
When Ants Attack: Comparing Ant Algorithms
for Constraint Problems

Finbarr Tarrant and Derek Bridge

Department of Computer Science,
University College, Cork

fst1@student.cs.ucc.ie/d.bridge@cs.ucc.ie

Abstract. We describe an ant algorithm for solving constraint problems
[Sol02]. We devise a number of variants and carry out experiments. Our
preliminary results suggest that the best way to deposit pheromone and
the best heuristics for state transitions may differ from current practice.

1 Introduction

In ant algorithms, artificial ants complete a series of walks of a data structure,
known as a construction graph, each path corresponding to a potential solution
to the optimisation problem in hand [DMC96]. Pheromone is deposited on a path
in a quantity proportional to the quality of the solution represented by that path.
Mimicking the behaviour of real ants, an artificial ant resolves choices between
competing destinations probabilistically, where the probabilities are proportional
to the amount of pheromone associated with each option.

In this paper, we apply ant algorithms to Constraint Problems. Our goal for
the moment is to see which of a number of ant algorithms for constraint problems
perform best. The most competitive of these can then be compared with other
constraint solvers in future work. We define constraint problems in Section 2.
Section 3 describes an ant algorithm for constraint problems and some variants
of the basic algorithm. Section 4 reports experimental results. Conclusions are
drawn in Section 5.

2 Constraint Problems

We define a constraint satisfaction problem (CSP) to be a triple (X, D, C). X
is a finite set of variables. D is a function that associates each x ∈ X with its
domain, this being the finite, non-empty set of values that x can assume. C is a
set of constraints which restrict the values that the variables can simultaneously
assume.

A label 〈x, v〉 associates variable x with a value v drawn from x’s domain
D(x). An assignment A is a set of zero, one or more labels in which no variable
appears more than once. A complete assignment is an assignment that contains
a label for each variable in X . A solution is a complete assignment that satisfies
all the constraints.

〈y, c〉

〈x, b〉〈z, c〉

〈x, a〉

〈z, b〉

〈z, a〉 〈y, d〉

X = {x, y, z}
D(x) = {a, b}
D(y) = {c, d}
D(z) = {a, b, c}

Fig. 1. Construction graph.

Complete solvers guarantee to find a solution, if one exists. However, con-
straint problems are, in general, NP-hard. For this reason, incomplete solvers
are often used. An incomplete solver does not guarantee to find a solution; nei-
ther can it in general determine when a problem has no solution. A user may
be content to use an incomplete solver if, in reasonable time, the solver can find
good near-solutions. Ant algorithms are incomplete solvers.

3 Ant Algorithms for Constraint Problems

We investigate a number of different ant algorithms for constraint problems. We
have defined them to be systematic variants of a single basic approach [Sol02].
In the algorithms, each ant constructs a complete assignment in a variable-by-
variable fashion by walking the construction graph.

3.1 Construction graph

The construction graph for a CSP (X, D, C) contains a vertex for every possible
label. The graph is fully connected except that 〈xi, v〉 need not be connected to
any vertex 〈xi, w〉 for the same variable xi. Figure 1 shows an example.

3.2 Algorithm

The basic algorithm is given as Algorithm 1. Initially, an amount of pheromone is
deposited onto the graph (see Section 3.3). Then, in each cycle, ant k constructs
a complete assignment Ak by walking the graph. When a cycle is completed, ants
deposit pheromone onto the graph to denote the desirability of the paths that
they followed; at the same time, there is also a degree of pheromone evaporation
(see Section 3.3). Cycles continue until either a solution is found or until a
predetermined number of cycles has been completed.

The way that ants walk the graph and hence construct a complete assignment
is outlined in Algorithm 2. The ant is placed on a starting vertex using the
methods described in Section 3.4. It chooses its next vertex from the feasible
neighbourhood (Section 3.4), adding a label to its partial assignment for each
vertex visited, until it has constructed a complete assignment.

