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Abstract. We extend a group recommender system with a case base of
previous group recommendation events. We show that this offers a new
way of aggregating the predicted ratings of the group members. Using
user-user similarity, we align individuals from the active group with indi-
viduals from the groups in the cases. Then, using item-item similarity, we
transfer the preferences of the groups in the cases over to the group that
is seeking a recommendation. The advantage of a case-based approach
to preference aggregation is that it does not require us to commit to a
model of social behaviour, expressed in a set of formulae, that may not
be valid across all groups. Rather, the CBR system’s aggregation of the
predicted ratings will be a lazy and local generalization of the behaviours
captured by the neighbouring cases in the case base.

1 Introduction

Groups often holiday together; tour museums and art galleries together; visit his-
toric sights together; attend concerts and other events together; dine in restau-
rants together; watch movies and TV programmes together; listen to music to-
gether; cook and eat together. They must select the items which they intend
to consume together, ranging from holiday destinations to recipes, in a way
that reconciles the different preferences and personalities of the group mem-
bers. For this, they may seek the support of a recommender system. But where
the majority of recommender systems suggest items based on the preferences of
an individual consumer, group recommender systems suggest items taking into
account the preferences and personalities of the members of a group [4].

Commonly, group recommender systems aggregate predicted ratings for group
members [4]: for each group member, a single-person recommender system pre-
dicts a set of ratings for the candidate items; then, the group recommender
aggregates the ratings. The new group recommender system that we present
in this paper takes the same approach, i.e. it aggregates the preferences of the
group members, but it uses Case-Based Reasoning (CBR) for the aggregation.
Figure 1 is suggestive of its operation. The system has a case base of past group



Fig. 1: Overview of the case-based recommender

recommendation events. Each case (right-hand side in the diagram) records the
members of the group; the candidate items; the item that the group chose to
consume together, which we will call the selected item; and the ratings that each
group member gave to the selected item after consuming it. To make a recom-
mendation to a new active group (top-left in the diagram), the CBR system
deploys a unique combination of user-user and item-item similarity, as follows:

Step 1: First, it uses a user-based collaborative recommender to predict a rating
for each candidate item by each group member.

Step 2: Next, it retrieves cases, i.e. past group recommendation events, that
involve groups that are similar to the active group. Case retrieval uses the
user-user similarity measure, and, as a by-product, it aligns each member of
the active group with a member of the group in the case (the dashed lines
in Figure 1). The similarity measure compares group members on their age,
gender, personality and ratings and the degrees of trust between members
of each group (the solid lines between group members in the diagram).



Step 3: Then, it reuses each case that is retrieved: the contributions that each
group member made in choosing the selected item are transferred to the
corresponding member of the active group. This is done by scoring the new
candidate items by their item-item similarity to the selected item. In this
way, the retrieved cases act as implicit models of group decision-making,
which are transferred to the decision-making in the active group.

Step 4: Finally, it recommends the candidate items that have obtained the
highest scores.

The paper explains this more fully. Section 2 gives some background exposi-
tion that we need for later sections; Section 3 describes an existing group recom-
mender system, which we will use for comparison purposes; Section 4 describes
the new case-based group recommender; Section 5 describes an experiment that
compares the new recommender with the one we developed previously; and Sec-
tion 6 concludes and presents some ideas for future work.

2 User-user and item-item similarity

Suppose there are n users, U = {u : 1 . . . n}, and m items (e.g. movies), I = {i :
1 . . .m}. Let r be a ratings matrix and ru,i be the rating that user u assigns to
item i. Ratings are on a numeric scale, e.g. 1 = terrible and 5 = excellent, but
ru,i = ⊥ signals that u has not yet rated i.

