation

We performed experiments on distributed meeting scheduling problems. We modeled a
realistic scenario, where a set of agents try to jointly find the best schedule for a set of
meetings. We assume that the agents must travel to the meetings they will attend. Thus,
they must arrange for transportation (airplane tickets) and accommodation (hotel reser-
vations). There is obviously a cost for canceling these arrangements, as some tickets
may be non-refundable, some hotels may charge the room price for one night in case



of no-show, etc. This is modeled by a stability constraint on each variable whose reas-
signment involves a cost. We simulate a dynamic problem by changing the preferences
of the agents dynamically.

The task is to find the best possible schedule at each time, taking into account the
new preferences of the agents, but also the cancellation costs that are incurred by chang-
ing the starting times of the meetings that the agents have committed to. The results of
these experiments can be found in [4].

6 Conclusions and future work

We define the distributed, continuous-time combinatorial optimization problem. We
propose a general, cost-based metric for solution stability in such systems. We present
the first mechanism for combinatorial optimization that guarantees optimal solutions
in dynamic environments, with respect to this metric. In contrast to current approaches,
our mechanism is a lot more flexible and allows for a much finer-grained vision of time:
each variable of interest can be assigned its own commitment deadlines, allowing for a
continuous-time optimization process. The experimental results show that this approach
gives good results for low width, practically sized dynamical optimization problems.

As future work we envisage addressing issues like robustness, different garbage
collection policies, and analyzing ways of dealing with very tight deadlines.
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In the last workshop on Constraint Solving under Change and Uncertainty, emerged the
general lack of common benchmarks on which to test algorithms and strategies to solve
the Constraint Satisfaction Problem in dynamic and/or uncertain environments. This
paper represents an attempt to meet this urgency. In particular, we analyze the creation
of benchmark data sets for the scheduling problem which, as well known, represents a
significant CSP instance.

Scheduling is defined in theory as the problem of assigning start and end times to
a set of activities (or tasks) subject to a number of constraints. Yet, the synthesis of
initially feasible schedules is hardly ever sufficient, as in real-world working environ-
ments, unforeseen events tend to quickly invalidate the schedule predictive assumptions
and bring into question the continuing consistency of the schedule’s prescribed actions.
In the last years a number of works aimed at facing this uncertainty by proposing dif-
ferent scheduling techniques: from reactive approaches [1, 2] to robust solutions [3, 4]
and partially defined solutions [5, 6]. For a fair comparison of all the different method-
ologies, it is necessary to use a common empirical framework, composed of benchmark
sets and proper evaluation metrics. In particular, in this work we focus on the production
of a benchmark generator for instances on scheduling perturbations. This is a necessary
instrument to assess the validity of the various rescheduling methodologies. In fact, the
presence of this benchmark might reveal crucial to boost research on scheduling.

1 Scheduling perturbations

In the case of the scheduling problem, the uncertainty aspects which normally permeate
the physical environments have to be properly modeled through the characterization
of a set of particularly significant exogenous events; the benchmarks we are pursuing
to develop will be based on the production of sequences of elements taken from this
set. Real world uncertainty can be singled out in the following points:activity delay,
e.g., a surgery operation must be delayed until the doctors arrive;growth of activity
processing time, e.g., getting a flat tyre inevitably extends the duration of the journey;
lowering of resource availability, e.g., an unexpected loss of a piece of machinery in an
assembly line;variation in the number of activities, e.g., adding an unscheduled visit to
the mother in law in the daily plan;change in the mutual ordering of the activities, e.g.,
an activity in a production chain may suddenly become more urgent than another.
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(a) Temporal changes: activities can
last more than expected or they can
be postponed until necessary condi-
tions are satisfied.

Resource availability

(b) Resource changes: the two red
curves represent the nominal (left)
and the actual (right) resource avail-
ability. The reduction of resource
availability blocks the execution of
the last two activities, which are de-
layed.

(c) Activity changes: the need to
serve a new activity requires a real-
location of the current scheduled ac-
tivities.

(d) Causal changes: a new prece-
dence relation between a pair of ac-
tivities requires a revision of previous
choices.