Algorithm 1 Basic algorithm
Initialise graph with pheromone
bestA ← { } // We take cost({ }) = ∞
repeat

for each ant k do
Ak ← Walk of graph by ant k
if cost(Ak) < cost(bestA) then

bestA ← Ak

end if
end for
Update pheromone on each component

until cost(bestA) = 0 ∨ max. cycles reached
return bestA

Algorithm 2 Walk of graph by ant k
Select a starting vertex 〈xi, v〉 and place ant on this vertex
Ak ← {〈xi, v〉}
while |Ak| < |X| do

Select vertex 〈xj , w〉 from ant’s feasible neighbourhood and move ant to this vertex
Ak ← Ak ∪ {〈xj , w〉}

end while
return Ak

3.3 Pheromone initialisation and update

It is at this point in our presentation that we come upon one of the dimensions
along which variants of the algorithm can differ: onto which components of the
graph is pheromone deposited?

Vertices: Pheromone can be placed on vertices. In this case, since each vertex
represents a label 〈xi, v〉, the amount of pheromone τ(〈xi, v〉) is proportional
to the learned desirability of assigning value v to variable xi.

Edges: Pheromone can be placed on edges, {〈xi, v〉, 〈xj , w〉}. Then, the quantity
of pheromone τ({〈xi, v〉, 〈xj , w〉}) is proportional to the learned desirability
of simultaneously assigning v to xi and w to xj .

Either way, initialisation and update are similar. Henceforth we will talk of
depositing pheromone on components of the graph with the understanding that
in some variants of the algorithms the components onto which pheromone is
deposited are the vertices and in other variants the components are the edges.

As in many ant algorithms, our ants deposit pheromone only after they have
constructed their solutions. The algorithm for pheromone update is shown as
Algorithm 3. As can be seen, an amount of a component’s existing pheromone
τ(i) evaporates. ρ is the evaporation rate, 0 ≤ ρ ≤ 1. Additionally, certain of
the ants deposit pheromone on the components of the graph that they visited.
∆τ(Ak, i) is the amount of pheromone that ant k will deposit on component i
due to its assignment Ak. The amount ∆τ(Ak, i) is inversely proportional to the

Algorithm 3 Update pheromone on each component (where components are
vertices or edges depending on which variant of the algorithm is being executed)

for each component i in the graph do
τ (i) ← (1 − ρ) · τ (i) +

P
Ak∈BestOfCycle ∆τ (A, i)

if τ (i) < τmin then τ (i) ← τmin

if τ (i) > τmax then τ (i) ← τmax

end for

cost of the assignment Ak, i.e. the number of constraints that Ak violates. This
means that the ants that find the better assignments deposit more pheromone.

The definition of ∆τ(Ak, i) differs depending on whether pheromone is being
placed on vertices or edges. If pheromone is being deposited on vertices:

∆τ(Ak, 〈xi, v〉) =
{ 1

cost(Ak) if 〈xi, v〉 ∈ Ak

0 otherwise
(1)

If pheromone is being deposited on edges:

∆τ(Ak, {〈xi, v〉, 〈xj , w〉}) =
{ 1

cost(Ak) if {〈xi, v〉, 〈xj , w〉} ⊆ Ak

0 otherwise
(2)

In some of the very earliest ant algorithms (e.g. [DMC96]), it was realised that
not every ant should get to deposit pheromone. Accordingly, we use an elitist
strategy, where only the best ants in each cycle (Ak ∈ BestOfCycle) deposit
pheromone. An elite ant is one whose assignment is no worse than any other
ant’s assignment.

It can also be seen in Algorithm 3 that the amount of pheromone on a
component i is constrained to lie between τmin and τmax , i.e. τmin ≤ τ(i) ≤ τmax

where 0 < τmin ≤ τmax [SH98]. The limits restrict differences among paths,
which encourages wider exploration.