The similarity between one user and another, u ∈ U, u′ ∈ U, u 6= u′, can be
computed using Pearson Correlation [3], ρ. In effect, this computes the similarity
between two rows in a ratings matrix like the one in the table in the lower left-
hand part of Figure 1. The user-user similarity is:

ρu,u′ =̂

∑
i∈I∧ru,i 6=⊥∧ru′,i 6=⊥(ru,i − r̄u)(ru′,i − r̄u′)√∑

i∈I∧ru,i 6=⊥∧ru′,i 6=⊥(ru,i − r̄u)2
√∑

i∈I∧ru,i 6=⊥∧ru′,i 6=⊥(ru′,i − r̄u′)2

(1)
r̄ denotes a mean value and σ denotes a standard deviation, and these are com-
puted over the co-rated items only (i ∈ I ∧ ru,i 6= ⊥ ∧ ru′,i 6= ⊥).

Suppose we want to recommend to active user ua one or more of a set of
candidate items Ta ⊆ I. For example, Ta could be the set of movies showing this
week at ua’s local multiplex. Using user-user similarity, ρu,u′ , we can build a user-
based collaborative recommender [3, 13]. For each i ∈ Ta, it will predict active
user ua’s rating for i, r̂ua,i. It can do this using nearest-neighbour methods: from
the users for whom ρua,u′ is greater than zero, it finds the k users u′ ∈ U who
have rated i and who are most similar to ua. The predicted rating is a weighted
average of the neighbours’ ratings for i [12]. The recommender suggests to the
user the k′ items i ∈ Ta for which the predicted ratings r̂ua,i are highest.

But, given a ratings matrix we can equally well compute the similarity be-
tween one item and another, i ∈ I, i′ ∈ I, i 6= i′, the item-item similarity, again
using Pearson correlation. In effect, this computes the similarity between two



columns in a ratings matrix such as the one in the lower-left of Figure 1:

ρi,i′ =̂

∑
u∈U∧ru,i 6=⊥∧ru,i′ 6=⊥(ru,i − r̄i)(ru,i′ − r̄i′)√∑

u∈U∧ru,i 6=⊥∧ru,i′ 6=⊥(ru,i − r̄i)2
√∑

u∈U∧ru,i 6=⊥∧ru,i′ 6=⊥(ru,i′ − r̄i′)2

(2)
In this case, the means (r̄) and standard deviations (σ) are computed over the
users who have rated both items (u ∈ U ∧ ru,i 6= ⊥ ∧ ru,i′ 6= ⊥).

Using item-item similarity, ρi,i′ , it is possible to build an item-based collab-
orative recommender [6, 13], although we use it for a different purpose in this
paper. Before presenting the case-based group recommender in detail, we present
the group recommender system against whose performance we will be comparing
the new recommender.

3 Social recommendations to groups

For the comparison, we use a group recommender that we developed previously
[11, 8]. With real data and, in more recent work, with a larger dataset of artificial
data, we showed that, relative to simpler approaches, our group recommender
improves the accuracy of predicted group ratings and the precision of group
recommendations, and that is why we use it here.

Let Ga ⊆ U be an active group of users, in our case a group which intends
to see a movie together. The goal is to recommend k′ items from a set of Ta
items. As Section 1 has mentioned, the system works by aggregation of ratings,
as follows:

– For each i ∈ Ta taken in turn, the recommender does the following:
• It predicts a rating for item i, r̂ua,i, for each individual group member
ua ∈ Ga. It does this using the user-based collaborative technique that
we described in Section 2, i.e. it averages the ratings of i given by ua’s
k most similar neighbours who have rated i.
• It applies a function, designated dbr (which stands for delegation-based
rating), to each predicted rating. The dbr function modifies r̂ua,i to take
into account the personality of the user and the strength of connections
between this person and other members of the group, which we refer to
as their trust. In this way, not all the predicted individual ratings will
contribute equally in the aggregation. We explain it in detail below.
• It aggregates the individual predicted ratings into a single group rat-

ing r̂Ga,i. Possible aggregation functions include least misery (where the
minimum is taken), and most pleasure (where the maximum is taken)
[7]. We experimented with both before [9], and we found most pleasure
to give better results, and so we adopt that here:

r̂Ga,i =̂ max
u∈Ga

dbr(r̂u,i, Ga) (3)

– It recommends the k′ items in i ∈ Ta for which the predicted group ratings
r̂Ga,i are highest.