Fig. 1. Different events may require interventions to re-establish the validity of the schedule

Therefore, the elements of uncertainty which may normally affect the consistency
of a schedule basically belong to one of the following types: (1) temporal changes,
which involve the various temporal aspects of the problem; (2) resource variations,
which modify the resource availability during the execution of a schedule; (3) causal
changes, which involve the introduction of new constraints among the activities and/or
new activities. Figure 1 shows how the events described above can affect the schedule
during its execution.

1.1 Building blocks of a benchmark generator

In the production of a benchmark set for the previous problem, a key point is to recog-
nize the types of unexpected events which can spoil the execution of the solution, their
magnitude, as well as and their relative temporal spacing. In this section we discuss
how these aspects have been taken into account during the production of our bench-
mark generator.

The importance of event spacing.Event spacing is determined through the produc-
tion of events each characterized by a particular value of the parametertaware: this
parameter specifies the “absolute” instant where each specific event occurrence is ac-
knowledged (and reacted upon). The temporal distance between the actual time of ex-
ecution andtaware can be exploited by the scheduler to accommodate the activities
for rescheduling. Once all the events are generated, thetaware parameter will be used
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to temporally sort all the generated events so that they can be “fired” according to the
correct order of occurrence.

Great attention must be paid in order to producetaware values that are guaranteed
to be valid for any possible schedule execution: infact, it is not unlikely that a produced
event, valid for a given solution, loses its validity as a consequence of a rescheduling
decision which alters the previous solution. In [7] we consider this issue and identify a
number of problem relaxations and assumptions which guaranteetaware independence
from any scheduling decision. It is possible to argue that a viable alternative could be
to synthesize “relative” values for thetaware parameter instead of absolute values, for
instance by relating them to the start times of the activities they refer to. Unfortunately
this choice is not applicable, as it can lead to unfeasible situations where some event,
supposed to be fired on one activity according totaware, may not face any possible
introduction, i.e. its value may fall into the past w.r.t. the current execution time (see
[7]). Moreover, introducing relativetaware values might yield an extremely undesirable
effect: each single instance produced by the benchmark generator might result in differ-
ent executional behaviors w.r.t. the considered schedule1, depending on the particular
decisions taken by the rescheduling engine.

Definition of the different exogenous events.In order to define a benchmark set for the
dynamic sub-problem, we refine here the concept of “event” introduced above. For each
exogenous events we provide in the following a detailed definition.

– delay of an activity, edelay:

edelay = 〈ai,∆st, taware〉
besides the activity to be delayedai and the width of the shift,∆st, it is necessary to
specify the instant where the specific event is acknowledged by the execution monitor-
ing system,taware (this is a common element of all the defined events);

– change of an activity duration, edur;

edur = 〈ai,∆dur, taware〉
like the previous case it is necessary to specify three different parameters: the activity
ai, the change in duration∆dur, andtaware;

– change of a resource availability, eres;

eres = 〈rj ,∆cap, stev, etev, taware〉
in this case, there are more parameters to specify: the resource involvedrj , the vari-
ation in resource availability∆cap, the time interval in which the change takes place
[stev, etev], andtaware. We note that the time interval can be infinite, i.e.etev →∞;

– change of the set of activities to be served, eact

eact = 〈fa, ak, reqk, durk, estk, letk, taware〉
where the parameterfa ∈ {add, remove} is a flag that describes whether the activity
ak has to be added or removed;reqk = {reqk1, . . . reqkm} is an array that specifies the

1 In fact, a scheduling problem admits in general several solutions.
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required capacity for each involved resource. Then the activity durationdurk, the time
interval in which this activity has to be served[estak

, letak
] andtaware. Of course we

have thatletk − estk ≥ durk.
– insertion or removal of a causal constraint between two activities, econstr

econstr = 〈fc, aprec, asucc, dmin, dmax, taware〉
where the flagfc ∈ {add, remove} describes if the constraint betweenaprec andasucc

has to be posted or removed. We need also to specify the minimum and maximum
distancedmin, dmax imposed by the constraint andtaware. In case the∆st parameter
of the edelay event should be negative, this reflects in starting the activity earlier than
expected. Similarly, a negative value for∆dur in theedur event determines an early stop
of the activity, while a negative value of∆cap determines an increase of the resource
availability during the interval[stev, etev].