It remains to mention pheromone initialisation at the start of Algorithm 1.
All components are initialised to the maximum allowed, τmax . This makes all
choices quite attractive in early cycles, keeping exploration high in these cycles.

3.4 Vertex selection

An ant chooses the next vertex to which it will move from its feasible neighbour-
hood, Nbrsk. Vertices are in an ant’s feasible neighbourhood if they bind values
to currently unassigned variables. The next vertex is chosen from the feasible
neighbourhood by a probabilistic state transition rule. The choice depends on
two factors:

Heuristic factor ηAk : This evaluates the promise of each vertex based on in-
formation local to the ant (in our case, the assignment so far, Ak).

Pheromone factor τAk : This evaluates the learned desirability of each ver-
tex. This is based on the pheromone τ(i), deposited on components of the
graph i in previous cycles and hence represents the way that ants indirectly
communicate with each other between cycles.

We will look at these in more detail in turn.

Heuristic factor There are any number of ways of defining the heuristic factor,
ηAk(〈xj , w〉). The most obvious for constraint problems, and the one we use in
all variants of the algorithm, is to use an amount that is inversely proportional
to the number of additional constraints that would be violated.

Pheromone factor The way we compute the pheromone factor will depend on
whether ants deposit pheromone on vertices or on edges (Section 3.3). And, in
fact, there are two ways of computing the pheromone factor in the case where
pheromone has been placed on edges. Suppose ant k is at vertex 〈xi, v〉, then the
pheromone factor τAk(〈xj , w〉) for adding vertex 〈xj , w〉 to the partial assignment
Ak, is given by one of the following three equations for use in different variants.

Vertices: This defines the pheromone factor simply as the pheromone on vertex
〈xj , w〉:

τAk(〈xj , w〉) = τ(〈xj , w〉) (3)

Edges: This defines the pheromone factor simply as the pheromone on the edge
that connects current vertex 〈xi, v〉 to proposed vertex 〈xj , w〉:

τAk(〈xj , w〉) = τ({〈xi, v〉, 〈xj , w〉}) (4)

Edges with sums: Noting that the order of the labels in Ak is not significant,
this defines the pheromone factor in a way that takes into account all the
labels in Ak, rather than just the last one:

τAk(〈xj , w〉) =
∑

〈z,u〉∈Ak

τ({〈z, u〉, 〈xj , w〉}) (5)

Combining the heuristic and pheromone factors The pheromone factor
and the heuristic factor are combined to compute the probability that a particu-
lar vertex will be chosen. Parameters α and β are used to vary the effect of each
factor. However, there are different formulae for combining them depending on
another dimension along which variants of the algorithm can differ.

Compound decision: In this alternative, the algorithm chooses a vertex from
the feasible neighbourhood, thus simultaneously choosing both an unas-
signed variable and a value for that variable. Formally, if ant k has built
partial assignment Ak, then the probability of choosing 〈xj , w〉 ∈ Nbrsk is:

Prob(〈xj , w〉) =
[τAk(〈xj , w〉)]α · [ηAk(〈xj , w〉)]β∑

〈z,u〉∈Nbrsk
[τAk(〈z, u〉)]α · [ηAk(〈z, u〉)]β (6)

Cascaded decision: In this alternative, the algorithm first selects a variable
from those available in the feasible neighbourhood. This is done using a sep-
arate variable ordering heuristic (discussed below). Once the variable has

been chosen, a value is chosen probabilistically from the variable’s domain
using the pheromone and heuristic factors. Formally, if ant k has built as-
signment Ak and has separately chosen variable xj from those available in
Nbrsk, then the probability of choosing to bind w ∈ D(xj) to xj is:

Prob(〈xj , w〉) =
[τAk(〈xj , w〉)]α · [ηAk(〈xj , w〉)]β∑

u∈D(xj)
[τAk(〈xj , u〉)]α · [ηAk(〈xj , u〉)]β

(7)

Constraint solvers deploy a variety of heuristics for variable ordering. These
can be adopted by cascaded variants of the ant algorithm. Common variable
ordering heuristics with which we experiment in this paper are:

Static-random: A random variable ordering is decided during initialisation.
Each ant uses this same ordering in each cycle.