The delegation-based method recognizes that a person’s opinions may be
based in part on the opinions of other members of the group. The formula,
which we explain below, is as follows:

dbr(r̂u,i, Ga) =̂

∑
v∈Ga∧v 6=u tu,v × (rv,i + θrv,i

× (v.pers − u.per))∑
v∈Ga∧v 6=u tu,v

(4)

In Equation 4, tu,v denotes the trust between u and v, which is a real number
between 0.0 (no connection) and 1.0 (strong connection). In a real application,
such as the Facebook movie group recommender that we have built [10], tu,v can
be based on distance in the social network, the number of friends in common,
relationship duration, and so on. As you can see, for user u in group Ga, we take
into account the predicted ratings, rv,i, for each other member of the group,
v ∈ Ga, v 6= u, weighted by the trust between the two users, tu,v. This follows
[2], where a method for group recommendations using trust is proposed.

In Equation 4, u.pers denotes user u’s personality, also a real number between
0.0 (very cooperative) and 1.0 (very selfish). In our Facebook group movie rec-
ommender, users complete a personality test on registration. The details of the
test are in [15]. In Equation 4, the rating given by another group member rv,i is
increased or decreased depending on the difference in personality, v.pers−u.pers.
This way, users with stronger personalities will contribute more to the final score.
A user v with a positive opinion of i, i.e. where rv,i is greater than the mid-point
of the ratings scale, will want to increase u’s opinion of i; but if v has a negative
opinion, i.e. where rv,i is less than the mid-point of the scale, then v will want
to decrease u’s opinion. We model this through a function θ:

θrv,i
=̂

{
5 if rv,i ≥ mid
−5 otherwise

where mid is the mid-point of the ratings scale, e.g. 3 on a five-point scale. We
chose the constants (5 and -5) because the mean difference in personality values
is 0.2 and therefore the impact of θrv,i

in Equation 4 will typically be 1 or -1.

4 A Case-Based Group Recommender System

Our new group recommender takes a case-based reasoning approach. There are
two motivations for a case-based approach to group recommender systems.

– Firstly, groups tend to recur: the same group (with few variations) repeats
activities together. Furthermore, group structures tend to recur: in the case of
movies, for example, family outings comprising two adults and two children
are common, as are parties of friends in the same age range.

– Secondly, group recommenders such as the one described in Section 3, have a
‘one-size-fits-all’ approach to the way they combine the predicted individual
ratings. This ignores the possibility that different groups might have very
different dynamics, not captured by a single theory expressed in a set of



formulae that apply globally. A case-based approach does not require us to
commit to a model of social behaviour and to find a way to express that
model in a set of formulae. Rather, aggregation of predicted ratings will
be a lazy and local generalization (in the spirit of CBR) of the behaviours
captured by the neighbouring cases in the case base.

4.1 Case representation

Assume a case base CB in which each case c ∈ CB records a previous group
recommendation event. Each case will have the following structure:

〈idc , 〈Gc, Tc〉, ic, {ru,ic : u ∈ Gc}〉

– idc is a case identification number, used to distinguish the case from others.
– The problem description part of the case comprises:
• Gc ⊆ U , the group of users who used the recommender previously. For

each user u ∈ Gc, we will know demographic information such as u’s age
(u.age) and gender (u.gender); u’s ratings, ru,i for some set of items;
and u’s personality value, u.pers. And, for each pair of users u ∈ Gc, v ∈
Gc, u 6= v, we will know the trust value, tu,v.

• Tc ⊆ I, the set of items that the users were choosing between. In our
cases, these were the movies that were at the local multiplex on the
occasion when this group used the recommender.

– The solution part of the case contains just ic ∈ Tc, the selected item, i.e. the
item that the group agreed on. In our cases, this is the movie that the group
went to see together.

– The outcome part of the case [1, 5] is a set of ratings. These are the actual
ratings ru,ic that the members of the group u ∈ Gc gave to item ic: for
example, after a group has gone to see their selected movie, group members
return and rate the movie. In practice, some members of the group will not do
this. In these cases, we can use r̂u,ic instead, i.e. the rating that a user-based
collaborative recommender (Section 2) predicts the user u ∈ Gc will assign
to ic. However, we have not so far evaluated empirically the consequences of
using predicted ratings in place of actual ratings.