Regarding the last two events, we have to say that in case of activity and/or con-
straint removal (eact andeconstr) it is necessary only to specify the parameters related
to the involved activities, that isak and the pair(aprec, asucc), respectively.

1.2 Scheduling perturbations as a dynamic CSP

As the scheduling problem represents a significant instance of the Constraint Satis-
faction Problem (CSP), the uncertainty aspects described above represent challenging
features for a dynamic CSP. In the following we recall the CSP paradigm, how this can
be used to model a scheduling problem, and how the presence of unforeseen events
transforms the problem into a dynamic CSP.

According to CSP paradigm, a scheduling problem can be formulated in the follow-
ing way: a set of variables, or time points,ti is introduced; they represent the temporal
events of the problem, that is, the start time and/or the end time of each activity. For
each variableti a domainDi = [0; H] is assigned (whereH is an upper bound on
the scheduling horizon), which specifies the validity range forti’s values. Two types of
constraints combine to further restrict the values that may be assigned to the set of vari-
ables: (1) binary constraints (involving pairs of variables) for representing the temporal
relations between activities (i.e., activity durations, precedence between pair of activ-
ities); and (2) n-ary constraints to describe the capacity constraints that each resource
imposes on all feasible schedules.

A dynamic constraint satisfaction problem (DCSP) is a generalization of the con-
straint satisfaction problem. In [8] it has been defined as a sequence of CSPs where each
differs from its predecessor by constraints addition or deletion. In our case though, the
CSPs may differs also by the number of involved variables. In particular, the elements
of uncertainty listed above naturally create a sequence of CSPs. For instance, an activity
delay is modeled through posting a new constraint between the source of the scheduling
problem and the activity of interest. If activityai has to be delayed fromsti to sti + δi,
a constraint labeled[sti + δi,H] is posted. Another example is how to reduce resource
availability: this is modeled indirectly, through the insertion of a “ghost” activity which
requires a certain amount of resource capacity: the required amount will be equal to the
the capacity reduction we want to model, the duration of the activity will be equal to
the resource unavailability interval (which can be infinite).
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2 Conclusions and future work

Our research work aims at analyzing and producing benchmark data sets for the schedul-
ing execution problem. This effort is justified by the absence of such benchmarks and
by our conviction that an experimental analysis of the execution of schedules can reveal
invaluable to assess the effectiveness of different approaches to scheduling problems.
To this aim, we propose a benchmark based on the production and firing of a variable
number of events chosen from a predetermined set, aimed at testing the effectiveness of
rescheduling algorithm as well as the robustness of the initial schedule.

In order to design a complete experimental framework, it is essential to introduce
also a set of metrics to evaluate the validity of the different rescheduling techniques by
producing an assessment of the quality of the solution according to various criteria. The
“dynamic” optimization criteria are in general different then those related to the static
case, as schedule execution imposes the presence of different requirements. Moreover,
given the generally strict time availability over which the schedule revision procedure
is called to react, sometimes solution quality must come as a secondary priority as the
execution of the schedule does not allow for time-intensive computations.

An important measure is represented by the schedulecontinuity(or stability), which
may informally be described as the closeness of the perturbed schedule to the schedule
before the occurrence of the disturb. Solution continuity can be a very important quality
measure of the schedule: in many cases it is in fact essential that any revised solution
be as close as possible to the previous consistent solution found by the scheduler; the
closer any two solutions are to each other, the higher their level of continuity.

Regarding the benchmark generator, we are currently producing and running the
first experiments. We plan to terminate the tuning phase soon and to make available the
generator on the web in a few months2.
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Abstract Temporal reasoning, by its nature, is bound up with change and uncer-
tainty. Underestimating such factors can lead to unrealistic solutions, in practice
not executable due to their lack of robustness to unpredictable events. Constraint
Satisfaction Problems (CSPs) have shown their effectiveness both in modelling
and solving temporal problems. Classical temporal CSP frameworks such as the
Simple Temporal Problem have been extended with the notion of uncontrol-
lable variables, to provide more realistic solutions by accommodating contingent
events outside the control of the executing agent. Even so, for many applications
this extension is not sufficient by itself, such as when the problem also features
preferences, soft constraints, stochastic uncertainty, or disjunctive choices, among
other factors. We outline several recent modelling advances to combine some or
all of these aspects in a single temporal CSP formalism.

