
Semantic Templates for Designing
Recommender Systems*

Juan A. Recio-García1, Belén Díaz-Agudo1
Derek Bridge2, Pedro A. González-Calero1

1 Dept. Software Eng. and Artificial Intelligence 2 Dept. of Computer Science
 Universidad Complutense de Madrid, Spain University College Cork, Ireland

 email:jareciog@fdi.ucm.es, d.bridge@cs.ucc.ie
 {belend,pedro}@sip.ucm.es

Abstract

In this paper we describe ongoing research into a flexible way of designing CBR systems in
jCOLIBRI 2 using a library of templates obtained from a set of previously designed CBR
systems (i.e. a case base of CBR design experience). In case-based fashion, jCOLIBRI will
retrieve templates from the library; the designer will choose one template, and adapt it.
jCOLIBRI will also suggest suitable substitutions from the semantic annotations in the
components. In this paper we focus on one of the main bottlenecks of this approach:
obtaining and representing an appropriate set of templates. We are working on templates
within a successful set of CBR systems: case-based recommender systems and other
memory-based recommender systems. We also describe the graphical template editor and
how we represent the templates using Semantic Web technologies.

Keywords: CBR, jCOLIBRI, design of CBR systems, recommender systems

1. Introduction

Developing a CBR application from scratch is a hard task. However, the design of a CBR application
could be easier if some of the components of the new application could be reused from previous
developments. Based on this idea, the Madrid research group has developed jCOLIBRI, an object-
oriented framework in Java for building CBR systems that greatly benefits from the reuse of previously
developed CBR systems. The design process of CBR systems in jCOLIBRI 1 relies on decomposition
methods that solve a certain task by breaking it into a linear sequence of subtasks. Each subtask is itself
solved by either a method or another decomposition, depending on its complexity level. With this design
process, the reusable components are tasks, methods and case storage utilities.

* Supported by the Spanish Committee of Science & Technology (TIN2006-15140-C03-02)

mailto:jareciog@fdi.ucm.es
mailto:d.bridge@cs.ucc.ie

Figure 1: The two-layer architecture of jCOLIBRI (version 2)

In (Recio et al. 2006) we have reviewed the advantages and drawbacks of the jCOLIBRI framework
(version 1) from the experience of two years of development. The recently released new version of the
framework (jCOLIBRI 2) tries to solve many of the problems identified in the previous version.
jCOLIBRI version 2 is a new implementation that follows a new and clear architecture divided into two
layers (see Figure 1): one oriented to developers (released in September 2007), the other oriented to
designers (still in progress). This new design is a complete framework open to Java developers that want
to include the features of jCOLIBRI in their CBR applications. The key idea in the design of the new
version of the framework is to separate the core classes from the user interface.

The bottom layer contains the basic components of the framework. It does not contain any kind of
graphical tool for developing CBR applications; it is a white- box object-oriented framework that must be
used by programmers. We are now working on the top layer where each component is annotated with
semantic descriptions using technologies from the Semantic Web (Recio et al. 2007) and where there are
different tools that aid users in the development of CBR applications. Hence the top layer offers a black-
box framework with a visual builder.

For the top layer we are working on the semi-automatic composition of systems from components. We
have two main approaches: one using planning techniques, the other based on templates of CBR systems.
Both rely on semantic annotation of the reusable components.

In (Sánchez et al. 2006) we describe the application of planning techniques to help the user in the
composition process. The idea is to describe the methods and to define the goal of the CBR system in a
formal language, and use a planner to manage the implicit dependencies, and to assist the user in the
composition process. We use a conversational approach in which the planner asks the user for the
information that is required to build a valid plan, and therefore, the final CBR system.

The second approach, described in this paper, proposes a flexible way to design CBR systems in
jCOLIBRI 2 using a library of templates obtained from a previously designed set of CBR systems. In

case-based fashion, jCOLIBRI will retrieve templates from a library of templates (i.e. a case base of CBR
design experience); the designer will choose one, and adapt it. jCOLIBRI will also suggest suitable
substitutions from the semantic annotations in the components. We are aiming for a semi-automatic way
of designing CBR systems where the designer interacts with jCOLIBRI to configure the system. For the
present at least, we consider fully automatic design of CBR systems to be unachievable. It would require
a very rich semantic mark-up of the reusable components. Moreover it would require a very expressive
language to let the designer provide the system with a detailed description of the system (s)he wants to
design.