We now explain how this recommender makes its recommendations.

Step 1: Predict individual ratings

As usual, the goal is to recommend k′ items from a set of items, Ta ⊆ I, to an
active group of users, Ga ⊆ U . We can write the problem statement as PS =
〈Ga, Ta〉. The first step is to predict individual ratings r̂u,i for each candidate
item i ∈ Ta for each member of the active group u ∈ Ga. We do this using a
standard user-based collaborative recommender, as described in Section 2.

Later in the process, it may be necessary to insert virtual users into Ga, i.e.
ones that are not real people. We explain when and why this happens at the



appropriate time. But it simplifies the later exposition if we say now how we
predict the ratings of items by virtual users. Since virtual users have no actual
ratings, we cannot use the user-based collaborative recommender, as we do for
real users. Instead, if u is a virtual user, its predicted rating for item i, r̂u,i, is

the population average rating for i:

∑
u∈U∧ru,i 6=⊥ ru,i

|u∈U∧ru,i 6=⊥| .

Step 2: Retrieve cases

The next step is to find the k′′ most similar cases. We use k′′ = 3. The similarity
between a problem statement PS = 〈Ga, Ta〉 and a case c = 〈idc , 〈Gc, Tc〉, ic, {ru,ic :
u ∈ Gc}〉 ∈ CB, sim(PS, c), is calculated on the basis of group similarity:

sim(〈Ga, Ta〉, 〈idc , 〈Gc, Tc〉, ic, {ru,ic : u ∈ Gc}〉) =̂ gsimcbr (Ga, Gc) (5)

This means that in our work case similarity only takes the groups, Ga and Gc,
into account; it does not take into account the items, Ta and Tc. Tc contains
the items that Gc contemplated in the past, but Ta contains items that Ga are
contemplating right now, e.g. movies that have just come to town. These sets
may or may not overlap. If they do, we have the basis for a refinement to the
similarity we could use in case retrieval. We leave this to future work.

We denote the group similarity by gsimcbr , and we emphasize that this is a
new definition, richer than definitions that we have used in other work [8]. In
effect, it is a form of graph similarity: users are nodes; trust relationships are
weighted edges.

In our definition of group similarity, we pair each user from the active group
Ga with exactly one user from the group in the case Gc and vice versa. In other
words, we will be finding a bijection from Ga to Gc. This raises a problem when
comparing groups of different sizes, where a bijection is not possible. In such
situations, we could simply say that gsimcbr (Ga, Gc) = 0. However, we did not
want to do this. It might force the system to retrieve unsuitable cases. Consider
a case base that just happens to contain many families of four (two adults, two
children), no families of five, but many parties of five friends. If the active group
is a family of five (two adults, three children), it is surely not appropriate to
prevent retrieval of families of four and only retrieve parties of five friends.

To enable comparisons, this is the point, prior to computing similarity, that
we insert additional virtual users into either Ga or Gc, whichever is the smaller,
in order to make the groups the same size.

Now, we can define the group similarity measure. Consider any pair of equal-
sized groups, G and G′ and a bijection, f , from G to G′. The function f will
map members of G to G′, and so for any u ∈ G, we can compute the similarity,
psimcbr , to his/her partner f(u) ∈ G′. We will do this for each user and his/her
partner, and take the average:

gpsimcbr (G,G′, f) =̂

∑
u∈G psimcbr (u, f(u))

|G|
(6)



But, we also have trust values for each pair of users in G, and we can compute
the similarities between each of these and the trust values for the corresponding
pair of users in G′. Again we take the average (dividing by the number of pairs):

gtsimcbr (G,G′, f) =̂

∑
u∈G,v∈G,u 6=v tsimcbr (tu,v, tf(u),f(v))

|G|2 − |G|
(7)

We combine gpsimcbr and gtsimcbr in a weighted average to obtain the following
definition of the similarity between any pair of equal-sized groups, G and G′,
given a bijection f from G to G′:

gsimcbr (G,G′, f) =̂ α× gpsimcbr (G,G′, f) + (1− α)× gtsimcbr (G,G′, f) (8)