1 Simple Temporal Problems with Uncertainty

Constraint Satisfaction Problems (CSPs) have shown their effectiveness both in mod-
elling and solving temporal problems. An outstanding example that has been success-
fully and widely applied in practice is the quantitative formalism known as theSimple
Temporal Problem(STP) [3]. In an STP, variablesXi represent time-points, and con-
straints describe binary temporal differences of the formaij ≤ Xj − Xi ≤ bij , i.e.
Xj −Xi ∈ [aij , bij ].

Temporal reasoning, by its nature, is bound up with change and uncertainty. To ad-
dress one aspect of these factors, namely contingent events outside the control of the
executing agent, the STP has been extended with the concept of uncontrollable vari-
ables. In the resulting framework, theSTP with Uncertainty(STPU) [23,10], the notion
of controllability replaces the usual notion of consistency. Solving a problem with un-
certainty is redefined in terms of finding solutions with certain degrees of robustness to
uncertainty. The most important of these controllability levels, dynamic controllability,
is tractable in polynomial time [10,9].

The STPU has been applied in practice in scheduling and planning problems, in
systems such as IxTeT [4]. Nonetheless, by itself the model accommodates only one
aspect of uncertainty. In the following sections we outline extensions that address other
aspects of change and uncertainty, and extensions that address still other factors, such
as preferences, that arise in many applications. We argue that constraint programming
must develop formalisms and methods that simultaneously address all these factors.



2 Change and Uncertainty Beyond the STPU

The solution produced for an STPU depends on the level of controllability that can be
established for the temporal network [23]. We might crudely characterise the situation
as follows: a strongly controllable STPU gives a fully robust solution, a dynamically
controllable STPU gives a flexible solution, and a weakly controllable STPU gives a
contingent solution. In each case the solution is prepared offline.

On executing a schedule or plan described by an STPU solution, the executing agent
may encounter contingencies not handled in the solution produced by the offline STPU
solving process, whichever notion of controllability is used. As examples, consider dy-
namic task sequencing in a STPU for tasks with resources [22], and incremental updat-
ing of an STP upon unanticipated contingent events [5].

Even for events that can be anticipated, the contingent policy that is guaranteed to
exist by the dynamic controllability property of an STPU has been found to be insuf-
ficiently expressive. For example, whether an autonomous spacecraft can undertake a
manoeuvre may depend on whether a minimal level of energy is available. Therefore
several frameworks add conditional branching based on the occurrence of events [8,20].

The STPU assumes that uncontrollable variables take values within their domains,
which are fixed, a priori known intervals. Controllability properties either hold or not.
This is an unrealistic model for some applications. For example, how long does an im-
age downlink from the spacecraft take? If we set the interval for this contingent duration
narrowly, the STPU is more likely to be controllable but the risk is greater that the sup-
posed bounds on the downlink will be violated. On the other hand, if we set the interval
broadly, the STPU is likely to be uncontrollable, providing us with no information.
Either way, the problem modeller cannot readily express the ‘likely’ duration.

To address this issue more realistically, theProbabilistic STP[18] attaches a prob-
ability density function to each uncontrollable variable. Subsequently, controllability
properties hold with a certain probability. Determining which levels of controllability
hold with what probability for a PSTP, however, is computationally much harder than
determining controllability for an STPU [19].

Moreover, the STPU partitions the variables into controllable and uncontrollable
with the semantics that assignment of values to each time-point is controlled respec-
tively by the executing agent or by exogenous factors summed up as ‘Nature’. In a
distributed agent setting, there may in fact be multiple agents who are jointly executing
a plan. In this case, the model of controllability must be extended beyond the two actors
of the STPU [6].