Using jCOLIBRI (version 2 top layer) and a library of templates, to design a new CBR system will be a
process similar to the CBR cycle itself:

1. The designer writes a query to explain the CBR system (s)he wants to build.

2. jCOLIBRI retrieves one or more templates that are suitable for this query. Similarity is based on
the semantic annotation of the templates and their components. For now, we assume that one of the
retrieved templates is selected by the user.

3. Using the semantic annotations of the components of the selected template, jCOLIBRI guides the
user in the manual adaptation of the template. The designer is in charge of configuring the data
sources and any domain-specific similarity measures that are not already available in jCOLIBRI.

4. The resulting system is tested; it may be revised and then it may be abstracted into a new template
that is retained in the template library.

Our approach has one important bottleneck: the acquisition of an initial design experience template case
base. To begin with, we have limited our system to work with a well known and successful family of
systems: recommender systems. A recommender system infers the goals and preferences of its user; it
uses the inferred knowledge to select and/or rank products, services or information sources (generically
called items); and it recommends to its user items that may satisfy the inferred goals and meet the inferred
preferences. Recommender systems combine ideas from information retrieval, information filtering, user
modelling, machine learning and human-computer interaction. CBR has played a key role in the
development of several classes of recommender system (Bridge et al. 2006, Smyth 2007).

This rest of this paper is structured as follows. Section 2 explains the idea of template-based design and
its main difficulties and open lines of work. We focus on the issues of template acquisition and
representation. Section 3 presents our first attempt at a case base of templates for recommender systems.
Section 4 describes the template editor and how it represents the templates using Semantic Web
technologies. We review our main conclusions and lines of future work in Section 5.

2. Template-Based Design in jCOLIBRI 2

In jCOLIBRI 1, design was based on decomposing a system’s reasoning into tasks and methods for
achieving those tasks. Where a task was decomposed into more than one subtask, jCOLIBRI 1 imposed
the restriction that the subtasks be combined in a linear sequence (no conditionals, no iteration).
Template-based design in jCOLIBRI 2 is based on the same underlying idea of decomposing the
reasoning into tasks and methods. However, there is no longer the restriction that subtasks be composed
only as a linear sequence; in templates, more complicated flow of control is allowed. Each template can
be understood as a generalization of several CBR systems and needs to be defined carefully in
collaboration with CBR experts.

We represent templates graphically as shown in Figure 2. Each rectangle in the template is a subtask.
Simple tasks (shown as blue or pale grey rectangles) can be solved directly by a resolution method.
Complex tasks (shown as red or dark grey rectangles) are solved by decomposition methods having other
associated templates. There may be multiple alternative methods to solve any given task.

This approach poses a number of interesting research challenges:

1. How to obtain a set of templates that are representative enough. Having a case base of templates
requires thinking about granularity, level of generality, diversity, and coverage of the template
case base. Besides we need to represent dependencies between the elements of a template, and
annotate the templates and their components. Each template has different variability points, i.e.,
tasks that can be solved in different ways using different methods.

2. How to define the query vocabulary to retrieve templates. How to explain the design
requirements is an open question. We envisage a process where the system asks questions to the
system designer to guide the query definition, and where queries will be biased towards typical
processes and types of user interaction, not towards lower-level details about, for example, case
representation. This is because in template adaptation it is easier to change these low-level
details than it is to modify the overall workflow of the template.

3. How to define a similarity metric between the query and templates based on the semantic
annotations of the components.

4. How to adapt templates. The question that arises here is how easy it will be to (manually) adapt
a template to fulfil the requirements in the query. Although it is a difficult process the system
can help by taking into account dependencies, and suggesting substitutions.

In order to support these four processes, we are working on the semantic annotation of components and
templates using vocabulary from CBROnto (Díaz and González 2002). The CBROnto ontology
formalizes the syntactic, semantic and pragmatic aspects of the reusable components of the framework.
Using the CBROnto vocabulary we can annotate the components and reason about their composition.
This will facilitate the automatic configuration of complex systems.