We currently use α = 0.5.
This definition of gsimcbr (Equation 8) uses gtsimcbr (Equation 7), which

uses tsimcbr , the similarity between two trust values, which we have not yet
defined. We use their range-normalized difference:

tsimcbr (x, y) =̂ rn difft(x, y) (9)

where

rn diffattr (x, y) =̂ 1− |x− y|
rangeattr

(10)

There is a problem, however. If one or both of u or v (Equation 7) is a virtual
user, we will not have a trust value; similarly, if one or both of f(u) or f(v) is
virtual. In these situations, we impute an average trust value between that pair
of users, which empirically we found to be 0.05.

Equally, the definition of gsimcbr (Equation 8) uses gpsimcbr (Equation 6),
which uses psimcbr , the similarity between a person u in one group G and a
person v in another group G′, which we have not yet defined. We make use of
their ratings, age, gender and personality values. Specifically, we combine local
similarities into a global similarity. The local similarities are as follows. For the
users’ ratings, we use the Pearson correlation (Equation 1) but normalized to
[0, 1], denoted here by ρ[0,1]. For gender, we use an equality metric:

eq(x, y) =̂

{
1 if x = y
0 otherwise

(11)

For ages and personalities, we use the range-normalized difference. Finally, the
global similarity, psimcbr , is simply an average of ρ[0,1], eqgender , rn diffage and
rn diffpers .

Again we have the problem of virtual users, who do not have ages, genders,
personalities, or ratings. If either user is a virtual user, we simply take psimcbr to
be the mid-point of the similarity range. Empirically, this is 0.6. This means that
there is neither an advantage nor a disadvantage to being matched with a virtual
user and, since everyone must be paired with someone, this seems appropriate.



While this completes the definition of gsimcbr (G,G′, f), it assumes that we
give it a particular bijection, f , which pairs members of G with members of G′.
But, for the similarity, we want to consider every such bijection and settle on the
best one, the one that gives the best alignment between the group members (their
ages, genders, personalities, ratings) and the trust values. We must compute
gsimcbr (G,G′, f) for each bijection.

Let B(A,B) denote all bijections between equal-sized sets A and B. For
example, if A is {a, b, c} and B is {x, y, z}, then one bijection is {a 7→ x, b 7→
y, c 7→ z}, another is {a 7→ y, b 7→ x, c 7→ z}, and so on. Our definition of the
similarity of group G and G′ is based on finding the bijection, out of all the
possible bijections, that maximizes gsimcbr (G,G′, f):

gsimcbr (G,G′) =̂ max
f∈B(G,G′)

gsimcbr (G,G′, f) (12)

Think of this as finding the pairing that maximizes total similarity. It does mean
that a person in G might not be paired with the person who is most similar in
G′: it optimizes total similarity (over all group members and all trust values).

If G (and G′) are of size n, then there are n! bijections, and all must be
considered. There is cause to be concerned whenever a computation requires
consideration of n! objects, because of the way that factorial grows with n.
But, fortunately, the groups that most recommenders will deal with will be
small enough to keep this manageable. For example, of 525 movie-going events
reported to us through a Facebook poll, 21 were of size seven or a little above
seven. Those that were of size seven would require consideration of 7! = 5040
bijections, which remains manageable. If there are group recommenders where
the number of bijections becomes too large, then some sort of sampling or greedy
heuristic can be used, with the cost that the optimal bijection might be missed.

Step 3: Reuse cases

At this point, we have explained our similarity measure, which is used to retrieve
the k′′ most similar cases. We must now explain how we reuse the cases that we
have retrieved. To simplify the explanation, we will first consider the reuse of a
single retrieved case, denoted c = 〈idc , 〈Gc, Tc〉, ic, {ru,ic : u ∈ Gc}〉.

Immediately, there is an issue that we must resolve. We want to predict Ga’s
ratings for each i ∈ Ta. But in case c, the selected item (e.g. the movie which
the members of Gc went to see), was chosen from among Tc, which in most cases
will not be equal to Ta: group Ga is going to the movies this week, whereas
group Gc describes a previous outing to the movies, when it is probable that a
different set of movies were on show. How can we transfer the contributions that
the members of Gc made to the selection of ic ∈ Tc to the new situation where
members of Ga must select an item from Ta?