3 Enhanced Expressiveness in the STPU

While the STP is attractive because of its tractable computation, its expressiveness is
limited. As an example, consider a scenario where Alice is scheduling a one-hour meet-
ing with a visitor, Bob, and would like at least two engineers to attend. On the afternoon
that Bob is visiting, Alice would like to exercise sometime between noon and the end
of the day at 6:00 p.m, has a seminar scheduled from 2:00 to 3:30 p.m, but is otherwise
free; Bob must leave for the airport by 4:00 p.m. Engineer Carl is free after 1:00 p.m,



and engineer David is available all afternoon. Alice’s gym session is at least 40 min-
utes, and if it occurs before a meeting or seminar, she needs another half an hour to cool
down beforehand.

This type of time management scenario features contingent events, such as the ac-
tual duration of the seminar. In fact, Alice might well hold some probability distri-
bution of how long she thinks the seminar will last, based on her prior experience of
the speaker. Beyond contingent events, the scenario also features the action of multi-
ple agents with individual schedules (Carl and David have autonomous interests and
actions from Alice), conditional constraints (e.g. if the gym session is before the sem-
inar, the schedule must include cool-down time), disjunctive constraints (e.g. the gym
session can be before or after the meeting), preferences (e.g. a minimum time at the
gym, but a longer session is better, up to an hour). One can imagine readily additional
complications in real life.

To accommodate disjunctive constraints, such as “eventA occurs before or after
eventB”, the Disjunctive Temporal Problem(DTP) [17] permits disjunctions of STP
constraints. To accommodate user preferences, theSimple Temporal Problem with Pref-
erences(STPP) attaches a semiring-based preference function to each constraint [7]. In
both approaches, effective solving methods have been developed, at least in important
cases. The two extensions have been combined in theDTPP[13].

The challenge that arises is to develop frameworks that account simultaneously for
these factors and for change and uncertainty, and to develop effective solving methods
for them. One step in this direction is theDTP with Uncertainty(DTPU) [21]. The
DTPU combines disjunctions of STP constraints with controllable and uncontrollable
variables. This developing work raises both semantic and algorithmic issues that we are
now exploring.

To both express user preferences and handle contingency, two related temporal
CSPs have been proposed. TheSimple Temporal Problem with Preferences and Uncer-
tainty(STPPU) [15] combines the STPP and STPU, while theSimple Temporal Problem
with Preferences and Probabilities(STP3) [11] combines the STPP with the PSTP. In
both cases, non-stochastic and stochastic, we must find a meaningful, principled way to
combine the optimisation component arising from the preferences with the controllabil-
ity notions that address the contingency (compare [14]); and then, once again, develop
efficient solving methods. Our approach has been to leverage solvers for the component
frameworks, as far as possible.

4 Looking to the Future

The effectiveness of constraint programming for temporal reasoning is now established
in mature and widely-applied frameworks such as the Simple Temporal Problem. As
the scheduling literature shows [2], the relevance of the solutions obtained depends on
their executability in the real world of change and uncertainty. Work must continue to
extend the STP to accommodate contingency, probabilities, evolving problem formula-
tion, online execution, and related aspects, if we are to generate practical solutions.

Second, temporal problems in the real world contain important factors orthogonal
to uncertainty. Work must continue to extend the STP to include such factors as pref-



erences, soft constraints, and disjunctive constraints. The challenge then is to develop
frameworks that account simultaneously for these factors and for change and uncer-
tainty, and to develop effective solving methods for them.

Our specific work is in developing models and methods for such a combination of
factors. Motivational problems from domains such as aerospace planning and assistive
agents [1,16,12] mean that temporal CSPs must ultimately address all the aspects dis-
cussed.
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Abstract. This main thesis of this position paper is that classical con-
straint reasoning tools are not suited to represent and to solve satisfac-
torily decision-making problems under uncertainty and that new frame-
works must be built for this purpose. Such frameworks should maintain
the basic ingredients of constraint-based reasoning, that are the notions
of variable, domain, and local relation between variables. They should
however establish a clear distinction, on the one hand, between control-
lable (decision) and uncontrollable (environment) variables and, on the
other hand, between feasibility, uncertainty, and utility relations.

1 Many various settings

Decision-making under change and uncertainty is a large umbrella under which
one can find many decision-making problems with various settings and objec-
tives.

These settings differ in the nature of the changes that may occur : changes
in the state of the system to manage, in the state of its environment, or in the
objectives that are assigned to it by users.