In this paper we focus on the first of these challenges: obtaining and representing a set of templates. As
the CBR community has produced many different families of systems, we begin by narrowing the scope
of our template library to cover one of the most successful families: recommender systems, especially
case-based recommender systems. Our first attempt at a set of templates is presented in Section 3. Section
4 describes the template editor used to draw, and represent these templates in a formal language that will
support template selection and adaptation.

3. Obtaining Templates for Recommender Systems

As a case study, we have done an analysis of recommender systems that is based in part on the
conceptual framework described in the review paper by Bridge et al. (2006). The framework
distinguishes between collaborative and case-based, reactive and proactive, single-shot and
conversational, and asking and proposing. Within this framework, the authors review a selection of
papers from the case-based recommender systems literature, covering the development of these systems
over the last ten years.

Figure 2. Single Shot Systems

Figure 3. Conversational Systems

(b) (a)

We take the systems’ interaction behaviour as the fundamental distinction from which we construct
templates:

• Single-Shot Systems make a suggestion and finish. Figure 2 shows the template for this kind of
system, where One-Off Preference Elicitation and Retrieval are complex tasks that are solved by
decomposition methods having other associated templates.

• After retrieving items, Conversational Systems (Figure 3) may invite or allow the user to refine
his/her current preferences, typically based on the recommended items. Iterated Preference
Elicitation might be done by allowing the user to select and critique a recommended item thereby
producing a modified query, which requires that one or more retrieved items be displayed (Figure
3a). Alternatively, it might be done by asking the user a further question or questions thereby
refining the query, in which case the retrieved items might be displayed every time (Figure 3a) or
might be displayed only when some criterion is satisfied (e.g. when the size of the set is ‘small
enough’) (Figure 3b). Note that both templates share the One-Off Preference Elicitation and
Retrieval tasks with single-shot systems.

The variability of the templates is specified as the existence of different methods to solve a task of the
template. Complex tasks (red or dark grey rectangles) are solved by decomposition methods. In this case,
other templates may be defined to solve these tasks. We now present the templates we have defined for
the three complex tasks to be found in Figures 2 and 3. Ultimately, our goal is to additionally annotate
each method with semantic information. These annotations will help inexperienced system designers to
choose the right methods for their domain.

Complex tasks appearing in the templates of Figures 2 and 3 are One-Off Preference Elicitation,
Retrieval and Iterated Preference Elicitation.

3.1 One-Off Preference Elicitation

We can identify three templates by which the user’s initial preferences may be elicited:

• One possibility is Profile Identification where the user identifies him/herself, e.g. by logging in,
enabling retrieval of a user profile from a profile database. This profile might be a content-based
profile (e.g. keywords describing the user’s long-term interests, or descriptions of items consumed
previously by this user, or descriptions of sessions this user has engaged in previously with this
system); or it might be a collaborative filtering style of profile (e.g. the user’s ratings for items).
The template allows for the possibility that the user is a new user, in which case there may be some
registration process followed by a complex task that elicits an initial profile.

• An alternative is Initial Query Elicitation. This is itself a complex task with multiple alternative
decompositions. The decompositions include: Form-Filling (Figure 4a) and Navigation-by-Asking
(i.e. choosing and asking a question) (Figure 4b). Various versions of the Entrée system (Burke
2002) offered interesting further methods: Identify an Item (where the user gives enough
information to identify an item that s/he likes, e.g. a restaurant in his/her home town, whose
description forms the basis of a query, e.g. for a restaurant in the town being visited); and Select an
Exemplar (where a small set of contrasting items is selected and displayed, the user chooses the one
most similar to what s/he is seeking, and its description forms the basis of a query).

• The third possibility is Profile Identification & Query Elicitation, in which the previous two tasks
are combined.

Figure 4: Methods for solving the One-Off and Iterated Query Elicitation tasks.
 (a) Form-Filling, (b) Navigation-by-Asking, and (c) Navigation-by-Proposing

For lack of space, we cannot give diagrams for most of the templates mentioned in this section.

3.2 Retrieval

Because we are focussing on case-based recommender systems (and related memory-based
recommenders including collaborative filters), Retrieval is common to all our recommender systems.
Retrieval is a complex task, with many alternative decompositions. The choice of decomposition is, of
course, not independent of the choice of decomposition for One-Off Preference Elicitation and Iterated
Preference Elicitation. For example, if One-Off Preference Elicitation delivers a ratings profile, then the
method chosen for achieving the Retrieval task must be some form of collaborative recommendation.