The key to this is item-item similarity, which we described in Section 2.
With item-item similarity, we can find the item i ∈ Ta that is, for these users,
most similar to ic ∈ Tc. But there remains a problem. The Pearson correlation
between two items i and i′ is computed over the users who have rated both i



Predicted ratings for
candidate movies

Ga Shrek Hulk

Ann 2 3
Ben 5 3
Col 2 4

Actual ratings for
the selected movie

Gc Twilight
Dee 1
Edd 4
Flo 2

(a) No users in common

Predicted & actual ratings

Aligned users Shrek Hulk Twilight

Ann+Dee 2 3 1
Ben+Edd 5 3 4
Col+Flo 2 4 2

(b) Using the bijection

Fig. 2: How item-item similarity is used

and i′ (Equation 2). There is no guarantee that there will be any user in either
Ga or Gc who has rated both i ∈ Ta and ic ∈ Tc. But this is where the bijection
f found in Equation 12 can be used again. When comparing a rating from a
user u ∈ Ga for an item i ∈ Ta, we can use the rating rf(u),ic made by the

corresponding user f (u) ∈ Gc for the item ic ∈ Tc. It is by this means that we
transfer the contributions that users in c made in their group decision to the
group decision for 〈Ga, Ta〉.

But there is still a problem. The users u ∈ Ga are unlikely to have a rating
ru,i for the items i ∈ Ta, because Ta contains the candidate items that the
group is choosing between. Instead, we use their predicted ratings r̂u,i, which we
computed previously (Section 4.1) or, in the case of virtual users, the population
average rating for the item.

Figure 2 contains an example. Suppose Ann, Ben and Col are in active group
Ga, and that Dee, Edd and Flo are in case Gc. Figure 2a shows that we are
unable to compute the item-item similarity between the selected movie from the
case, Twilight, with the candidate movies, Shrek and Hulk. The movies have no
users in common. For the active group, we have the predicted ratings for the
candidate items; for the group in the case, we have the actual ratings for the
selected movie. But suppose that, by the bijection, Ann maps to Dee, Ben maps
to Edd and Col maps to Flo. Then, we can compute the item-item similarity
between Shrek and Twilight by comparing Ann’s predicted rating for Shrek with
Dee’s actual rating for Twilight, and Ben’s predicted rating for Shrek with Edd’s
actual rating for Twilight, and so on. In effect, while there may be no users in
these two groups who have rated both Shrek and Twilight, we are treating Ann
& Dee as a ‘single person’ who has a rating for both Shrek (Ann’s predicted
rating) and Twilight (Dee’s actual rating); see the Figure 2b.

We use Equation 2 to do this, but there are some changes. First, instead of
computing the correlation over all users U , we compute it only over the users



u ∈ Ga. Secondly, wherever the formula uses ru,i, we now use u’s predicted
rating, r̂u,i; and wherever the formula uses ru,i′ , we now use the rating given by
the user in Gc who corresponds to u, i.e. rf(u),i′ .

We must still decide what to do if the groups are not of the same size.
Consider the situation first where Ga is smaller than Gc . When we computed
group similarity gsimcbr earlier, we will have inserted extra virtual users into
Ga. In this situation, we would not use Ga in place of U in Equation 2; rather,
we would use the augmented version of Ga in place of U . That way, we can
properly transfer the decision of the larger group to the smaller group: each
person’s contribution in the larger group is transferred to someone, either a real
person from the smaller group or a virtual person who was inserted into the
smaller group.

In the situation where Ga is larger than Gc, we will have earlier inserted
virtual users into Gcin order to compute gsimcbr . This time, however, we do
use Ga in place of U . In other words, we compute the item-item similarity only
on the ratings of the real people in Ga and their real counterparts in Gc. The
virtual users were obviously not in reality present when Gc made its decision to
consume ic, so it makes no sense to transfer their contributions (i.e. none) to the
decision-making of the smaller group Ga. This is achieved by simply computing
item-item similarity over the real users and their counterparts, which is what
Equation 2 will do if we use Ga in place of U . This does mean that, in these
situations, there will be users in Ga whose opinions will be ignored (because they
have no real counterparts in the smaller group, Gc).