Dynamic-random: Each time a vertex must be chosen, the next variable is
chosen randomly from those available in the feasible neighbourhood.

Max-static-degree: The next variable to be assigned will be the unassigned
variable with the highest static degree (i.e. the highest number of variables
to which it is connected by some constraint). Ties are broken arbitrarily, but
always in the same way.

Min-static-degree: This is like max-static-degree but it chooses the lowest
static degree.

Max-forward-degree: The next variable to be assigned will be the unassigned
variable with the highest forward degree (i.e. the highest number of unas-
signed variables to which it is connected by some constraint). Ties are broken
randomly.

Min-forward-degree: This is like max-forward-degree but it chooses the low-
est forward degree.

Smallest-domain-first: The next variable to be assigned will be the unas-
signed variable with the least number of values in its domain which are con-
sistent with the partial assignment built so far. Ties are broken randomly.

Table 1 summarises the algorithm variants that we have described.
Our basic ant algorithm is closely modelled on the one reported by Solnon

in [Sol02]. In fact, the algorithm described in [Sol02] corresponds exactly with
our variant EdgeSumsCascaded (with the smallest-domain-first heuristic).

Roli et al. briefly describe three ant algorithms for solving constraint prob-
lems [RBD01]. Their three algorithms correspond loosely with VertexCompound,
EdgeCompound and EdgeSumsCompound. However, the correspondence is not
exact for several reasons. First, they do not give any definition for the heuristic
factor ηAk . Second, they have a more complicated state transition rule which al-
lows components with zero pheromone to be chosen randomly on occasion. Like
[Sol02], our use of τmin , where 0 < τmin , guarantees that we have no components
with zero pheromone.

Pheromone deposited on
Vertices Edges

Compound VertexCompound

– pheromone deposit: Equation 1
– pheromone factor: Equation 3
– vertex selection: Equation 6

EdgeCompound

– pheromone deposit: Equation 2
– pheromone factor: Equation 4
– vertex selection: Equation 6

EdgeSumsCompound

– pheromone deposit: Equation 2
– pheromone factor: Equation 5
– vertex selection: Equation 6

Cascaded VertexCascaded

– pheromone deposit: Equation 1
– pheromone factor: Equation 3
– vertex selection: Equation 7

EdgeCascaded

– pheromone deposit: Equation 2
– pheromone factor: Equation 4
– vertex selection: Equation 7

EdgeSumsCascaded

– pheromone deposit: Equation 2
– pheromone factor: Equation 5
– vertex selection: Equation 7

Table 1. Variants of the ant algorithm. (All variants define the heuristic factor ηAk

the same way.)

4 Experiments

4.1 Datasets

We compare the performance of the algorithm variants on randomly-generated
problem instances. We generate only binary CSPs, i.e. ones in which all con-
straints involve exactly two variables. Classes of random binary CSPs can be
described by giving four parameters, (n, m, pd, pt): n is the number of variables
in each problem; m is the uniform domain size; pd is a measure of problem den-
sity; and, pt is a measure of problem tightness. We generate instances using what
has come to be called Model B, in which both pd and pt are proportions rather
than probabilities [SD96]. Because incomplete solvers cannot, in general, deter-
mine when a problem has no solution, they are often evaluated only on solvable
CSP instances. This is the practice we follow here. We generate a solvable CSP
by generating a random solution and then building random constraints around
it, where no randomly generated constraint is admitted if the solution would
violate it.

Our datasets are generated using parameters (100, 8, 0.14, pt). We generate 10
problems for pt = 0.2, another 10 for pt = 0.25 and a final 10 for pt = 0.3. Since

ant algorithms are stochastic, the results of applying a particular ant algorithm
to a particular problem instance are averaged over multiple runs.