The following is a non-exhaustive list of papers that define methods that can achieve the Retrieval task:
Wilke et al. 1998 (similarity-based retrieval using a query of preferred values); Smyth & McClave 2001
(diversity-enhanced similarity-based retrieval); McSherry 2002 (diversity-conscious retrieval); Bridge &
Fergsuon 2002 (order-based retrieval); McSherry 2003 (compromise-driven retrieval); Bradley & Smyth
2003 (where user profiles are mined and used); Herlocker et al. 1991 (user-based collaborative filtering);
Sarwar et al. 2001 (item-based collaborative filtering). In all these ways of achieving Retrieval, a scoring
process is followed by a selection process. For example, in similarity-based retrieval (k-NN), items are
scored by their similarity to the user’s preferences and then the k highest-scoring items are selected for
display; in diversity-enhanced similarity-based retrieval, items are scored in the same way and then a
diverse set is selected from the highest-scoring items; and so on. For lack of space, we cannot show a
diagram that decomposes the Retrieval task in this way. Note also that there are alternative
decompositions of the Retrieval task that would not have this two-step character. For example, filter-

based retrieval, where the user’s preferences are treated as hard constraints, conventionally does not
decompose into two such steps. On the other hand, there are recommender systems in which Retrieval
decomposes into more than two steps. For example, in some forms of Navigation-by-Proposing (see
below), first a set of items that satisfy the user’s critique is obtained by filter-based retrieval, then these
are scored for similarity to the user’s selected item, and finally a subset is chosen for display to the user.

3.3 Iterated Preference Elicitation

In Iterated Preference Elicitation the user, who may or may not have just been shown some products
(Figure 3), may, either voluntarily or at the system’s behest, provide further information about his/her
preferences. Alternative decompositions of this task include:

• Form-Filling where the user enters values into a form that usually has the same structure as items in
the database (Figure 4a). We have seen that Form-Filling is also used for One-Off Preference
Elicitation. When it is used in Iterated Preference Elicitation, it is most likely that the user edits
values s/he previously entered into the form.

• Navigation-by-Asking is another method that can be used for both One-Off Preference Elicitation
and for Iterated Preference Elicitation. The system refines the query with the user’s answer to a
question about his/her preferences. The system uses a heuristic to choose the next best question to
ask. Bergmann reviews some of the methods that have been used to choose this question (Bergmann
2002).

• Navigation-by-Proposing (also known as tweaking and as critiquing) requires that the user has been
shown a set of candidate items. S/he selects the one that comes closest to satisfying his/her
requirements but then offers a critique (e.g. “like this but cheaper”). A complex query is constructed
that is intended to retrieve items that are similar to the selected item but which also satisfy the
critique. The selection of the candidate item and its critiques must be performed during the Display
Item List task. Therefore, the Create Complex Query task will receive that information and modify
the query according to the user selection. To maintain the coherence of the template, our template
editor must check that the method solving Display Item List returns both the selected item and the
critiques. This is verified reasoning over the information stored in the CBR ontology described in
Section 4. Burke reviews early work on this topic (Burke 2002). We note that there has been a body
of new work since then, some of it cited in (Bridge et al. 2006) and (Smyth 2007). (Although we
describe Navigation-by-Proposing only as a decomposition of Iterated Preference Elicitation, this
need not be so. We could additionally, for example, define a template for One-Off Preference
Elicitation that uses Select an Exemplar followed by Navigation-by-Proposing.)

Note that the templates for Conversational Systems do not preclude the possibility that the system uses a
different method for Iterated Preference Elicitation on different iterations. ExpertClerk is an example of
such a recommender. It uses Navigation-by-Asking for One-Off Preference Elicitation, and then it
chooses between Navigation-by-Asking and Navigation-by-Proposing for Iterated Preference Elicitation,
preferring the former while the set of candidate items remains large (Shimazu 2002). In fact, we have
confirmed that we can build a version of ExpertClerk based on the template in Figure 3b and using
methods discussed in this paper. But, for reasons we do not have space to discuss, we found we needed a
special decomposition of Figure 3b’s Display Item List task. This informally illustrates the promise of our
approach: complex systems (such as ExpertClerk) can be constructed by adapting existing templates.