So, we have explained how, given a retrieved case c, we can compute the
similarity between ic from c and each i ∈ Ta. We repeat this for each of the k′′

retrieved cases. We can accumulate the item-item similarities and weight them
by the group similarities. Formally, if C is the set of k′′ cases, then the score for
a candidate item i ∈ Ta is

∑
c∈C gsimcbr (Ga, Gc)× ρi,ic .

Step 4: Recommend items

All the items in Ta have now received a score based on cumulating the similarities
to the selected items in similar cases, weighted by the degree of similarity to those
cases. So, finally, we recommend the k′ items that have the highest scores.

5 Experiment

5.1 Group Recommender Dataset

We need a dataset with which we can evaluate our new system. We have built
a social group recommender as a Facebook application [10]. But, at the time
of writing, it cannot provide the volume of data that we need for conducting
experiments. Unfortunately, neither are we aware of a public dataset for group
recommenders. Hence, we created our own dataset. We have explained its con-
struction elsewhere [8], and so we only summarize here.



We created our dataset from the MovieLens 1M dataset (www.grouplens.org),
which gives us around 1 million ratings on a scale of 1 to 5 for around 6040 users
for nearly 4000 movies. We created 100 groups from the MovieLens users, se-
lecting group members at random but in such a way that everyone in a group
falls into the same age range, and we ensured that there were at least 15 movies
which are co-rated by all members of the group. When we create cases, these 15
movies will be the set Tc. We created 50 groups of size 2, 18 of size 3, 16 of size
4, 7 of size 5, 5 of size 6, and 4 where we took the size to be 7, this distribution
being based on respondents to a Facebook poll that we administered.

The MovieLens dataset gives us the age, gender and ratings of each user. We
had to impute personality values, which we did using the population distributions
given in [15, 14]. Similarly, we had to impute trust values between pairs of users
in the same group. We took the trust between users u and u′ to be the number
of movies on whose ratings they agree as a proportion of the movies that either
of them has rated. We take it that users agree if both have given the movie a
rating above the ratings mid-point (which is 3) or if both have given the movie
a rating below the ratings mid-point.

As we have explained, we have engineered matters so that, for each group,
there is a set of 15 movies that all members of the group have rated, and we are
treating these 15 movies as Tc, the set of movies that this group was choosing
between. (Remember that Tc can be different for every group.) To create a case,
we need to indicate which of these 15 movies the group will actually have chosen
to go to see. For this, we got the opinion of four ‘experts’, two for each group.
The experts voted on which three movies in Tc the group was most likely to
select, placing movies into first, second and third position. Depending on the
level of agreement between the experts, there might be ties for, e.g., first place,
and so, although there were only three positions, the sets contained between
three and five movies. We will designate this ordered set by E (for ‘Expert’) and
we will use E1 to mean movies in the first position in E, E2 to mean movies in
the first and second positions in E, and so on.

5.2 Evaluation Methodology

The dataset that we have created has 100 movie-going events, in other words
100 cases. We use a leave-one-out cross-validation methodology, where we remove
each case in turn from the case base and present it to the recommenders.

We use three recommenders in these experiments: Std, Soc and CBR. Std is
a simple group recommender: it uses the user-based collaborative recommender
to predict the ratings each group member would give to the candidate items, and
combines the ratings using the principle of most pleasure. Soc does the same but,
before aggregation, it uses extra social data to modify individuals’ predictions
using the delegation-based method of Section 3. CBR is the new recommender,
which uses cases to aggregate predicted ratings, which we described in Section 4.

Recall that each recommender recommends the top k′ = 3 movies from the
15 candidates. Let R be the set of recommendations made by a particular rec-
ommender. Then we want to compare R with E from above. We computed total



Fig. 3: Results of the experiment

success@n for n = 1, 2, 3, where success@n = 1 if ∃i, i ∈ R ∧ i ∈ En and is 0
otherwise. For example, when using success@2, we score 1 each time there is at
least one recommended movie in the top two positions of E. We also computed
total precision@n for n = 1, 2, 3, where precision@n =̂ |{i : i ∈ R ∧ i ∈ En}|/n.
For example, if no recommended movie is in the top two positions in E, then
precision@2 = 0; if one recommended movie is in the top two positions in E,
then precision@2 = 0.5.