They differ in the knowledge the decision module may have of the current
state of the system and of its environment: partial or complete. They differ in
the knowledge the decision module may have of the future changes in the state of
the system and of its environment and in the objectives that will be assigned to
it: partial or complete. A partial knowledge may have itself different forms: only
a frontier between what is possible and what is not, a possibility distribution
with several levels of possibility, a probability distribution . . . They differ also in
the way this knowledge may evolve: no possible change, natural changes without
any action, changes thanks to observation or communication actions . . .

These settings differ in the possible decision times : only one decision time
(off-line planning), several decision times (successive off-line plannings), decision
possible at any time (on-line planning). They differ also in the decisions that are
possible at these times : any decision, only some types of decision . . . They differ
in the possible cost of modifying previously made decisions : modifications only
possible for some types of decision, modification cost according to the type of
decision and to the extent of the changes . . . They differ also in the computing



resources available at these times to make decisions: cpu, memory, time . . . They
differ in the deadlines of decision-making : hard deadlines, soft deadlines, no
deadline, possible trade-off between decision delivery time and decision qual-
ity . . .

These settings finally differ in the type of objective which is assigned to the
system : to achieve a specified goal, to guarantee a specified service, to optimize
a service . . . In case of service, they differ in the horizon over which it must be
guaranteed or optimized : finite or infinite.

Combining all these features gives rise to completely different problems. For
example, (i) the control of a robot in a partially known environment, only acces-
sible via biased captors, in order to have the guarantee that it will be at a given
location by a given deadline, (ii) the centralized management of a fleet of deliv-
ery vehicles in order to satisfy as well as possible client requests which arrive at
any time in the distribution center, (iii) the management from a ground mission
center of a constellation of observation satellites which are each only accessible
during limited visibility windows, taking into account uncertainty at decision
time about the cloud cover of the ground areas to observe, (iv) the management
of the deployment of a constellation of satellites taking into account uncertainties
about failures of new satellite launches and of previously launched operational
satellites.

2 Numerous existing frameworks

The consequence of such a diversity is that it is difficult for a framework to
represent and handle satisfactorily all the features of all the possible problems.

For example, Markov decision processes (MDP [1]) need to explicit the tran-
sition probability and the local reward for each triple state-action-state, that is
the complete system transition model. This does not apply in settings such as
(ii) where no model of the client request arrivals is available, unless one accepts
to learn it progressively. The same kind of difficulty occurs with Influence di-
agrams [2], in spite of a more compact variable-based representation of states,
actions, and transitions, inherited from Bayesian networks [3].

Competitive analysis [4] does not need such a model. It considers a decision
made with partial knowledge and the worst impact of this decision on the system
output, taking into account all the possible scenarios. Consequently, it does not
suit many settings such as (iii) or (iv), where available probabilistic information
can dramatically improve decision quality.

Stochastic programming [5] is an attempt to extend mathematical program-
ming to a setting where values of some parameters in the equations are uncertain.
Consequently, it allows large off-line planning problems with uncertain data to
be handled, but does not suit settings such as (i), which are characterised by a
reactive decision/action/information-acquisition loop.

In the classical AI Planning domain [6], several standard planning problems
under uncertainty have been defined, such as (a) Conformant planning where



one searches for a plan that guarantees to achieve the goal in spite of state un-
observability, (b) Probabilistic Planning where one searches for a plan that max-
imizes the probability of goal achievement, or (c) Conditional planning where
one builds a flexible plan with alternative branches associated with at least the
most important or probable events. But, off-line approaches, such as (a) or (b),
do not suit on-line decision settings such as (i) or (ii), and on-line ones, such as
(c), are quickly limited by the exponential number of alternatives to consider.