Figure 5. CBROnto vocabulary to represent templates

4. Template Editor in jCOLIBRI
The template-based design process described in Section 2 requires a case base of templates of CBR
systems, represented in a formal language that allows us to measure similarity between the query and the
templates, and to adapt the template to the query requirements. In Section 3 we have informally described
a case base of templates for recommender systems. However, in order to work with these templates we
need to incorporate them into jCOLIBRI. We have developed a graphical template editor to create and
save the templates of CBR systems.

There are many formalisms for representing workflow templates. We use Semantic Web Services (SWS).
In the SWS community there are different standards to represent the behaviour of software components
and their composition. Examples are OWL-S1 and WSMX2. Both formalisms have in common the use of
ontologies to represent the information about components and their composition, a feature that fits
perfectly in our system because we already use an ontology for CBR systems: CBROnto (Díaz and
González, 2002). As it stood, CBROnto provided the vocabulary to describe the methods (components)
of the template framework, but it lacked a way to describe more complex control flow. We have now
added the vocabulary needed to represent this aspect of the templates. For this, we use the approach of
the OWL-S ontology, where several concepts are specially designed to represent workflow. Our choice

1 Semantic markup of web services: http://www.w3.org/Submission/OWL-S/
2 Web service execution environment: http://www.wsmx.org/people.html

http://www.w3.org/Submission/OWL-S/
http://www.wsmx.org/people.html

was pragmatic: CBROnto is already represented using the OWL ontology language3, and OWL-S also
uses this language.

The vocabulary that we have added is shown in Figure 5. In this figure, solid lines denote subclassing
and dotted lines represent properties. A template (CBRApplicationTemplate) can be Generic or Final.
Generic templates have at least one generic task and final templates are only composed of simple tasks.
Each template is divided into three main stages: the Precycle (code to initialize the application), Cycle
(main CBR cycle) and Postcycle (post execution code). Moreover, a CBR application can have tools used
for maintenance and other similar purposes. Each application stage contains a sequence of elements: a
Begin Task, a Final Task, Generic Tasks, Conditions and other subsequences. A sequence is composed of
a Control Construct List that contains Control Constructs. Conditionals (If-Then-Else) are defined with a
Conditional Task (a task that returns a Boolean value) and two Control Construct branches that
correspond with the then and else branches. All these concepts are direct adaptations of the OWL-S
ontology. Our template graphical editor (Figure 6) allows us to create templates graphically and save
them using the OWL formalism (Figure 7).

Before creating a new template, the user must introduce some metadata: template name, authors, type,
generic or final template, additional tools, and so on. Then, each workflow can be created in a graphical
way. When the user creates a new Task or Generic Task element, the tool reads the instances contained
in CBROnto that belong to these concepts. Those instances represent the tasks solved by the methods of
the framework and are included as new components.

Once a template is ready, the editor generates the OWL representation (Figure 7) using the concepts and
properties defined in the extended CBROnto ontology. This generated representation is also shown
graphically.

5. Conclusions and Future Work
In this paper we have described a new approach to composing CBR systems based on templates.
Templates are obtained from experts and define stereotypical CBR applications. We formalize them in
the OWL language using vocabulary from an extended version of CBROnto: an ontology for CBR
components and applications that takes advantage of previous work in Semantic Web Services.

We are working on the development of the jCOLIBRI semi-automatic composition tools. We are
currently finishing the development of the methods used to solve the tasks in the recommender system
templates. Once the library has been populated with all these methods, we will work on the tool to guide
the designers in the creation of CBR systems. This tool can be seen as a CBR application with a case base
composed of templates that are adapted depending on the requirements of the users. In this way, the
system recommends a template and the user completes that template by assigning a method for each task.
To perform this task-filling process, the tool will use annotations about inputs, outputs, preconditions and
postconditions of CBROnto that describe each component of the framework. For example, the annotation
for Form-Filling might indicate that it typically produces a query, similar in structure to the item
representation in the database, typically containing preferred values, and is better suited to domains in
which the attributes are relatively few in number. To achieve this goal we propose a subsumption-based
algorithm that checks input-output compatibility and determines whether a precondition of a component
is a subconcept of the postcondition of the previous component.