5.3 Results

Figure 3 shows success@n for n = 1, 2, 3 and precision@n for n = 2, 3 (precision@1
= success@1 and is therefore not shown).

The first observation about the results is that, as n gets bigger, the results
get better, e.g. success@2 results are better than success@1 results. This is not
surprising: with bigger n, it is simply easier to make a recommendation that
matches an expert judgement. The second observation is that results with Soc
are better than results with Std : the use of the social information improves the
quality of the recommendations. This is not a new result [11, 8]. But what is
new, our third observation, is the performance of the CBR system. It is never
worse, and usually better, than both of the other systems. In detail, CBR has
the same total success@1 (and precision@1) as Soc, just 12: it is very difficult
for the systems to recommend the movie(s) the experts place in first position.
But in all other cases, the CBR does better. For example, Soc’s success@2 = 58
but CBR’s success@2 = 61; and Soc’s precision@2 = 31 but CBR’s is 36.5.
This shows the value of abandoning Soc’s single model of social behaviour, in
favour of the lazy and local generalization that we obtain from the Case-Based



Reasoning. We suspect that the differences would be even more marked in real
datasets with more variability in the make-up of the groups.

6 Conclusions

We have described a new case-based group recommender system. It aggregates
the predicted ratings of members of the active group but with reference to rat-
ings of users in similar cases. A user-user similarity measure aligns members of
the active group with members of the group in the case. The system uses an
item-item similarity measure to transfer the contributions made to the group
decision from the case to the corresponding users in the active group. One of its
advantages is that preferences will be aggregated in different ways depending on
how they played out in neighbouring groups, rather than according to a global,
hypothesized theory of social interaction. This is borne out by our experiment,
in which the CBR system is never worse, and is usually better, than a system
that has a global model of group behaviour, expressed as a set of equations.

In our experiment, the selected item(s) in the cases are chosen by experts
with knowledge of the actual ratings. So they are, in some sense, the absolutely
best item(s). Therefore, it makes sense to run an experiment in which we see the
extent to which the systems recommend such items.

But, matters are more complicated in practice. Suppose the recommender
has recommended a movie to a group, and the group members have come back
and rated that movie. We cannot simply retain this as a case in the case base.
It may be suboptimal; it may not have been the best movie for this group. If we
retain it, we will replay it in any future recommendation where it gets retrieved
as a neighbour, where it may contribute to suboptimal decisions in the future.

In fact, this is not just a problem with CBR in group recommenders. It is
a more general problem for the evaluation of group recommenders. It is very
difficult to know whether they make good recommendations or not. If a user
watches a recommended movie in a group and later gives it a low rating, this
does not mean that the group recommender has done a poor job. It may even
be that the group recommender predicted that this user would give a low rating.
But the movie was recommended nonetheless, as it was judged to be the one
that best reconciled the different tastes and personalities of the group members.

The implication is that, when group recommenders seek feedback from group
members after recommended items have been consumed, they may need to solicit
two types of feedback: the opinion of each individual user about whether the
item satisfied him/her or not, but also the opinion of each individual user about
whether the item satisfied the group as a whole or not.

Even if we get this more nuanced kind of feedback, it is not clear at this stage
how to use it in evaluation of recommenders or in building case-based recom-
menders, not least because different group members may disagree on whether
the recommendation satisfied the group or not. In case-based recommenders,
the outcome part of the case might need to become much richer, to capture
the opinions of the group members after they have consumed the item together,



implying additional complexity in the kind of case-based recommender that we
have described. This is a major issue for future work.

Other future work includes the use of datasets in which we explicitly arrange
for the same group (or nearly the same group) to consume items together on a
frequent basis, which can lead to a case base with more directly relevant cases
in it. We hope too to gather more data from our Facebook group recommender
and use this in future experiments.
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