In the Constraint domain, one can observe preliminary attempts to consider
uncertainty. First, it must be observed that the basic CSP model allows un-
certainty alone to be represented and handled, because it allows possible and
impossible states to be distinguished. This allows for example pure diagnosis
applications to be dealt with by constraint programming tools (see for exam-
ple [7]). Then, several extensions have been defined such as (a) Mixed CSP [8],
where controllable and uncontrollable variables are distinguished and one usually
searches for an assignment of the controllable variables that is consistent with
any assignment of the uncontrollable ones, (b) One stage stochastic CSP [9],
where one assumes each uncontrollable variable to be an independent random
variable with an associated probability distribution and one searches for an as-
signment of the controllable variables whose probability of consistency is max-
imum, (c) Probabilistic CSP [10], where a probability of existence in the real
world is associated with each constraint and one searches for a complete assign-
ment whose probability of consistency is maximum, (d) Branching CSP [11],
where a probability of addition to the problem is associated with each variable
and one searches for an assignment of the current variables that maximizes the
expected value of its extension to the future variables, (e) Quantified CSP or
Multi stage stochastic CSP [12,9], where a request is built by freely alternating
controllable existentially quantified variables and uncontrollable universally or
randomly quantified ones. Note that other approaches, maybe the most usual
in real-world applications, deal heuristically (without any model) with uncer-
tainty by trying and producing decision variable assignments that are likely to
be solutions in the real world (see for example [13]). Finally, whereas all these
approaches aim at producing robust assignments, other ones aim at producing
flexible ones. This is the case when one uses algorithms able to produce quickly
a new solution in case of change in the problem definition which invalidates the
previous solution, with an as small as possible distance between new and previ-
ous solutions (see for example [14,15]). This is also the case when one searches
for solutions, referred to as super-solutions, that are presumably easy to repair
[16].

But each of these extensions seems to have its limited application area, and
none of them can claim to be the definitive answer. So, a generic constraint-
based framework, sufficiently flexible to deal with all the possible features of
uncertainty, remains to be defined. The definition of such a framework is not the
aim of this paper. For a complete proposal, one can look at [17]. We can however
list the basic ingredients about them there is no too strong contest.



3 The basic ingredients of a new framework

First, inherited from the CSP framework, we have the notions of variable and
domain. But, whereas all the CSP variables are assumed to be controllable de-
cision variables, we must now distinguish controllable (decision) variables and
uncontrollable (environment) ones. About the former, we must decide upon their
values. About the latter, we have only knowledge about their possible values.

Then, inherited from the CSP framework too, we have the notion of local
relation between a limited number of variables. This is the basis of the local
consistency algorithms [18] which made the success of constraint programming.
This notion has been already extended from hard relations, which are satisfied
or not, to soft ones, which associate a weight with each possible assignment
of the variables they link [19] and can be seen as simple local functions. But,
we must now distinguish three kinds of relation: (a) feasibility relations which
express limitations on the decision variables as functions of other variables (deci-
sion or environment ones), (b) uncertainty relations which express beliefs on the
environment variables as functions of other variables (decision or environment
ones), and (c) utility relations which express user requirements or preferences on
the decision and environment variables. Relations of type (a) are classical hard
constraints, but must be normalized to guarantee that a decision is always pos-
sible (which may be to do nothing or to do something unacceptable). Relations
of type (b) may be hard. In this case, they distinguish possible and impossible
values of the environment variables. They may be also soft. In this case, they
express conditional belief distributions (for example, possibility or probability
distributions) over the domains of the environment variables. In both cases, they
must be normalized to guarantee that a reaction of the environment is certain.
Relations of type (c) may be hard. In this case, they express strong user require-
ments. They may be also soft. In this case, they express user soft preferences. In
both cases and differently from feasibility and uncertainty relations, there is no
normalization condition.

Finally, such a situation strongly differs from the one we are used with the
CSP framework, where we deal with only one kind of variable, which are control-
lable decision ones, and only one kind of constraint, which express indistinguish-
ably hard feasibility relations or hard utility ones (strong user requirements).
The main novelty is thus that we have now to deal with two kinds of variables
(decision and environment) and three kinds of local relations (feasibility, un-
certainty, and utility). Because feasibility, uncertainty, and utility relations are
not combined the same way (for example, feasibility relations may be combined
with the logical ∧ operator, uncertainty ones with × in case of probability, and
utility ones with + in case of numeric additive utility) and because decision and
environment variables are generally not quantified the same way (for example,
decision variables may be quantified with max and environment ones with +
in case of expected numeric additive utility), all the basic constraint reasoning
tools (local consistency enforcing, tree search, local search . . . ) must be revisited
to be adapted to a completely new framework.
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