3 http://www.w3.org/TR/owl-features/

http://www.w3.org/TR/owl-features/

Figure 6. Template Editor

Figure 7: Formalization of templates in OWL using the CBROnto vocabulary

References
Bergmann, R (2002): Experience Management: Foundations, Development Methodology, and Internet-

Based Applications. Springer.

Bradley, K & Smyth, B. (2003): Personalized information ordering: a case study in online recruitment.
Knowledge-Based Systems, vol.16(5-6): 269-275

Bridge, D & Ferguson, A. (2002): An expressive query language for product recommender systems.
Artificial Intelligence Review, vol. 18(3–4), 269–307.

Bridge, D., Göker, M., McGinty, L., & Smyth, B. (2006): Case-based recommender systems. The
Knowledge Engineering Review, vol. 23(3): 315-320.

Burke, R. (2002): Interactive Critiquing for catalog navigation in e-commerce, vol.18(3-4): 245-267.

Díaz-Agudo, B. & González Calero, P. (2002): CBROnto: A Task/Method Ontology for CBR. Procs. of
the 15th International FLAIRS 2002 Conference, pp.101-105, AAAI Press.

Herlocker, J., Konstan, J.A., Borchers, A. & Riedl, J (1999): An algorithmic frmaework for performing
collaborative filtering. In Procs. of SIGIR, ACM Press, pp.230-237

McSherry, D. (2002): Diversity-conscious retrieval. In S.Craw & Preece, A (eds) Procs. of the 6th
European Conference on Case-Based Reasoning. Springer, pp.219–233.

McSherry, D, (2003): Similarity and compromise. In K.D.Ashley & D.G.Bridge (eds) Procs. of the 5th
International Conference on Case-Based Reasoning. Springer, pp.291–305.

Recio, J.A., Sánchez, A., Díaz-Agudo, B., & González-Calero, P.A. (2006): Lessons Learnt in the
Development of a CBR Framework. In M.Petridis, (ed.): Procs. of the 11th UK Workshop on
Case-Based Reasoning, CMS Press, University of Greenwich, UK.

Recio, J.A., Gómez-Berbis, J.M., Díaz-Agudo, B., & González-Calero, P.A. (2007): The WINGS of
jCOLIBRI: A CBR Architecture for Semantic Web Services, IEEE Computer Society,
International Conference on Next generation Web Services Practices (NWeSP'07).

Sánchez, A., Recio, J.A., González-Calero, P.A., & Díaz-Agudo, B. (2006): Towards Semi-Automatic
Composition of CBR Systems in jCOLIBRI. In M.Petridis, (ed.) Procs. of the 11th UK Workshop
on Case-Based Reasoning, CMS Press, University of Greenwich, UK.

Sarwar, B., Karypis, G., Konstan, J.A. & Riedl, J. (2001): Item-based collaborative filtering
recommendation algorithms. In Procs of the 10th International Conference on the WWW, ACM
Press, pp.285-295.

Shimazu, H (2002): ExpertClerk: a conversational case-based reasoning tool for developing salesclerk
agents in e-commerce webshops. Artificial Intelligence Review vol.18(3–4), 223–244.

Smyth, B. (2007): Case-based recommendation. In P.Brusilovsky, A.Kobsa & W.Nedjdl (eds.), The
Adaptive Web. Springer.

Smyth, B & McClave, P. (2001): Similarity vs. diversity. In D.W.Aha & I.Watson (eds) Procs of the 4th
International Conference on Case-Based Reasoning. Springer, pp. 347–361.

Wilke, W., Lenz, M. & Wess.S (1998): Intelligent sales support with CBR. In M.Lenz et al. Case-Based
Reasoning Technology: From Foundations to Applications, Springer, pp.91-113.

	1. Introduction
	2. Template-Based Design in jCOLIBRI 2
	3. Obtaining Templates for Recommender Systems
	3.1 One-Off Preference Elicitation
	3.2 Retrieval
	3.3 Iterated Preference Elicitation
	Template Editor in jCOLIBRI
	5. Conclusions and Future Work
	 References