4.2 Parameters

Ant algorithms have a lot of parameters. Ideally, these should be systematically
optimised before comparing different algorithms. This takes a very great deal
of time. So, for the preliminary results that we publish here, we have adopted
a single set of parameters based on those that Solnon found to be best [Sol02],
viz. ρ = 0.01, α = 2 and β = 10. We take τmin = 0.01 and τmax = 4. We use 8
ants and algorithms are run until either a solution is found (remember, all our
problem instances have solutions) or until 1000 cycles have been completed.

4.3 Comparison of variants

We quickly found that the compound versions of the algorithms (upper row in
Table 1) were impractically inefficient: if there are n unassigned variables, each
having a domain of size m, then nm probabilities must be computed. By com-
parison, the cascaded algorithms, which choose variables separately, compute
probabilities over much narrower sets of labels: no matter how many variables
are unassigned, only one will be chosen by the variable ordering heuristic and
then probabilities must be computed for just its m values. Empirically we found
the cost of computing many probabilities to be greater than the cost of the
separate variable ordering heuristic. For low tightness problem instances, for ex-
ample, VertexCascaded, EdgeCascaded and EdgeSumsCascaded (using the dy-
namic random variable ordering heuristic) exhibited cycle times of 0.08, 0.09
and 0.14 seconds respectively; VertexCompound, EdgeCompound and Edge-
SumsCompound had cycle times of 3.38, 3.5 and 5.37 seconds respectively.1
We therefore excluded the compound algorithms from further experiments.

Table 2 gives the results for our three remaining variants. Each is a cas-
caded variant and, in each, the variable ordering heuristic is dynamic-random.
Looking across the three sets of problems, VertexCascaded would appear to be
best at finding solutions with low numbers of violated constraints. However, in
some cases, EdgeCascaded and EdgeSumsCascaded find actual solutions when
VertexCascaded does not. Unsurprisingly, VertexCascaded has the lowest cycle
time, followed by EdgeCascaded and then EdgeSumsCascaded. However, for to-
tal time what matters is the number of cycles needed. Algorithms need not run
for the full 1000 cycles: they stop early if they find solutions. As we have noted,
EdgeCascaded and EdgeSumsCascaded sometimes do better at finding solutions
than VertexCascaded and so they can be cheaper overall. These preliminary re-
sults are by no means clear-cut. One would not confidently follow Solnon [Sol02]
and adopt EdgeSumsCascaded.
1 Experiments are run on a Pentium 4 (1.7Ghz) with 256M RAM. Programs are

coded in Java and are written by a single programmer (the first author) to, as far as
possible, the same standard (which is made easier by the fact that they are variants
of a single approach).

Avg. cost of Avg. Avg. Instances Avg. # of
best soln. at Std. time to cycle solved cycles to soln.
termination dev. termination time (out of 300) (when solved)

(100, 8, 0.14, 0.2)
VertexCascaded 0.64 0.53 68.37 0.08 116 610.95
EdgeCascaded 0.03 0.16 44.54 0.09 292 492.37
EdgeSumsCascaded 0.02 0.14 66.87 0.14 294 458.95

(100, 8, 0.14, 0.25)
VertexCascaded 2.71 1.70 90.92 0.10 46 473.39
EdgeCascaded 3.48 1.93 102.27 0.11 36 657.14
EdgeSumsCascaded 3.36 1.90 154.85 0.16 30 575.17

(100, 8, 0.14, 0.3)
VertexCascaded 1.18 3.35 62.42 0.11 236 436.07
EdgeCascaded 2.10 4.42 89.52 0.12 206 628.90
EdgeSumsCascaded 2.25 4.27 128.54 0.17 196 598.39

Table 2. Comparing three variants, each using dynamic-random variable ordering.
There are three datasets and, for each, results are averaged over 300 (10 problems ×
30 runs on each problem). Times are in seconds.

4.4 Comparison of variable ordering heuristics

Solnon adopts the smallest-domain-first variable ordering heuristic [Sol02] but
gives no reasons and no experimental support. We wanted to compare the dif-
ferent heuristics in our winning algorithm. Since our preliminary experiments
(above) found no clear-cut winner, we decided instead to test the heuristics us-
ing EdgeSumsCascaded, as this gives consistency with Solnon. Table 3 reports
our results for the 10 problems in which pt = 0.3. We chose this dataset because
in our previous experiment it contained both problems that EdgeSumsCascaded
with dynamic-random variable ordering was able to solve and others that it was
not able to solve.

Only dynamic-random and smallest-domain-first find assignments with low
numbers of violated constraints within 1000 cycles, and they are the only two
that are able to find actual solutions. Of these two, dynamic-random would seem
to find better quality solutions more often.

The cost per cycle of dynamic-random is much the same as that of the static
strategies. For this reason, it convincingly outperforms smallest-domain-first.
Smallest-domain-first is a costly strategy since it requires that constraints be
evaluated on all legal ways of extending the partial assignment with one more
label. It is conceivable that, by using constraint propagation techniques, we could
reduce the cost of this strategy (at the expense of memory) but our preliminary
results give no strong motivation for doing so.

Avg. cost of Avg. Avg. Instances Avg. # of
best soln. at Std. time to cycle solved cycles to soln.
termination dev. termination time (out of 40) (when solved)

Static-random 29.63 5.70 173.18 0.17 0 N/A
Dynamic-random 1.03 2.35 122.63 0.17 29 593.59
Max-static-degree 23.80 4.93 176.45 0.18 0 N/A
Min-static-degree 33.68 5.96 173.29 0.17 0 N/A
Max-forward-degree 24.33 5.94 223.06 0.22 0 N/A
Min-forward-degree 26.45 5.89 234.45 0.23 0 N/A
Smallest-domain-first 3.73 6.19 1442.56 1.82 23 641.39

Table 3. Comparing different variable ordering heuristics. The algorithm used is Edge-
SumsCascaded. There is one dataset, (100, 8, 0.14, 0.3). Results are averaged over 40
(10 problems × 4 runs on each problem). Times are in seconds.

5 Conclusions

We presented six ant algorithms for constraint problems. We found three of
them, the ones that made compound decisions, to be impractically inefficient.
These three correspond (loosely) to the three that Roli et al. adopted [RBD01].

The remaining three algorithms all make cascaded decisions but have differ-
ent pheromone placement policies. EdgeSumsCascaded is exactly the algorithm
described by Solnon in [Sol02]. However, our preliminary results show no clear-
cut winner. More experiments are needed before we could decide which of these
three should be adopted.

Finally, we compared seven different variable ordering heuristics that can be
used in cascaded systems. Solnon uses smallest-domain-first [Sol02]. Our results
strongly favour the dynamic-random heuristic.

There is much future experimental work to be done; and there are avenues
to explore such as the addition of local search daemons [Sol02,RBD01].

References

[DMC96] M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: Optimization by
a colony of cooperating agents. IEEE Transactions on Systems, Man, and
Cybernetics — Part B, 26(1):1–13, 1996.

[RBD01] A. Roli, C. Blum, and M. Dorigo. ACO for maximal constraint satisfaction
problems. In Procs. of the 4th Metaheuristics International Conference, pages
187–191, 2001.

[SD96] B. M. Smith and M. E. Dyer. Locating the phase transitions in binary con-
straint satisfaction problems. Artificial Intelligence, 18(1-2):155–181, 1996.

[SH98] T. Stützle and H. Hoos. Improvements on the ant system: Introducing the
MAX -MIN ant system. In Procs. of Artificial Neural Nets and Genetic
Algorithms 1997, pages 245–249, 1998.

[Sol02] C. Solnon. Ants can solve constraint satisfaction problems. IEEE Transac-
tions on Evolutionary Computation, 6(4):347–357, 2002.

